首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catabolic control protein CcpA is the highly conserved regulator of carbon metabolism in Gram-positive bacteria. We recently showed that Lactococcus lactis, a fermenting bacterium in the family of Streptococcaceae, is capable of respiration late in growth when haem is added to aerated cultures. As the start of respiration coincides with glucose depletion from the medium, we hypothesized that CcpA is involved in this metabolic switch and investigated its role in lactococcal growth under aeration and respiration conditions. Compared with modest changes observed in fermentation growth, inactivation of ccpA shifts metabolism to mixed acid fermentation under aeration conditions. This shift is due to a modification of the redox balance via derepression of NADH oxidase, which eliminates oxygen and decreases the NADH pool. CcpA also plays a decisive role in respiration metabolism. Haem addition to lag phase ccpA cells results in growth arrest and cell mortality. Toxicity is due to oxidative stress provoked by precocious haem uptake. We identify the repressor of the haem transport system and show that it is a target of CcpA activation. We propose that CcpA-mediated repression of haem uptake is a means of preventing oxidative damage at the start of exponential growth. CcpA thus appears to govern a regulatory network that coordinates oxygen, iron and carbon metabolism.  相似文献   

2.
Mucor genevensis was grown in both glucose-limited and glucose-excess continuous cultures over a range of dissolved oxygen concentrations (<0.1 to 25 muM) to determine the effects of glucose and the influence of metabolic mode (fermentative versus oxidative) on dimorphic transformations in this organism. The extent of differentiation between yeast and mycelial phases has been correlated with physiological and biochemical parameters of the cultures. Under glucose limitation, oxidative metabolism increased as the dissolved oxygen concentration increased, and this paralleled the increase in the proportion of the mycelial phase in the cultures. Filamentous growth and oxidative metabolism were both inhibited by glucose even though mitochondrial development was only slightly repressed. However, the presence of chloramphenicol in glucose-limited aerobic cultures inhibited mitochondrial respiratory development but did not induce yeast-like growth, indicating that oxidative metabolism is not essential for mycelial development. Once mycelial cultures had been established under aerobic, glucose-limited conditions, subsequent reversal to anaerobic conditions or treatment with chloramphenicol caused only a limited reversal (<35%) to the yeast-like form. Glucose, however, induced a complete reversion to yeast-like form. It is concluded that glucose is the most important single culture factor determining the morphological status of M. genevensis; mitochondrial development and the functional oxidative capacities of the cell appear to be less important factors in the differentiation process.  相似文献   

3.
When the effect of catabolite repression is eliminated Saccharomyces cerevisiae prefers an aerobic metabolism. The potential for completely aerobic catabolism exists even in circumstances where its action is limited by the oxygen available. When the oxygen absorption in the medium is adequate, yeast uses a solely oxidative metabolism for energy-yielding reactions. The changes observed in the activity of malate dehydrogenase can be described as a function of two isoenzymes, both of which are affected by oxygen; the isoenzyme participating in the glyoxylate cycle shows variations in activity similar to that observed in isocitrate lyase. NAD-linked glutamate dehydrogenase activity roughly follows that of malate dehydrogenase and isocitrate lyase; in cultivations with the same growth rate the NADP-linked dehydrogenase is insensitive to the oxygen level. The cytochromes aa3, b, and c have a clear maximum at low oxygen tension, the most sensitive being cytochrome aa3. The imbalance between cytochrome c:oxygen oxidoreductase activity and the amount of cytochrome aa3, and the correlation observed between respiration rate and the activities of cytochrome c oxidase and NADH2:cytochroine c oxidoreductase are discussed. Methods used for estimation of cytochromes are compared.  相似文献   

4.
The aim of this study was to investigate the effects of an overactivation of the cAMP/protein kinase A signaling pathway on the energetic metabolism of growing yeast. By using a cAMP-permeant mutant strain, we show that the rise in intracellular cAMP activates both anabolic and catabolic pathways. Indeed, different physiological patterns were observed with respect to the growth condition: (i) When cells were grown with a limiting amount of lactate, cAMP addition markedly increased the growth rate, whereas it only slightly increased the mitochondrial and cellular protein content. In parallel, the respiratory rate increased and the growth yield, as assessed by direct microcalorimetry, was not significantly modified by cAMP. (ii) Under conditions where the growth rate was already optimal (high lactate concentration), exogenous cAMP led to a proliferation of well-coupled mitochondria within cells and to an accumulation of cellular and mitochondrial proteins. This phenomenon was associated with a rise in the respiratory activity, thus leading to a drop in the growth yield. (iii) Under conditions of catabolic repression (high glucose concentration), cAMP addition markedly increased the fermentation rate and decreased the growth yield. It is concluded that overactivation of the cAMP/PKA pathway leads to uncoupling between biomass synthesis and catabolism, under conditions where an optimal growth rate is sustained by either a fermentative or a respiratory metabolism.  相似文献   

5.
Discrete additions of oxygen play a critical role in alcoholic fermentation. However, few studies have quantitated the fate of dissolved oxygen and its impact on wine yeast cell physiology under enological conditions. We simulated the range of dissolved oxygen concentrations that occur after a pump-over during the winemaking process by sparging nitrogen-limited continuous cultures with oxygen-nitrogen gaseous mixtures. When the dissolved oxygen concentration increased from 1.2 to 2.7 μM, yeast cells changed from a fully fermentative to a mixed respirofermentative metabolism. This transition is characterized by a switch in the operation of the tricarboxylic acid cycle (TCA) and an activation of NADH shuttling from the cytosol to mitochondria. Nevertheless, fermentative ethanol production remained the major cytosolic NADH sink under all oxygen conditions, suggesting that the limitation of mitochondrial NADH reoxidation is the major cause of the Crabtree effect. This is reinforced by the induction of several key respiratory genes by oxygen, despite the high sugar concentration, indicating that oxygen overrides glucose repression. Genes associated with other processes, such as proline uptake, cell wall remodeling, and oxidative stress, were also significantly affected by oxygen. The results of this study indicate that respiration is responsible for a substantial part of the oxygen response in yeast cells during alcoholic fermentation. This information will facilitate the development of temporal oxygen addition strategies to optimize yeast performance in industrial fermentations.  相似文献   

6.
The aim of this study was to investigate the effects of an overactivation of the cAMP/protein kinase A signaling pathway on the energetic metabolism of growing yeast. By using a cAMP-permeant mutant strain, we show that the rise in intracellular cAMP activates both anabolic and catabolic pathways. Indeed, different physiological patterns were observed with respect to the growth condition: (i) When cells were grown with a limiting amount of lactate, cAMP addition markedly increased the growth rate, whereas it only slightly increased the mitochondrial and cellular protein content. In parallel, the respiratory rate increased and the growth yield, as assessed by direct microcalorimetry, was not significantly modified by cAMP. (ii) Under conditions where the growth rate was already optimal (high lactate concentration), exogenous cAMP led to a proliferation of well-coupled mitochondria within cells and to an accumulation of cellular and mitochondrial proteins. This phenomenon was associated with a rise in the respiratory activity, thus leading to a drop in the growth yield. (iii) Under conditions of catabolic repression (high glucose concentration), cAMP addition markedly increased the fermentation rate and decreased the growth yield. It is concluded that overactivation of the cAMP/PKA pathway leads to uncoupling between biomass synthesis and catabolism, under conditions where an optimal growth rate is sustained by either a fermentative or a respiratory metabolism.  相似文献   

7.
A conditional developmental mutant of Mucor racemosus which is capable of oxidative energy metabolism is described. Unlike the wild-type strain the mutant was highly fermentative and exhibited the yeast morphology when grown aerobically in glucose-containing media. The high fermentative activity and yeast morphology under these conditions correlated well with maximal expression of glycolytic enzymes and with expression of some polypeptides characteristic of anaerobic growth. Aerobic growth of the mutant on amino acids as the sole carbon source resulted in growth in the mycelial morphology. The mutant was fully capable of oxidative metabolism as judged by its ability to grow on amino acids, respiratory capacity, and complement of tricarboxylic acid cycle enzymes. The results support the hypothesis that oxygen controls both the expression of glycolytic enzymes and the expression of proteins involved in morphogenesis. Moreover, they suggest that there are common regulatory elements in the control of these two classes of gene products. Abnormally high levels of aconitase and isocitrate dehydrogenase in the mutant are consistent with the proposal that pool sizes of citrate may act as a regulator of genes responsive to environmental oxygen concentration.  相似文献   

8.
Kinetic studies are presented for the growth and fermentation of the yeast Pichia stipitis with xylose as the carbon source. Ethanol is produced from xylose under anaerobic as well as under oxygen-limiting conditions but only at dissolved oxygen concentrations up to 3 mumol/L Maximum yields and production rates were obtained under oxygen-limiting conditions, where the xylose metabolism may be considered to be consisted of three different components (assimilation, respiration, fermentation). The contribution of each pathway is determined by the availability of oxygen and the energy yield of each pathway. In order to describe the course of oxygen-limited fermentations, a mathematical model has been developed with the assumption that growth is coupled to the energy production. The resulting model requires only four independent parameters (Y(x/O(2) ), Y(ATP) (max), m(ATP), and P/O). These parameters were estimated on the basis of eight separate batch fermentations.  相似文献   

9.
1. The effect of aeration on the key enzymes of gluconeogenesis was studied in baker's yeast (Saccharomyces cerevisiae) and in a nonrespiratory variant of S. cerevisiae grown under glucose limitation. 2. In baker's yeast phosphoenolpyruvate carboxykinase, hexosediphophatase and isocitrate lyase were completely repressed under anaerobic conditions. Their repression could be partially reversed by using intense aeration. 3. In the nonrespiratory variant these enzymes were absent independently of aeration. 4. Pyruvate carboxylase of baker's yeast showed maximal activity under anaerobic conditions. In the nonrespiratory variant pyruvate carboxylase had low activity under both anaerobic and aerobic conditions.  相似文献   

10.
Kinetic studies are presented for xylitol production and growth of the yeast Candida parapsilosis ATCC 28474. The oxygen supply influence on xylitol production from xylose was investigated. No metabolic activity was detected in anaerobic conditions. In contrast, it was found that under low aeration rates (0.1-0.2 vvm), xylitol is produced. Xylitol production decreases when air flow to reactor is augmented. An unstructured model is proposed for the kinetic behaviour analysis of yeast growing in batch culture. A simplex method was used for the estimation of model parameters. The parameter confidence intervals were also calculated.  相似文献   

11.
The effect of yeast propagated at different aeration conditions on yeast physiology, fermentation ability, and beer quality was investigated using three strains of Saccharomyces cerevisiae. It was shown that yeast cells grown under continuous aeration conditions during propagation were almost two times higher as compared with discontinuous aeration conditions. The maximum of cell growth of all samples reached between 36 h and 48 h. The concentration of trehalose was increased under continuous aerated yeasts, whereas glycogen was decreased. It was also observed that the concentration of glycogen and trehalose in yeast cells had no direct effect on subsequent fermentation ability. The effect of yeast propagated under different aeration conditions on subsequent fermentation ability was different from yeast strains, in which the influence will be most pronounced at the first fermentation. Later, the yeasts might regain its original characteristics in the following fermentations. Generally, continuously propagated yeast had a positive effect on beer quality in subsequent fermentation. Hence, the concentration of aroma compounds obtained with yeast propagated under 6 1/h for 48 h aeration was lower than those grown under other aeration conditions in the bottom yeasts; in particular, the amounts of phenylethyl alcohol, ester, and fatty acids were decreased.  相似文献   

12.
Induction of the oxidative stress response has been described under many physiological conditions in Saccharomyces cerevisiae, including industrial fermentation for wine yeast biomass production where cells are grown through several batch and fed-batch cultures on molasses. Here, we investigate the influence of aeration on the expression changes of different gene markers for oxidative stress and compare the induction profiles to the accumulation of several intracellular metabolites in order to correlate the molecular response to physiological and metabolic changes. We also demonstrate that this specific oxidative response is relevant for wine yeast performance by construction of a genetically engineered wine yeast strain overexpressing the TRX2 gene that codifies a thioredoxin, one of the most important cellular defenses against oxidative damage. This modified strain displays an improved fermentative capacity and lower levels of oxidative cellular damages than its parental strain after dry biomass production.  相似文献   

13.
The influence of the oxygen and glucose supply on primary metabolism (fermentation, respiration, and anabolism) and astaxanthin production in the yeast Phaffia rhodozyma was investigated. When P. rhodozyma grew under fermentative conditions with limited oxygen or high concentrations of glucose, the astaxanthin production rate decreased remarkably. On the other hand, when the yeast grew under aerobic conditions, the astaxanthin production rate increased with increasing oxygen uptake. A kinetic analysis showed that the respiration rate correlated positively with the astaxanthin production rate, whereas there was a negative correlation with the ethanol production rate. The influence of glucose concentration at a fixed nitrogen concentration with a high level of oxygen was then investigated. The results showed that astaxanthin production was enhanced by an initial high carbon/nitrogen ratio (C/N ratio) present in the medium, but cell growth was inhibited by a high glucose concentration. A stoichiometric analysis suggested that astaxanthin production was enhanced by decreasing the amount of NADPH required for anabolism, which could be achieved by the repression of protein biosynthesis with a high C/N ratio. Based on these results, we performed a two-stage fed-batch culture, in which cell growth was enhanced by a low C/N ratio in the first stage and astaxanthin production was enhanced by a high C/N ratio in the second stage. In this culture system, the highest astaxanthin production, 16.0 mg per liter, was obtained.  相似文献   

14.
A lot of studies have been carried out on Saccharomyces cerevisiae, an yeast with a predominant fermentative metabolism under aerobic conditions, which allows exploring the complex response induced by oxidative stress. S. cerevisiae is considered a eukaryote model for these studies. We propose Kluyveromyces lactis as a good alternative model to analyse variants in the oxidative stress response, since the respiratory metabolism in this yeast is predominant under aerobic conditions and it shows other important differences with S. cerevisiae in catabolic repression and carbohydrate utilization. The knowledge of oxidative stress response in K. lactis is still a developing field. In this article, we summarize the state of the art derived from experimental approaches and we provide a global vision on the characteristics of the putative K. lactis components of the oxidative stress response pathway, inferred from their sequence homology with the S. cerevisiae counterparts. Since K. lactis is also a well-established alternative host for industrial production of native enzymes and heterologous proteins, relevant differences in the oxidative stress response pathway and their potential in biotechnological uses of this yeast are also reviewed.  相似文献   

15.
The respiratory metabolism of Schizosaccharomyces pombe 972h(-), a fission, haplontic, "petite negative" yeast, was studied. Glucose and glycerol are good growth substrates and are oxidized under appropriate conditions. l-Lactate, ethanol, malate, and succinate are oxidized but are poor substrates for growth. d-Lactate and pyruvate are neither oxidized nor used for growth. Limited growth was observed under anaerobic conditions. The addition of 0.3% KNO(3) to a rich medium relieves the oxygen requirement. A continuous increase of cell respiration during growth on repressive concentration of glucose was observed, suggesting the presence of glucose repression of respiration. Reduced nicotinamide adenine dinucleotide (NADH), succinate, alpha-glycerophosphate, and ascorbate plus tetramethyl-p-phenylenediamine are oxidized by a mitochondrial fraction. NADH and succinate oxidations are inhibited by antimycin A and NaCN but not by rotenone, suggesting the absence of the phosphorylation site I and the presence of sites II and III. The effects of several mitochondrial inhibitors on growth and respiration indicate that the requirement of an oxidant for growth is related neither to the functioning of the respiratory electron transport chain nor to the formation of respiratory energy. The previously suggested correlations between the nonviability of vegetative "petites" mutants, the absence of repression of respiration by glucose, and the incapacity to grow under anaerobic conditions are thus not strictly valid for S. pombe.  相似文献   

16.
DNA microarray analysis was used to profile gene expression in a commercial isolate of Saccharomyces cerevisiae grown in a synthetic grape juice medium under conditions mimicking a natural environment for yeast: High-sugar and variable nitrogen conditions. The high nitrogen condition displayed elevated levels of expression of genes involved in biosynthesis of macromolecular precursors across the time course as compared to low-nitrogen. In contrast, expression of genes involved in translation and oxidative carbon metabolism were increased in the low-nitrogen condition, suggesting that respiration is more nitrogen-conserving than fermentation. Several genes under glucose repression control were induced in low-nitrogen in spite of very high (17%) external glucose concentrations, but there was no general relief of glucose repression. Expression of many stress response genes was elevated in stationary phase. Some of these genes were expressed regardless of the nitrogen concentration while others were found at higher levels only under high nitrogen conditions. A few genes, FSP2, RGS2, AQY1, YFL030W, were expressed more strongly with nitrogen limitation as compared to other conditions.  相似文献   

17.
The impact of oxygen on a cell is strongly dependent on its metabolic state: survival in oxygen of free-living Lactococcus lactis, best known as a fermenting, acidifying bacterium, is generally poor. In contrast, if haem is present, L. lactis uses oxygen to switch from fermentation to respiration metabolism late in growth, resulting in spectacularly improved long-term survival. Oxygen is thus beneficial rather than detrimental for survival if haem is provided. We examined the effects of respiration on oxygen toxicity by comparing integrity of stationary phase cells after aerated growth without and with added haem. Aeration (no haem) growth caused considerable cellular protein and chromosomal DNA damage, increased spontaneous mutation frequencies and poor survival of recA mutants. These phenotypes were greatly diminished when haem was present, indicating that respiration constitutes an efficient barrier against oxidative stress. Using the green fluorescent protein as an indicator of intracellular oxidation state, we showed that aeration growth provokes significantly greater oxidation than respiration growth. Iron was identified as a main contributor to mortality and DNA degradation in aeration growth. Our results point to two features of respiration growth in lactococci that are responsible for maintaining low oxidative damage: One is a more reduced intracellular state, which is because of efficient oxygen elimination by respiration. The other is a higher pH resulting from the shift from acid-forming fermentation to respiration metabolism. These results have relevance to other bacteria whose respiration capacity depends on addition of exogenous haem.  相似文献   

18.
19.
White-rot fungi are a group of microorganisms capable of degrading xenobiotic compounds, such as polycyclic aromatic hydrocarbons or synthetic dyes, by means of the action of extracellular oxidative enzymes secreted during secondary metabolism. In this study, the transformation of three anti-inflammatory drugs: diclofenac, ibuprofen and naproxen were carried out by pellets of Phanerochaete chrysosporium in fed-batch bioreactors operating under continuous air supply or periodic pulsation of oxygen. The performance of the fungal reactors was steady over a 30-day treatment and the effect of oxygen pulses on the pellet morphology was evidenced. Complete elimination of diclofenac was achieved in the aerated and the oxygenated reactors, even with a fast oxidation rate in the presence of oxygen (77% after 2 h), reaching a total removal after 23 h. In the case of ibuprofen, this compound was completely oxidized under air and oxygen supply. Finally, naproxen was oxidized in the range of 77 up to 99% under both aeration conditions. These findings demonstrate that the oxidative capability of this microorganism for the anti-inflammatory drugs is not restricted to an oxygen environment, as generally accepted, since the fungal reactor was able to remove these compounds under aerated and oxygenated conditions. This result is very interesting in terms of developing viable reactors for the oxidation of target compounds as the cost of aeration can be significantly reduced.  相似文献   

20.
AIMS: To evaluate the effects of bacterial haemoglobin on bacterial growth and alpha-amylase formation under different aeration conditions. METHODS AND RESULTS: Enterobacter aerogenes was transformed with the gene encoding Vitreoscilla (bacterial) haemoglobin, vgb. The growth kinetics and ability to synthesize alpha-amylase enzyme were investigated in this transformed Enterobacter strain as well as in two other Enterobacter control strains that do not harbour the vgb gene. Such comparison was made under variable aeration conditions, using the agitation rate as a measure of aeration. The expression of bacterial haemoglobin-supported cell growth determined as O.D.600 and cell viability in addition to the alpha-amylase production. These positive effects of bacterial haemoglobin were observed under both low and high aerations, but at different extents. CONCLUSIONS: In addition to improving cell growth under low aeration, the bacterial haemoglobin is able to promote bacterial cell tolerance during exposure to high oxygen tension. SIGNIFICANCE AND IMPACT OF THE STUDY: The expression of bacterial haemoglobin is advantageous in reducing the burden of certain toxic conditions such as high oxygen levels. It may have the same impact on some environmental toxic substances. This, haemoglobin biotechnology can be extended to induce enzymes of pollutants degradation or production of some useful industrial substances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号