首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim The tunicate Molgula manhattensis has a disjunct amphi‐Atlantic distribution and a recent history of world‐wide introductions. Its distribution could be the result of regional extinctions followed by post‐glacial recolonization, or anthropogenic dispersal. To determine whether the North Atlantic distribution of M. manhattensis is natural or human‐mediated, we analysed mtDNA cytochrome c oxidase subunit I (COI) sequence variation in individuals from cryptogenic and introduced ranges. Location North Atlantic Europe and America; Black Sea; San Francisco Bay; Osaka Bay. Methods Nuclear 18S rDNA sequences were used to resolve phylogenetic relationships and mtDNA COI sequences for phylogeographic analyses. Results Phylogenetic analyses confirmed that M. manhattensis and M. socialis, which are frequently confused, are distinct species. MtDNA haplotype diversity was nearly three times higher with deeper relationships among haplotypes on the North‐east American coast than in Europe. Diversity declined from south to north in America but not in Europe. In areas of known introductions (Black Sea, Japan, San Francisco Bay), M. manhattensis showed variable levels of haplotype diversity. Medium‐to‐high‐frequency haplotypes originating from the North‐west Atlantic were present in two locations of known introductions, but not in Europe. Private haplotypes were found on both sides of the Atlantic and in introduced populations. The mismatch distribution for the North‐east Atlantic coast indicates a recent expansion. Main conclusions Molgula manhattensis is native in North‐east America. However, whether it was introduced or is native to Europe remains equivocal. Additional sampling might or might not reveal the presence of putative private European haplotypes in America. The low European diversity may be explained by low effective population size and a recent expansion, or by low propagule pressure of anthropogenic introduction. Absence of medium‐to‐high‐frequency American haplotypes in Europe may be the result of exclusive transport from southern ports, or long‐term residence. These arguments are ambiguous, and M. manhattensis remains cryptogenic in Europe.  相似文献   

2.
Understanding the genetic structure of parasite populations on the natural landscape can reveal important aspects of disease ecology and epidemiology and can indicate parasite dispersal across the landscape. Myxobolus cerebralis (Myxozoa: Myxosporea), the causative agent of whirling disease in the definitive host Tubifex tubifex, is native to Eurasia and has spread to more than 25 states in the USA. The small amounts of data available to date suggest that M. cerebralis has little genetic variability. We examined the genetic variability of parasites infecting the definitive host T. tubifex in the Madison River, MT, and also from other parts of North America and Europe. We cloned and sequenced 18S ribosomal DNA and the internal transcribed spacer-1 (ITS-1) gene. Five oligochaetes were examined for 18S and five for ITS-1, only one individual was examined for both genes. We found two different 18S rRNA haplotypes of M. cerebralis from five worms and both intra- and interworm genetic variation for ITS-1, which showed 16 different haplotypes from among 20 clones. Comparison of our sequences with those from other studies revealed M. cerebralis from MT was similar to the parasite collected from Alaska, Oregon, California, and Virginia in the USA and from Munich, Germany, based on 18S, whereas parasite sequences from West Virginia were very different. Combined with the high haplotype diversity of ITS-1 and uniqueness of ITS-1 haplotypes, our results show that M. cerebralis is more variable than previously thought and raises the possibility of multiple introductions of the parasite into North America.  相似文献   

3.
Human activities have strongly impacted natural communities through the introduction of non-native species in historical times. A frequently cited marine example is Littorina littorea , a common intertidal gastropod that was first reported in North America in 1840. The seemingly sudden appearance and rapid geographical spread of this species southward from Nova Scotia has led many researchers to consider L. littorea a human-mediated species introduction. This is despite allozyme and subfossil evidence that the `European periwinkle' was in North America long before 1840. Our mitochondrial and nuclear DNA sequence data confirm that L. littorea has been in continuous residence in North America for at least 8000 years. It appears most likely that ecological interactions, rather than oceanographic or climatic forces, maintained the limited geographical distribution of L. littorea prior to the 19th century.  相似文献   

4.
Atlantic cod were kept at two different depths in three cages placed at increasing distance from a rocky shore where natural infections of the digenean Cryptocotyle lingua occurred in the snail Littorina littorea . During a 6-month period the fish kept at 0–2 m accumulated significantly more parasites than those kept at 2–4 m. Distance from the shore did not affect infection rates. We conclude that host location behaviour of cercariae influences the infection pattern under natural conditions, and that transmission from snail to fish can take place over large areas of coastal waters.  相似文献   

5.
Traditional concepts of the Bering Land Bridge as a zone of predominantly eastward expansion from Eurasia and a staging area for subsequent colonization of lower latitudes in North America led to early inferences regarding biogeographic histories of North American faunas, many of which remain untested. Here we apply a host-parasite comparative phylogeographical (HPCP) approach to evaluate one such history, by testing competing biogeographic hypotheses for five lineages of host-specific parasites shared by the collared pika (Ochotona collaris) and American pika (Ochotona princeps) of North America. We determine whether the southern host species (O. princeps) was descended from a northern ancestor or vice versa. Three parasite phylogenies revealed patterns consistent with the hypothesis of a southern origin, which is corroborated by four additional parasite lineages restricted to O. princeps. This finding reverses the traditional narrative for the origins of North American pikas and highlights the role of dispersal from temperate North America into Beringia in structuring northern diversity considerably prior to the Holocene. By evaluating multiple parasite lineages simultaneously, the study demonstrates the power of HPCP for resolving complex biogeographic histories that are not revealed by characteristics of the host alone.  相似文献   

6.
Abstract.  The genus Pararge comprises three species: P. aegeria , distributed in Europe and North Africa; P. xiphia , endemic to Madeira; and P. xiphioides , endemic to the Canary Islands. Two subspecies are recognized in P. aegeria , P. a. tircis and P. a. aegeria , distributed in northern and southern Europe, respectively. In the 1970s, P. aegeria appeared on Madeira. However, despite the status of P. aegeria as a model species in ecological studies, the evolutionary history of Pararge remains unknown. We studied the phylogenetic relationships of the three Pararge species, using the mitochondrial gene cytochrome oxidase subunit I and the nuclear gene wingless to infer modes and times of speciation. On the basis of our analyses, Pararge forms a strongly supported monophyletic group, with the DNA haplotypes of the three species also forming well-supported monophyletic groups. We found that P. xiphia diverged first from the common ancestor a maximum of five million years ago, with P. xiphioides and P. aegeria being sister species that diverged a maximum of three million years ago. The two subspecies, P. a. tircis and P. a. aegeria , were not distinguishable on the basis of DNA haplotypes; instead, our data clearly distinguished between European specimens and those from North Africa. Madeiran P. aegeria has North African haplotypes and thus originated from there rather than from Europe. We hypothesize that the Mediterranean Sea forms a strong barrier to dispersal for Pararge butterflies, and has done so for approximately the past one million years.  相似文献   

7.
The small aquatic snail Potamopyrgus antipodarum is an important invading species in Europe, Australia and North America. European populations are generally believed to derive from accidental introductions from New Zealand, probably dating back to the mid-19th century. We have employed mitochondrial DNA sequences to test the proposed New Zealand origin of European Potamopyrgus, and to learn more about its genealogical history. Using a 481-bp region of the 16S ribosomal RNA gene, we identified 17 distinct haplotypes among 65 snails from New Zealand. In marked contrast, only two haplotypes were found across all European samples, which cover a large geographical area. Importantly, these two haplotypes are shared with snails from the North Island of New Zealand. Due to sampling limitations we cannot rule out a South Island origin for one of the haplotypes, but our results clearly demonstrate the New Zealand origin of European populations. The marked divergence among the two European haplotypes implies the successful colonization by two distinct mitochondrial lineages, which is consistent with previous data based on nuclear markers.  相似文献   

8.
1 Invasive pest species are challenging partly because the invasion process may be highly dynamic and because of the lack of knowledge of many researchers, professionals and farmers in the newly-invaded regions. The chrysomelid Diabrotica virgifera virgifera LeConte is such an invasive pest. It has been the main pest of continuous maize in the U.S.A. for more than 60 years and is currently spreading throughout Europe.
2 In the area with a long history of this pest (Central and North America), scientific knowledge concerning the ecology of this pest has accumulated over the last decades. This resource is of great importance to both America and Europe and has to be gathered, shared and adapted to new situations. We therefore examined, both qualitatively and quantitatively, the scientific literature relating to D.   virgifera virgifera ecology.
3 The quantitative analysis suggests that research on D.   virgifera virgifera ecology is still in its infancy in Europe and suffers from geographical barriers (between Europe and North America and between linguistic areas within Europe) and that scientific communication should be strengthened both between North America and Europe and within Europe.
4 As a first solution to this problem, we introduce three companion review articles that constitute a landmark for D.   virgifera virgifera research, enabling European and American scientists and decision-makers to orient themselves and discover new opportunities for research. We also stress that international research cooperation is the most important key to successfully manage invasive species.  相似文献   

9.
10.
Aim To determine the origins of the host–parasite association between among yellow perch (Perca flavescens[Mitchill]) and the parasites Crepidostomum cooperi Hopkins, Proteocephalus pearsei La Rue and Urocleidus adspectus Beverly Burton. Of secondary interest are the parasites Bunodera luciopercae (Muller) and Proteocephalus percae (Muller) predictably associated with the Eurasian perch. Location The areas considered are the Holarctic, since the upper‐Cretaceous, and contemporary North America. Methods Published and new information from host and parasite phylogenies, palaeontology, palaeogeography and plate tectonics and host biology is incorporated to assess the origins of yellow perch and several of its parasites. This information is used to determine the origins for these host–parasite associations. Results Cladistic analysis suggests a Laurasian origin for Percidae and Perca, and that Perca is sister to the other genera in the family. Parasite phylogenies support a North American origin for the three species associated with yellow perch and a Laurasian origin for B. luciopercae. Proteocephalus pearsei and P. percae are not sister taxa. The fossil record for Perca dates to the Miocene in Europe and the Pleistocene in North America. North America and Europe were connected across the North Atlantic since at least the upper Cretaceous with separation complete by the Miocene. Europe was separated from Asia by the Obik Sea from the late Cretaceous until the Oligocene. Western cordillera orogeny and its accompanying high rates of water flow and Pleistocene glaciation represent barriers to Perca dispersal. Main conclusions The origin of Perca in North America dates at least to the late Oligocene when North America and Europe were connected across the North Atlantic and Europe and Asia were separate landmasses, and does not result from Pleistocene dispersal across Beringia from Asia. The present disjunction of Perca species in North America and Europe is due to the vicariant separation of North America and Europe. Based on the available information, yellow perch and its parasites have a North America origin. The association between yellow perch and the parasites in all cases is a consequence of host switching from other sympatric host species in North America and is not explained by co‐speciation. Even the association between the host‐specific Urocleidus adspectus and yellow perch originated with a host switch and is not due to co‐speciation. The basis for this host switching is geographical and ecological sympatry, especially shared feeding habits, with other North American fish hosts.  相似文献   

11.
Intraspecific genetic variation of Echinococcus multilocularis, the etiologic agent of human alveolar echinococcosis, has been evaluated among 76 geographic isolates from Europe, Asia and North America by using sequence data of mitochondrial and nuclear DNA. Relatively low genetic variation was found only in the mitochondrial DNA sequence consisting of 3 protein-coding genes. Pairwise divergence among the resultant 18 haplotypes ranged from 0.03 to 1.91%. Phylogenetic trees and parsimony network of these haplotypes depicted a geographic division into European, Asian and North American clades, but 1 haplotype from Inner Mongolia was unrelated to other haplotypes. The coexistence of the Asian and North American haplotypes could be seen, particularly on the St. Lawrence Island in the Bering Sea. These data suggest an evolutionary scenario in which distinct parasite populations derived from glacial refugia have been maintained by indigenous host mammals. The nuclear DNA sequence for the immunodominant B cell epitope region of ezrin/radixin/moesin-like protein (elp) was extremely conservative, indicating that the elp antigen is available for immunodiagnosis in any endemic areas.  相似文献   

12.
The determinants of the geographic distribution of avian hematozoa are poorly understood. Sampling parasites from one avian host species across a wide geographic range is an accepted approach to separate the potential influence of host species distribution from geographic effects not directly related to host species biology. We used polymerase chain reaction to screen samples for hematozoan infection from 490 house finches (Carpodacus mexicanus) collected at 8 sites spanning continental North America. To explore geographic patterns of parasite lineage distributions, we sequenced a portion of the mitochondrial cytochrome b gene of Plasmodium species infecting 77 house finches. We identified 5 distinct Plasmodium haplotypes representing 3 lineages that likely represent 3 species. One lineage was common at all sites where we detected Plasmodium species. The second lineage contained 3 haplotypes that showed phylogeographic structuring on a continent-wide scale, with 1 haplotype common in eastern North America and 2 common in western North America. The third divergent lineage was recovered from 1 individual host. Considered together, the partial phylogeographic structuring of Plasmodium cytochrome b lineages over the range of the house finch suggests that parasite lineage distribution is not solely dependent on host species distribution, and other factors such as arthropod vector competence and distribution may be important.  相似文献   

13.
Echinococcus multilocularis (Em) is a zoonotic parasite considered a global emergent pathogen. Recent findings indicate that the parasite is expanding its range in North America and that European-type haplotypes are circulating in western Canada. However, genetic analyses are usually conducted only on a few parasites out of thousands of individuals within each definitive host, likely underestimating the prevalence of less common haplotypes. Moreover, mixed infections with several mtDNA haplotypes in the same host have been reported, but their relative abundance within the host was never estimated. We aimed to 1) estimate the frequency of co-infections of different Em haplotypes in coyotes (Canis latrans) and red foxes (Vulpes vulpes) from western Canada and their relative abundance within the definitive hosts, 2) detect less prevalent haplotypes by sampling a larger proportion of the parasite subpopulation per host, and 3) investigate differences in the distribution of Em haplotypes in these main definitive hosts; foxes and coyotes. We extracted DNA from ~10% of the worm subpopulation per host (20 foxes and 47 coyotes) and used deep amplicon sequencing (NGS technology) on four loci, targeting the most polymorphic regions from the mitochondrial genes cox1 (814 bp), nad1 (344 bp), and cob (387 bp). We detected the presence of mixed infections with multiple Em haplotypes and with different Echinococcus species including Em and E. granulosus s.l. genotypes G8/G10, low intraspecific diversity of Em, and a higher abundance of the European-type haplotypes in both hosts. Our results suggest a population expansion of the European over the North American strain in Alberta and a limited distribution of some European-type haplotypes. Our findings indicate that deep amplicon sequencing represents a valuable tool to characterize Em in multiple hosts, to assess the current distribution and possible origins of the European strain in North America. The potential use of next-generation sequencing technologies is particularly important to understand the patterns of geographic expansion of this parasite.  相似文献   

14.
Phylogeography of Soboliphyme baturini , a nematode parasite in mustelids, is explored across Beringia. Sequences of the mitochondrial cytochrome c oxidase subunit I and nicotinamide adenine dinucleotide dehydrogenase subunit 4 genes were evaluated from 37 S. baturini , representing 19 localities throughout Alaska, Canada, and Siberia. A total of 30 haplotypes was recovered and maximum parsimony and Bayesian phylogenetic analyses support the recognition of a single species with a distribution extending from the Palearctic to the Nearctic. Within S. baturini , a host-specific partition in North America between Martes caurina and Martes americana was not identified. Instead, substantial geographic structure within S. baturini relates to the dynamic geological history of this northern region and especially the North Pacific Coast. Beringia and other coastal refugia along the western margin of North America played a large role during stadial maxima in the persistence and divergence of the parasite. Repeated events for biotic expansion and geographic colonization across the Bering Land Bridge and the Holarctic during glacial maxima in the Pleistocene appear to have facilitated at least two episodes of host-switching of this nematode among mustelids in populations now distributed in eastern Beringia.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 651–663.  相似文献   

15.
The full effects of biological invasions may be underestimated in many areas because of cryptogenic species, which are those that can be identified as neither native nor introduced. In North America, the cattails Typha latifolia, T. angustifolia, and their hybrid T. × glauca are increasingly aggressive invaders of wetlands. There is a widespread belief that T. latifolia is native to North America and T. angustifolia was introduced from Europe, although there has so far been little empirical support for the latter claim. We used microsatellite data and chloroplast DNA sequences to compare T. latifolia and T. angustifolia genotypes from eastern North America and Europe. In both species, our data revealed a high level of genetic similarity between North American and European populations that is indicative of relatively recent intercontinental dispersal. More specifically, the most likely scenario suggested by Approximate Bayesian Computation was an introduction of T. angustifolia from Europe to North America. We discuss the potential importance of our findings in the context of hybridization, novel genomes, and increasingly invasive behaviour in North American Typha spp.  相似文献   

16.
The giant liver fluke, Fascioloides magna, a liver parasite of free-living and domestic ruminants of Europe and North America, was analysed in order to determine the origin of European populations and to reveal the biogeography of this originally North American parasite on the European continent. The variable fragments of the mitochondrial cytochrome c oxidase subunit I (cox1; 384bp) and nicotinamide dehydrogenase subunit I (nad1; 405bp) were used. Phylogenetic trees and haplotype networks were constructed and the level of genetic structuring was evaluated using population genetic tools. In F. magna individuals originating from all European foci of infection (Italy, Czech Republic and Danube floodplain forests involving the territories of Slovakia, Hungary and Croatia) and from four of five major North American enzootic areas, 16 cox1 and 18 nad1 haplotypes were determined. The concatenated sequence set produced 22 distinct haplotypes. The European fluke populations were less diverse than those from North America in that they contained proportionately fewer haplotypes (eight), while a more substantial level of genetic diversity and a greater number of haplotypes (15) were recorded in North America. Only one haplotype was shared between the European (Italy) and North American (USA/Oregon and Canada/Alberta) flukes, supporting a western North American origin of the Italian F. magna population. Haplotypes found in Italy were distinct from those determined in the remaining European localities which indicates that introduction of F. magna to the European continent occurred more than once. In the Czech focus of infection, a south-eastern USA origin was revealed. Identical haplotypes, common to parasites from the Czech Republic and from an expanding focus in Danube floodplain forests, implies that the introduction of F. magna to the Danube region came from an already established Czech focus of infection.  相似文献   

17.
Climate and host demographic cycling often shape both parasite genetic diversity and host distributions, processes that transcend a history of strict host–parasite association. We explored host associations and histories based on an evaluation of mitochondrial and nuclear sequences to reveal the underlying history and genetic structure of a pinworm, Rauschtineria eutamii, infecting ten species of western North American chipmunks (Rodentia:Tamias, subgenus Neotamias). Rauschtineria eutamii contains divergent lineages influenced by the diversity of hosts and variation across the complex topography of western North America. We recovered six reciprocally monophyletic R. eutamii mitochondrial clades, largely supported by a multilocus concordance tree, exhibiting divergence levels comparable with intraspecific variation reported for other nematodes. Phylogenetic relationships among pinworm clades suggest that R. eutamii colonized an ancestral lineage of western chipmunks and lineages persisted during historical isolation in diverging Neotamias species or species groups. Pinworm diversification, however, is incongruent and asynchronous relative to host diversification. Secondarily, patterns of shallow divergence were shaped by geography through events of episodic colonization reflecting an interaction of taxon pulses and ecological fitting among assemblages in recurrent sympatry. Pinworms occasionally infect geographically proximal host species; however, host switching may be unstable or ephemeral, as there is no signal of host switching in the deeper history of R. eutamii.  相似文献   

18.
Caprella mutica (Crustacea, Amphipoda) has been widely introduced to non-native regions in the last 40 years. Its native habitat is sub-boreal northeast Asia, but in the Northern Hemisphere, it is now found on both coasts of North America, and North Atlantic coastlines of Europe. Direct sequencing of mitochondrial DNA (cytochrome c oxidase subunit I gene) was used to compare genetic variation in native and non-native populations of C. mutica . These data were used to investigate the invasion history of C. mutica and to test potential source populations in Japan. High diversity (31 haplotypes from 49 individuals), but no phylogeographical structure, was identified in four populations in the putative native range. In contrast, non-native populations showed reduced genetic diversity (7 haplotypes from 249 individuals) and informative phylogeographical structure. Grouping of C. mutica populations into native, east Pacific, and Atlantic groups explained the most among-region variation (59%). This indicates independent introduction pathways for C. mutica to the Pacific and Atlantic coasts of North America. Two dominant haplotypes were identified in eastern and western Atlantic coastal populations, indicating several dispersal routes within the Atlantic. The analysis indicated that several introductions from multiple sources were likely to be responsible for the observed global distribution of C. mutica , but the pathways were least well defined among the Atlantic populations. The four sampled populations of C. mutica in Japan could not be identified as the direct source of the non-native populations examined in this study. The high diversity within the Japan populations indicates that the native range needs to be assessed at a far greater scale, both within and among populations, to accurately assess the source of the global spread of C. mutica .  相似文献   

19.
Probably half of all animal species exhibit a parasitic lifestyle and numerous parasites have recently expanded their distribution and host ranges due to anthropogenic activities. Here, we report on the population genetic structure of the invasive nematode Anguillicola crassus, a parasite in freshwater eels, which recently spread from Asia to Europe and North America. Samples were collected from the newly colonized naïve host species Anguilla anguilla (Europe) and Anguilla rostrata (North America), and from indigenous Anguilla japonica in Taiwan and Japan. Using seven microsatellite loci and one mitochondrial marker, we show that the parasite's population structure in Europe mirrors the zoogeographic Boreal–Lusitanian break along the English Channel. Both the north-to-south decline of nuclear allelic diversity and the loss of private alleles in the same direction are consistent with a significant isolation-by-distance pattern based on ρST values. In combination with the specific topology of the distance tree among nematode populations, our data suggest that Europe was invaded only once from Taiwan, and that subsequently, genetic diversity was lost due to random drift. On the contrary, the North American sample shares distinct nuclear and mitochondrial signatures with Japanese specimens. We propose that the genetic structure in Europe was shaped by long-range anthropogenic eel host transfers in the north and a single dispersal event into the southwest. The genetically distinct Brittany sample at the edge of the Boreal–Lusitanian boundary is indicative of natural dispersal of fish hosts since recruitment occurs naturally there and invertebrate host dissemination is interrupted due to oceanic currents.  相似文献   

20.
We examined the phylogenetic distribution of cytochrome b haplotypes of the avian blood parasite genera Haemoproteus and Plasmodium across the migratory divide of the Swainson's thrush (Catharus ustulatus) in British Columbia, Canada. From 87 host individuals, we identified 8 parasite haplotypes; 4 of Plasmodium and 4 of Haemoproteus. Six haplotypes were novel; 1 Haemoproteus haplotype was identical to H. majoris found in the blue tit (Parus caeruleus) in Sweden, and another halotype was identical to a Plasmodium haplotype found in the white-crowned sparrow (Zonotrichia leucophrys) in Oregon. The 2 most abundant parasite haplotypes were widely distributed across the contact zone, whereas 2 other parasite haplotypes seem to have structured distributions. Compared with 74 Plasmodium and Haemoproteus haplotypes published in GenBank, haplotypes recovered from Swainson's thrushes do not form monophyletic groups, and they are closely related to haplotypes from a variety of other hosts and localities. In addition, we recovered 2 Swainson's thrush Plasmodium haplotypes from the nonmigratory orange-billed nightingale thrush (Catharus aurantiirostris) in Costa Rica. This study is the first to elucidate avian blood parasite transmission, distribution, and phylogenetic relationships in an avian contact zone in North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号