首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Support from the National Institutes of Health and the American Heart Association is gratefully acknowledged.  相似文献   

2.
高胆固醇血症病人的红细胞膜ATP酶活性变化   总被引:3,自引:0,他引:3  
研究表明高胆固醇血症病人的红细胞膜Na+-K+-ATP酶和Ca2+-Mg2+-ATP酶活性均降低,并且血浆总胆固醇和低密度脂蛋白-胆固醇浓度与这两种酶活性呈高度负相关,而血浆高密度脂蛋白-胆固醇浓度与Na+-K+-ATP酶活性呈正相关。这些变化的研究,对于进一步探讨动脉粥样硬化的发生机制及其防治可能具有重要意义。  相似文献   

3.
Summary To study the possible role of intracellular Ca (Ca i ) in controlling the activities of the Na+–K+ pump, the Na+–K+ cotransport and the Na+/Li+ exchange system of human erythrocytes, a method was developed to measure the amount of Ca embodied within the red cell. For complete removal of Ca associated with the outer aspect of the membrane, it proved to be essential to wash the cells in buffers containing less than 20nm Ca. Ca was extracted by HClO4 in Teflon® vessels boiled in acid to avoid Ca contaminations and quantitated by flameless atomic absorption. Ca i of fresh human erythrocytes of apparently healthy donors ranged between 0.9 and 2.8 mol/liter cells. The mean value found in females was significantly higher than in males. The interindividual different Ca contents remained constant over periods of more than one year. Sixty to 90% of Ca i could be removed by incubation of the cells with A23187 and EGTA. The activities of the Na+–K+ pump, of Na+–K+ cotransport and Na+/Li+ exchange and the mean cellular hemoglobin content fell with rising Ca i ; the red cell Na+ and K+ contents rose with Ca i . Ca depletion by A23187 plus EGTA as well as chelation of intracellular Ca2+ by quin-2 did not significantly enhance the transport rates. It is concluded that the large scatter of the values of Ca i of normal human erythrocytes reported in the literature mainly results from a widely differing removal of Ca associated with the outer aspect of the membrane.  相似文献   

4.
Summary Microsomal fractions were isolated from gastric antrum and fundus smooth muscle of guinea pigs. Ca2+ uptake into and Ca2+ release from the membrane vesicles were studied by a rapid filtration method, and Ca2+ transport properties of the different regions of the stomach were compared. ATP-dependent Ca2+ uptake was similar in microsomes isolated from both regions. This uptake was increased by oxalate and was not affected by NaN3. Oxalate affected Ca2+ permeability of both antrum and fundus microsome vesicles similarly. Fundus microsome vesicles preincubated in 100mm NaCl and then diluted to 1/20 concentration with Na+-free medium had significantly higher ATP-independent Ca2+ uptake than vesicles preincubated in 100mm KCl and treated the same way. This was not true for antrum vesicles. Monensin abolished Na+-dependent Ca2+ uptake, and NaCl enhanced Ca2+ efflux from fundus microsome vesicles. The halflife values of Ca2+ loss from fundus vesicles in the presence of NaCl were significantly smaller than those in the presence of KCl. The release of Ca2+ from the vesicles within the first 3 min was accelerated by NaCl to three times that by KCl. However, NaCl had ro effect on Ca2+ release from antrum microsome vesicles.Results suggest two distinct mechanisms of stomach membrane Ca2+ transport: (1) ATP-dependent Ca2+ uptake and (2) Na+–Ca2+ exchange; the latter in the fundus only.  相似文献   

5.
Summary The volume regulatory response of the Ehrlich ascites tumor was studied in KCl-depleted, Na+-enriched cells. Subsequent incubation in K+-containing NaCl medium results in the reaccumulation of K+, Cl, water and the extrusion of Na+. The establishment of the physiological steady state is due primarily to the activity of 2 transport systems. One is the Na/K pump (K M for K 0 + =3.5mm;J max=30.1 mEq/kg dry min), which in these experiments was coupled 1K+/1 Na+. The second is the Cl-dependent (Na++K+) cotransport system (K M for K 0 + =6.8mm;J max=20.8 mEq/kg dry min) which mediates, in addition to net ion uptake in the ratio of 1K+1Na+2Cl, the exchange of K i + for K 0 + . The net passive driving force on the cotransport system is initially inwardly directed but does not decrease to zero at the steady state. This raises the possibility of the involvement of an additional source of energy. Although cell volume increases concomitant with net ion uptake, this change does not appear to be a major factor regulating the activity of the cotransport system.  相似文献   

6.
Although many causal factors have been proposed for the ischemia-reperfusion injury, the exact mechanisms for interdependent derangements of mechanical, electrical and metabolic events remains unclear. For this purpose, the Langendorff-perfused rat hearts were subjected to regional brief ischemia followed by reperfusion to study the protective effects of amiloride, an inhibitor of Na+–H+ exchange. Amiloride (0.1 mM) attenuated the rise in tissue Na+ and Ca2+, both duration and incidence of arrhythmias (p<0.05 vs. control), sarcolemmal injury (assessed by Na–K ATPase) and lipid peroxidation (assessed by malonedialdehyde formation) during reperfusion. Treatment of hearts with monensin, a sodium inophore, reversed the protective effects of amiloride. Reduction in transsarcolemmal Na+ and pH gradients during ischemia exhibited protective effects similar to those seen with amiloride. These results suggest that cardiac dysfunction, sarcolemmal injury and triggered arrhythmias during ischemia-reperfusion are due to the occurrence of intracellular Ca2+ overload caused by the activation of Na+–H+ exchange and Na+–Ca2+ exchange systems in the myocardium.  相似文献   

7.
The antimalarial drug chloroquine is found to inhibit Na+, K+-ATPase, Ca2+, Mg2+-ATPase, Ca2+-ATPase, pNPPase and acetylcholinesterase activities in different organs of rat in vivo when injected for a certain periods of time. The inhibition seems to be due to the changes in the level of phospholipid, cholesterol and the fatty acid of the lipid and the alteration of the fluidity of the microsomal membranes. However, the enzyme activities return to the normal level in about 2–3 weeks after the discontinuation of the drug suggesting that the drug effect is reversible.  相似文献   

8.
9.
In order to examine the regulatory role of thyroid hormone on sarcolemmal Ca2+-channels, Na+–Ca2+ exchange and Ca2+-pump as well as heart function, the effects of hypothyroidism and hyperthyroidism on rat heart performance and sarcolemmal Ca2+-handling were studied. Hyperthyroid rats showed higher values for heart rate (HR), maximal rates of ventricular pressure development+(dP/dt)max and pressure fall–(dP/dt)max, but shorter time to peak ventricular pressure (TPVP) and contraction time (CT) when compared with euthyroid rats. The left ventricular systolic pressure (LVSP) and left ventricular end-diastolic pressure (LVEDP), as well as aortic systolic and diastolic pressures (ASP and ADP, respectively) were not significantly altered. Hypothyroid rats exhibited decreased values of LVSP, HR, ASP, ADP, +(dP/dt)max and –(dP/dt)max but higher CT when compared with euthyroid rats; the values of LVEDP and TPVP were not changed. Studies with isolated-perfused hearts showed that while hypothyroidism did not modulate the inotropic response to extracellular Ca2+ and Ca2+ channel blocker verapamil, hyperthyroidism increased sensitivity to Ca2+ and decreased sensitivity to verapamil in comparison to euthyroid hearts. Studies of [3H]-nitrendipine binding with purified cardiac sarcolemmal membrane revealed decreased number of high affinity binding sites (Bmax) without any change in the dissociation constant for receptor-ligand complex (Kd) in the hyperthyroid group when compared with euthyroid sarcolemma; hypothyroidism had no effect on these parameters. The activities of sarcolemmal Ca2+-stimulated ATPase, ATP-dependent Ca2+ uptake and ouabain-sensitive Na+–K+ ATPase were decreased whereas the Mg2+-ATPase activity was increased in hypothyroid hearts. On the other hand, sarcolemmal membranes from hyperthyroid samples exhibited increased ouabain-sensitive Na+–K+ ATPase activity, whereas Ca2+-stimulated ATPase, ATP-dependent Ca2+ uptake, and Mg2+-ATPase activities were unchanged. The Vmax and Ka for Ca2+ of cardiac sarcolemmal Na+–Ca2+ exchange were not altered in both hyperthyroid and hypothyroid states. These results indicate that the status of sarcolemmal Ca2+-transport processes is regulated by thyroid hormones and the modification of Ca2+-fluxes across the sarcolemmal membrane may play a crucial role in the development of thyroid state-dependent contractile changes in the heart.  相似文献   

10.
The calcium transport ATPase and the copper transport ATPase are members of the P-ATPase family and retain an analogous catalytic mechanism for ATP utilization, including intermediate phosphoryl transfer to a conserved aspartyl residue, vectorial displacement of bound cation, and final hydrolytic cleavage of Pi. Both ATPases undergo protein conformational changes concomitant with catalytic events. Yet, the two ATPases are prototypes of different features with regard to transduction and signaling mechanisms. The calcium ATPase resides stably on membranes delimiting cellular compartments, acquires free Ca2+ with high affinity on one side of the membrane, and releases the bound Ca2+ on the other side of the membrane to yield a high free Ca2+ gradient. These features are a basic requirement for cellular Ca2+ signaling mechanisms. On the other hand, the copper ATPase acquires copper through exchange with donor proteins, and undergoes intracellular trafficking to deliver copper to acceptor proteins. In addition to the cation transport site and the conserved aspartate undergoing catalytic phosphorylation, the copper ATPase has copper binding regulatory sites on a unique N-terminal protein extension, and has also serine residues undergoing kinase assisted phosphorylation. These additional features are involved in the mechanism of copper ATPase intracellular trafficking which is required to deliver copper to plasma membranes for extrusion, and to the trans-Golgi network for incorporation into metalloproteins. Isoform specific glyocosylation contributes to stabilization of ATP7A copper ATPase in plasma membranes.  相似文献   

11.
The present study aimed to clarify the existence of a Na+/Ca2+ antiport device in kidney tubular epithelial cells discussed in the literature to represent the predominant mechanistic device for Ca2+ reabsorption in the kidney. (1) Inside-out oriented plasma membrane vesicles from tubular epithelial cells of guinea-pig kidney showed an ATP-driven Ca2+ transport machinery similar to that known to reside in the plasma membrane of numerous cell types. It was not affected by digitalis compounds which otherwise are well-documented inhibitors of Ca2+ reabsorption. (2) The vesicle preparation contained high, digitalis-sensitive (Na++K+-ATPase activities indicating its origin from the basolateral portion of plasma membrane. (3) The operation of Na+/Ca2+ antiport device was excluded by the findings that steep Ca2+ gradients formed by ATP-dependent Ca2+ accumulation in the vesicles were not discharged by extravesicular Na+, and did not drive 45Ca2+ uptake into the vesicles via a Ca2+-45Ca2+ exchange. (4) The ATP-dependent Ca2+ uptake into the vesicles became increasingly depressed with time by extravesicular Na+. This was not due to an impairment of the Ca2+ pump itself, but caused by Na+/Ca2+ competition for binding sites on the intravesicular membrane surface shown to be important for high Ca2+ accumulation in the vesicles. (5) Earlier observations on Na+-induced release of Ca2+ from vesicles pre-equilibrated with Ca2+, seemingly favoring the existence of a Na+/Ca2+ antiporter in the basolateral plasma membrane, were likewise explained by the occurrence of Na+/Ca2+ competition for binding sites. The weight of our findings disfavors the transcellular pathway of Ca2+ reabsorption through tubule epithelium essentially depending on the operation of a Na+/Ca2+ antiport device.  相似文献   

12.
Ligand binding to transport sites constitutes the initial step in the catalytic cycle of transport ATPases. Here, we consider the well characterized Ca2+ ATPase of sarcoplasmic reticulum (SERCA) and describe a series of Ca2+ binding isotherms obtained by equilibrium measurements in the presence of various H+ and Mg2+ concentrations. We subject the isotherms to statistical mechanics analysis, using a model based on a minimal number of mechanistic steps. The analysis allows satisfactory fits and yields information on occupancy of the specific Ca2+ sites under various conditions. It also provides a fundamental method for analysis of binding specificity to transport sites under equilibrium conditions that lead to tightly coupled catalytic activation.  相似文献   

13.
The literature suggests that when Na(+)-K(+)-ATPase has reduced access to its glycosphingolipid cofactor sulfogalactosyl ceramide (SGC), it is converted to a Na(+) uniporter. We recently showed that such segregation can occur within a single membrane when Na(+)-K(+)-ATPase is excluded from membrane microdomains or 'lipid rafts' enriched in SGC (D. Lingwood, G. Harauz, J.S. Ballantyne, J. Biol. Chem. 280, 36545-36550). Specifically we demonstrated that Na(+)-K(+)-ATPase localizes to SGC-enriched rafts in the gill basolateral membrane (BLM) of rainbow trout exposed to seawater (SW) but not freshwater (FW). We therefore proposed that since the freshwater gill Na(+)-K(+)-ATPase was separated from BLM SGC it should also transport Na(+) only, suggesting a new role for the pump in this epithelium. In this paper we discuss the biochemical evidence for SGC-based modulation of transport stoichiometry and highlight how a unique asparagine-lysine substitution in the FW pump isoform and FW gill transport energetics gear the Na(+)-K(+)-ATPase to perform Na(+) uniport.  相似文献   

14.
Summary We have examined the effect of second messengers on ATP-driven H+ transport in an H+ ATPase-bearing endosomal fraction isolated from rabbit renal cortex. cAMP (0.1mm) had no effect on H+ transport. Acridine orange fluorescence in the presence of 0.5mm Ca2+ (+1mm EGTA) was 19±6% of control. Inhibition of ATP-driven H+ transport by Ca2+ was concentration dependent; 0.25 and 0.5mm Ca2+ (+1mm EGTA) inhibited acridine orange fluorescence by 50 and 80%, respectively. Ca2+ also produced a concentration-dependent increase in the rate of pH-gradient dissipation. Ca2+ did not affect ATP hydrolysis. ATP-dependent Br uptake was virtually unchanged in the presence of 0.5mm Ca2+ (+1mm EGTA). These vesicles were also shown to transport Ca2+ in an ATP-dependent mode. Inositol 1, 4, 5-trisphosphate had no effect on ATP-dependent Ca2+ uptake. These results are consistent with the co-existence of an H+ ATPase and an H+/Ca2+ exchanger on these endosomes, the latter transport system using the H+ gradient to energize Ca2+ uptake. Attempts to demonstrate an H+/Ca2+ antiporter in the absence of ATP have been unsuccessful. Yet, when a pH gradient was established by preincubation with ATP and residual ATP was subsequently removed by hexokinase + glucose, stimulation of Ca2+ uptake could be demonstrated. A Ca2+-dependent increase in H+ permeability and an ATP-dependent Ca2+ uptake might have important implications for the regulation of vacuolar H+ ATPase activity as well as the homeostasis of cytosolic Ca2+ concentration.  相似文献   

15.
Summary The effect of extracellular and intracellular Na+ (Na o + , Na i + ) on ouabain-resistant, furosemide-sensitive (FS) Rb+ transport was studied in human erythrocytes under varying experimental conditions. The results obtained are consistent with the view that a (1 Na++1 K++2 Cl) cotransport system operates in two different modes: modei) promoting bidirectional 11 (Na+–K+) cotransport, and modeii) a Na o + -independent 11 K o + /K i + exchange requiring Na i + which, however, is not extruded. The activities of the two modes of operation vary strictly in parallel to each other among erythrocytes of different donors and in cell fractions of individual donors separated according to density. Rb+ uptake through Rb o + /K i + exchange contributes about 25% to total Rb+ uptake in 145mm NaCl media containing 5mm RbCl at normal Na i + (pH 7.4). Na+–K+ cotransport into the cells occurs largely additive to K+/K+ exchange. Inward Na+–Rb+ cotransport exhibits a substrate inhibition at high Rb o + . With increasing pH, the maximum rate of cotransport is accelerated at the expense of K+/K+ exchange (apparent pK close to pH 7.4). The apparentK m Rb o + of Na+–K+ cotransport is low (2mm) and almost independent of pH, and high for K+/K+ exchange (10 to 15mm), the affinity increasing with pH. The two modes are discussed in terms of a partial reaction scheme of (1 Na++1 K++2 Cl) cotransport with ordered binding and debinding, exhibiting a glide symmetry (first on outside = first off inside) as proposed by McManus for duck erythrocytes (McManus, T.J., 1987,Fed. Proc., in press). N-ethylmaleimide (NEM) chemically induces a Cl-dependent K+ transport pathway that is independent of both Na o + and Na i + . This pathway differs in many properties from the basal, Na o + -independent K+/K+ exchange active in untreated human erythrocytes at normal cell volume. Cell swelling accelerates a Na o + -independent FS K+ transport pathway which most probably is not identical to basal K+/K+ exchange. K o + o +
  • o + o 2+ reduce furosemide-resistant Rb+ inward leakage relative to choline o + .  相似文献   

  • 16.
    The effect of retinol deficiency and curcumin and turmeric feeding on brain microsomal Na+-K+ ATPase activity was investigated. The brain Na+–K+ ATPase activity registered an increase of 148.5% as compared to the control group. Upon treating retinol deficient rats with curcumin or turmeric, the abnormally elevated activity showed a decrease of 36.9 and 47.1%, respectively, when compared to the retinol deficient group. An increase in Vmax by 67% and Km by 66% for ATP was observed in the retinol deficient group. Curcumin or turmeric fed retinol-deficient groups reduced the Vmax by 25 and 33%, while Km was reduced by 25 and 31%, respectively, compared to the retinol deficient group. Arrhenius plot of Na+–K+ ATPase showed a typical bi-phasic pattern in all the groups. Cholesterol: Phospholipid ratio showed a decrease in the retinol-deficient group by 67.8%, which showed a marked increase in curcumin or turmeric treated groups. Detergents could increase the Na+–K+ ATPase activity more in the control group than in the retinol deficient groups. Curcumin or turmeric improved the detergent action on the enzyme. Subsequent freezing and thawing over a period of 30 min decreased the enzyme activity by 22.8% in the retinol deficient group compared to 15.9% decrease in the control group. Curcumin or turmeric treated groups showed a decrease in the enzyme activity by 22.0 and 19.2%, respectively, when compared to the zero time in each group. In the presence of concanavalin-A (Con-A) there was only 52.4% stimulation in the enzyme activity in retinol deficient groups, compared to 108.0% in the control group. Curcumin or turmeric treated retinol-deficient groups showed a stimulation in the presence of con-A by 70 and 99.5%, respectively.  相似文献   

    17.
    Previous evidence from this laboratory indicated that catecholamines and brain endogenous factors modulate Na+, K+-ATPase activity of the synaptosomal membranes. The filtration of a brain total soluble fraction through Sephadex G-50 permitted the separation of two fractions-peaks I and II-which stimulated and inhibited Na+, K+-ATPase, respectively (Rodríguez de Lores Arnaiz and Antonelli de Gomez de Lima, Neurochem. Res.11, 1986, 933). In order to study tissue specificity a rat kidney total soluble was fractionated in Sephadex G-50 and kidney peak I and II fractions were separated; as control, a total soluble fraction prepared from rat cerebral cortex was also processed. The UV absorbance profile of the kidney total soluble showed two zones and was similar to the profile of the brain total soluble. Synaptosomal membranes Na+, K+- and Mg2+-ATPases were stimulated 60–100% in the presence of kidney and cerebral cortex peak I; Na+, K+-ATPase was inhibited 35–65% by kidney peak II and 60–80% by brain peak II. Mg2+-ATPase activity was not modified by peak II fractions. ATPases activity of a kidney crude microsomal fraction was not modified by kidney peak I or brain peak II, and was slightly increased by kidney peak II or brain peak I. Kidney purified Na+, K+-ATPase was increased 16–20% by brain peak I and II fractions. These findings indicate that modulatory factors of ATPase activity are not exclusive to the brain. On the contrary, there might be tissue specificity with respect to the enzyme source.  相似文献   

    18.
    Mechanism of proton transport by plant plasma membrane proton ATPases   总被引:2,自引:0,他引:2  
    The mechanism of proton translocation by P-type proton ATPases is poorly defined. Asp684 in transmembrane segment M6 of the Arabidopsis thaliana AHA2 plasma membrane P-type proton pump is suggested to act as an essential proton acceptor during proton translocation. Arg655 in transmembrane segment M5 seems to be involved in this proton translocation too, but in contrast to Asp684, is not essential for transport. Asp684 may participate in defining the E1 proton-binding site, which could possibly exist as a hydronium ion coordination center. A model of proton translocation of AHA2 involving the side chains of amino acids Asp684 and Arg655 is discussed.  相似文献   

    19.
    Summary The inhibition of Ca2–-ATPase, (Na++K+)-ATPase and Na+/Ca2+ exchange by Cd2+ was studied in fish intestinal basolateral plasma membrane preparations. ATP driven 45Ca2+ uptake into inside-out membrane vesicles displayed a K m for Ca2+ of 88±17 nm, and was extremely sensitive to Cd2+ with an IC50 of 8.2±3.0 pM Cd2+, indicating an inhibition via the Ca2+ site. (Na++K+)-ATPase activity was half-maximally inhibited by micromolar amounts of Cd2+, displaying an IC50 of 2.6±0.6 m Cd2+. Cd2+ ions apparently compete for the Mg2+ site of the (Na +K+)-ATPase. The Na+/Ca2+ exchanger was inhibited by Cd2+ with an IC50 of 73±11 nm. Cd2+ is a competitive inhibitor of the exchanger via an interaction with the Ca2+ site (K i = 11 nm). Bepridil, a Na+ site specific inhibitor of Na+/Ca2+ exchange, induced an additional inhibition, but did not change the K i of Cd2+. Also, Cd2+ is exchanged against Ca2+, albeit to a lesser extent than Ca2+. The exchanger is only partly blocked by the binding of Cd2+. In vivo cadmium that has entered the enterocyte may be shuttled across the basolateral plasma membrane by the Na+/Ca2+ exchanger. We conclude that intracellular Cd2+ ions will inhibit plasma membrane proteins predominantly via a specific interaction with divalent metal ion sites.We would like to thank Dr. D. Fackre (University of Alberta, Canada) for stimulating discussions and Mr. F.A.T. Spanings (University of Nijmegen, The Netherlands) for excellent fish husbandry. The fura-2 measurements of intracellular Ca2+ concentrations in tilapia enterocytes were carried out in the Department of Physiology, School of Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada. Th.J.M. Schoenmakers and G. Flik were supported by travel grants from the Foundation for Fundamental Biological Research (BION) and the Netherlands Organization for Scientific Research (NWO).  相似文献   

    20.
    Summary Rabbit erythrocytes are well known for possessing highly active Na+/Na+ and Na+/H+ countertransport systems. Since these two transport systems share many similar properties, the possibility exists that they represent different transport modes of a single transport molecule. Therefore, we evaluated this hypothesis by measuring Na+ transport through these exchangers in acid-loaded cells. In addition, selective inhibitors of these transport systems such as ethylisopropyl-amiloride (EIPA) and N-ethylmaleimide (NEM) were used. Na+/Na+ exchange activity, determined as the Na o + -dependent22Na efflux or Na i + -induced22Na entry was completely abolished by NEM. This inhibitor, however, did not affect the H i + -induced Na+ entry sensitive to amiloride (Na+/H+ exchange activity). Similarly, EIPA, a strong inhibitor of the Na+/H+ exchanger, did not inhibit Na+/Na countertransport, suggesting the independent nature of both transport systems. The possibility that the NEM-sensitive Na+/Na+ exchanger could be involved in Na+/H+ countertransport was suggested by studies in which the net Na+ transport sensitive to NEM was determined. As expected, net Na+ transport through this transport system was zero at different [Na+] i /[Na+] o ratios when intracellular pH was 7.2. However, at pH i =6.1, net Na+ influx occurred when [Na+] i was lower than 39mm. Valinomycin, which at low [K+] o was lower than 39mm. Valinomycin, which at low [K+] o clamps the membrane potential close to the K+ equilibrium potential, did not affect the net NEM-sensitive Na+ entry but markedly stimulated, the EIPA-and NEM-resistant Na+ uptake. This suggest that the net Na+ entry through the NEM-sensitive pathway at low pH i , is mediated by an electroneutral process possibly involving Na+/H+ exchange. In contrast, the EIPA-sensitive Na+/H+ exchanger is not involved in Na+/Na+ countertransport, because Na+ transport through this mechanism is not affected by an increase in cell Na from 0.4 to 39mm. Altogether, these findings indicate that both transport systems: the Na+/Na+ and Na+/H+ exchangers, are mediated by distinct transport proteins.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号