首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A survey was undertaken in 1985 to assess spatial and temporal trends in the benthic community structure in relation to sediment contamination and wastewater sources at 70 stations between Whitefish Bay and lower Lake George in the St. Marys River. Cluster analysis identified seven benthic communities. Three were identified as pollution impacted, based on a preponderance of tubificids and nematodes, usually at high densities (up to 259 000 m-2), but sometimes at low densities (< 100 m-2) at individual stations. Impacted communities occurred downstream of industrial and municipal sources and in depositional areas, and were confined mainly to Canadian waters. Unimpacted communities had greater numbers of taxa, and occurred upstream of point sources, along the U.S. shoreline, and in most areas of downstream lakes. Impacted and unimpacted communities were separated along particle size and contaminant gradients in river sediments. Despite recent reductions in pollutant loadings and improvements in sediment quality, no major changes were apparent in the status of the benthic community from earlier surveys.  相似文献   

2.
The upper Tennessee River drainage, which includes portions of the States of Virginia, North Carolina, and Tennessee, supports an exceptionally diverse fish fauna. Recent reductions in abundance and geographic ranges of several freshwater fishes have promulgated the imposition of protective measures for about 115 species among the three states, with nearly half of those species occurring in the upper Tennessee River. Most protected species are darters (Percidae: Etheostomatinae) or minnows (Cyprinidae), and are typically small, benthic invertivores. Major impacts on the fish fauna have resulted from dams, introduced species, toxic spills, mining and agriculture. An important cumulative effect of these impacts is fragmentation of the watershed; nearly 40% of the riverine habitat in major tributaries is either impounded or altered by tailwater discharges. The isolation and stress imposed on tributaries of the river have caused and will continue to cause extirpations of fishes, mussels and other aquatic fauna. Numerous federal, state, and private organizations are co-operating in efforts to protect rare species and habitats, improve agricultural and coal-producing practices, and enforce regulations for industrial and municipal effluents.  相似文献   

3.
As part of the study of the Upper Great Lakes Connecting Channels sponsored by the U.S. Environmental Protection Agency, the U.S. Fish and Wildlife Service examined the occurrence of Hexagenia nymphs and visible oil in sediments at 250 stations throughout the St. Marys River and the St. Clair-Detroit River system from May 14 to June 11, 1985. The mean density of Hexagenia nymphs per square meter averaged 194 for the total study area, 224 in the St. Marys River, 117 in the St. Clair River, 279 in Lake St. Clair, and 94 in the Detroit River. The maximum density of nymphs ranged from 1,081 to 1,164 m-2 in the three rivers and was 3,099 m-2 in Lake St. Clair. A comparison of nymph density at 46 stations where oil was observed in sediments physically suitable for nymphs showed that densities were lower in oiled sediments (61 m-2) than in sediments without oil (224 m-2). Densities of nymphs were relatively high at only four stations where oil was observed in sediments. In general, oiled sediments and low densities of nymphs occurred together downstream from industrial and municipal discharges.Contribution number 736 of the National Fisheries Research Center-Great Lakes, U.S. Fish and Wildlife Service, 1451 Green Road, Ann Arbor, MI 48105.  相似文献   

4.
Aquatic habitat has been extensively altered throughout the Laurentian Great Lakes to increase navigation connectivity. In particular, the St. Marys River, a Great Lakes connecting channel, lost >50% of its historic rapids habitat over the past century. In 2016, the natural flow was restored to the Little Rapids area of the St. Marys River. The goal of our study was to evaluate physical and ecological responses to the restoration of the Little Rapids area. Extensive habitat and biological data were collected prior to restoration (2013 and 2014), and after restoration (2017 and 2018). Measured parameters included total suspended solids, current velocity, benthic macroinvertebrates, and larval, juvenile, and adult fishes. Total suspended solids stayed low (<4 mg/L) following restoration, with the exception of a single construction‐related event. Pre‐restoration data indicated that all measured velocities were below the target flow rate of 0.24 m/s, whereas 70% of the measured habitat was above the target flow post‐restoration. Abundance and richness of benthic macroinvertebrates were reduced following restoration (>90% reduction). We observed a 45% increase in richness of larval fish 2 years after restoration and a 131% increase in catch per unit effort. For adult fishes, the proportion of individuals with a preference for fast‐moving waters increased from 1.5 to 45% in the restored area, and from 7 to 15% upstream of the restored area; a similar response was observed for lithophilic spawners. The physical and biological conditions of the Little Rapids improved and resembled conditions typical of rapids habitat extent in other areas of the river and other systems.  相似文献   

5.
B. A. Manny  D. Kenaga 《Hydrobiologia》1991,219(1):269-279
Despite extensive urbanization of its watershed, the Detroit River still supports diverse fish and wildlife populations. Conflicting uses of the river for waste disposal, water withdrawals, shipping, recreation, and fishing require innovative management. Chemicals added by man to the Detroit River have adversely affected the health and habitats of the river's plants and animals. In 1985, as part of an Upper Great Lakes Connecting Channels Study sponsored by Environment Canada and the U.S. Environmental Protection Agency, researchers exposed healthy bacteria, plankton, benthic macroinvertebrates, fish, and birds to Detroit River sediments and sediment porewater. Negative impacts included genetic mutations in bacteria; death of macroinvertebrates; accumulation of contaminants in insects, clams, fishes, and ducks; and tumor formation in fish. Field surveys showed areas of the river bottom that were otherwise suitable for habitation by a variety of plants and animals were contaminated with chlorinated hydrocarbons and heavy metals and occupied only by pollution-tolerant worms. Destruction of shoreline wetlands and disposal of sewage and toxic substances in the Detroit River have reduced habitat and conflict with basic biological processes, including the sustained production of fish and wildlife. Current regulations do not adequately control pollution loadings. However, remedial actions are being formulated by the U.S. and Canada to restore degraded benthic habitats and eliminate discharges of toxic contaminants into the Detroit River.Contribution 738 of the National Fisheries Research Center-Great Lakes, 1451 Green Road, Ann Arbor, MI 48105, U.S.A.  相似文献   

6.
The St. Clair River is a major navigable waterway transporting water southwards for 63 km from Lake Huron to Lake St. Clair at an average flow of 5 100 m3 s-1. Water entering the river is low in suspended solids, organic carbon, phosphorus and nitrates, typical of clear, oligotrophic waters. In contrast to many large rivers, dissolved and colloidal solids account for 90 to 95 percent of the total solids load transported by the river, giving the river a turquoise colour common of glacial meltwater streams.The river supports a diverse floral and faunal community that includes 20 taxa of submergent macroflora, at least 300 benthic macroinvertebrates and 83 fishes. A number of exotic (European) species, including 3 plants, 4 molluscs and 11 fishes, occur in the river with the macroalga, Nitellopsis obtusa, zebra mussel (Dreissena polymorphora), Asian clam (Corbicula fluminea), and white perch (Morone americana) being the most recent invaders. Production is estimated to be 200 g m-2 a-1 ash-free dry mass for submergent macrophytes and periphyton, 7 g for macroinvertebrates and 5 g for fishes.The river also supports a variety of water-oriented recreational activities, is a source of municipal and industrial water, a receiver of municipal and industrial wastes, and a shipping corridor. Industrial discharges have adversely affected aquatic life, particularly in the nearshore areas along the Canadian shoreline south of Sarnia, Ontario. In addition, channel dredging and shoreline modifications (bulk-heading and backfilling) have destroyed large areas of valuable habitat in the main channel and along the shoreline. Improvements in the nearshore benthic macroinvertebrate community of the river over the past 20 years show that the river will respond to reductions in contaminants loadings.  相似文献   

7.
Estuaries play an important role as nurseries and migration corridors for Chinook salmon and other fishes. The invasive New Zealand mudsnail, Potamopyrgus antipodarum (Gray, 1843), has been noted in the Columbia River Estuary and other estuaries in the western USA, yet no studies have addressed the estuarine impacts of this invader. Our data show P. antipodarum is currently found in five peripheral bays and many tributaries of the Columbia River Estuary, where it can constitute a major portion of the benthic invertebrate biomass and where it co-occurs with native amphipod species. We review the history of the P. antipodarum invasion in the Columbia River Estuary and discuss potential impacts on estuarine food webs. We also report the first occurrence of P. antipodarum in the diet of juvenile Chinook salmon from the Columbia River Estuary. Although present in Chinook diets at very low frequencies, our observations of P. antipodarum in Chinook gut contents may represent early stages of food web change due to the establishment of dense estuarine snail populations. Additional research is needed to determine the effects of P. antipodarum on benthic resources, native benthic invertebrates, and benthic predators. We encourage biologists working in western USA estuaries to be alert to the possibility of encountering P. antipodarum in benthic habitats and predator diets.
Jeannette E. ZamonEmail:
  相似文献   

8.
A benthic macroinvertebrate and sediment chemistry study of the St. Clair River from Lake Huron to Lake St. Clair was conducted in the spring of 1985. The purpose of the. study was to evaluate the environmental quality of the nearshore areas and assess the effectiveness of industrial and municipal abatement programs that have been implemented since 1977.A total of 112 macroinvertebratd taxa was collected from the river. Classification analysis indicated that 7 macroinvertebrate communities were evident in the river. Discriminant analysis suggested that physical habitat characteristics explained the distribution of 4 benthic communities, while sediment contaminants explained the distribution of 3 benthic communities. These analyses showed that the environmental quality of a 12 km stretch of the river along the Canadian shoreline had been degraded, probably by industrial waste discharges and spills. Toxic conditions were evident along the waterfront of Dow Chemical Canada Inc., probably a result of the combined effects of chlorinated organics, oils and greases, and mercury (historical contaminant) in the sediments. In contrast, the invertebrate fauna throughout the remainder of the St. Clair River reflected meso-eutrophic conditions, typical of a large, unstressed river.A comparison of the environmental quality as reflected by the benthic invertebrate fauna in 1985 with that in 1977 suggests that the abatement programs implemented over the past decade have improved the environmental quality along the Canadian side of the river. The total length of river adversely affected by waste discharges from Canadian industries and municipalities decreased from 21 km in 1977 to 12 km in 1985.  相似文献   

9.
Summary A field experiment was designed to test a frequent assumption in the literature that vertebrate predators (in this case, fish and turtles) are capable of regulating the seasonal abundance and diversity of benthic communities in the littoral zone of lentic environments. Effects of thermal effluents from a nuclear reactor on predator-prey relationships were also examined. Benthic samples were removed after each of three, 3-month test periods from 36 predator exclusion cages (4m2) and 36 control plots located along a thermal gradient in Par Pond, an 1,100 ha freshwater reservoir in the southeastern United States.Results of our field experiments provide little evidence to suggest that either a single keystone species or vertebrate predators as a group were capable of regulating the abundance, diversity or productivity of chironomids in Par Pond. The relationship between predator treatment and community response (changes in density and species richness) was generally unaffected by either plot location or temperature fluctuations. When data from caged and control plots were pooled, however, both location and water temperature individually had significant impacts on the chironomid community. Alternative hypotheses are proposed to explain the lack of regulatory control of the benthic community by individual species or guilds of predators.  相似文献   

10.
C. Raj Murthy 《Hydrobiologia》1996,322(1-3):109-116
The results of integrated multidisciplinary studies of the transport and pathways of toxic contaminants entering Lake Ontario through the Niagara River are summarized. The factors controlling the transport and distribution of contaminants are: (i) Niagara River mixing characteristics; (ii) prevailing local wind conditions and large scale lake-wide circulation features, and (iii) suspended sediment load and the partitioning of the contaminants onto the suspended solids. Physical limnological studies included a variety of direct measurements to delineate the nearfield and farfield mixing characteristics of the river plume in terms of the prevailing winds and large scale lake circulation. In the nearfield region of the plume, around the river mouth, contaminant transport was affected by the initial momentum and buoyancy of the river water mass and a sharp thermal front that is generally present through the stratified season. After the initial momentum is dissipated, the weakly buoyant river plume responds to the prevailing winds and lake-wide circulation. Adsorbed contaminants rapidly settle once the initial momentum of the river plume is dissipated but the dissolved contaminants are transported into the farfield regions in the lake and after becoming entrained in the strong south shore eastward flowing boundary current are carried toward the St. Lawrence River outflow. Only about ten percent of this eastward flowing transport exits via the St. Lawrence River, the remainder is recirculated back into the main lake. A contaminant transport model of the Niagara River Plume incorporating a hydrodynamic model, observed plume mixing characteristics and chemical partitioning was used to simulate the compartmental distribution (adsorbed vs dissolved) of selected toxic chemicals distribution observed in the nearfield region of the plume.  相似文献   

11.
Invasive crayfish are spreading rapidly across Europe, where they are replacing the native crayfish species and impacting negatively on some other biota. Freshwater crayfish and many benthic fishes share similar habitat and food requirements and hence potentially compete for resources. In this study, we investigated impacts of the introduced signal crayfish (Pacifastacus leniusculus) on fish in stony littoral habitats of two large boreal lakes. We compared the littoral fish community composition and the densities of two common benthic fish species between sites with and without crayfish. To evaluate whether signal crayfish share the same food resources as benthic littoral fish or change their feeding habits, we used mixing models and trophic niche estimates based on analyses of stable isotopes of carbon and nitrogen. Both the community composition of littoral fish and the densities of benthic fish species were similar at sites with and without signal crayfish. Even though stable isotope signatures indicated strong dietary overlap between crayfish and benthic fish, the use of food sources and trophic niche widths of fish were not noticeably different between crayfish sites and non-crayfish sites. Our results suggest that, at current densities, the non-native signal crayfish does not have significant impacts on benthic fish in the stony littoral habitats of large boreal lakes.  相似文献   

12.
The sea lamprey control program in the Great Lakes has effectively reduced the abundance of sea lamprey, and, in conjunction with appropriate fishery management practices, has contributed to the restoration of valuable stocks of fish — particularly the salmonids. Sea lamprey producing tributaries of Lake Huron have been treated with lampricide on a continuing basis since 1966, and indications of decreasing abundance of sea lamprey have been evident since 1969. Control of sea lamprey has been more successful in Georgian Bay than in North Channel, as shown by the numbers of spawning phase animals captured in assessment devices, and by the incidence of lamprey-inflicted wounds on fish. The St. Marys River — the only known uncontrolled sources of recruitment to parasitic sea lamprey populations of Lake Huron — is suspected of being the cause of the higher levels of sea lamprey abundance observed in the northwest part of the lake.  相似文献   

13.
In 1985, sampling at 250 stations throughout the St. Marys, St. Clair, and Detroit rivers and Lake St. Clair — the connecting channels of the upper Great Lakes — revealed widespread metal contamination of the sediments. Concentrations of cadmium, chromium, copper, lead, mercury, nickel, and zinc each exceeded U.S. Environmental Protection Agency sediment pollution guidelines at one or more stations throughout the study area. Sediments were polluted more frequently by copper, nickel, zinc, and lead than by cadmium, chromium, or mercury. Sediments with the highest concentrations of metals were found (in descending order) in the Detroit River, the St. Marys River, the St. Clair River, and Lake St. Clair. Although metal contamination of sediments was most common and sediment concentrations of metals were generally highest near industrial areas, substantial contamination of sediments by metals was present in sediment deposition areas up to 60 km from any known source of pollution.Contribution 735 of the National Fisheries Research Center-Great Lakes, U.S. Fish and Wildlife Service, 1451 Green Road, Ann Arbor, MI 48105.  相似文献   

14.
A historical impact assessment was conducted for chemical contaminants in sediments of the tidal Passaic River in northern New Jersey. The assessment was based on sediment cores collected from 1990 to 1995. Each sediment core was segregated into fractions and the fractions dated using radioisotope analysis. Chemical concentrations, including a variety of metals and organic compounds, were estimated by decade for most of the 20th century in five reaches of the River. The chemical data for each decade were compared to available benchmark sediment quality values that represent levels of chemicals that may be toxic to benthic invertebrates in estuarine systems. Benchmark exceedances in the River were then calculated and characterized spatially and temporally using quantitative Geographic Information System (GIS) analyses, and the area of “impacted” sediments was calculated for each chemical and decade. Results of this assessment suggest that the ability of Passaic River sediments to support “normal” benthic invertebrate populations was limited by sediment contaminants throughout the 20th century. Conditions have improved somewhat since the 1950s, although impacts to benthic populations remain from several metals and organic compounds despite some overall improvements in sediment quality in recent years.  相似文献   

15.
We used red shiner (Cyprinella lutrensis) as a model to examine ecosystem effects of water column stream minnows (Cyprinidae) in experimental streams. Benthic primary productivity, benthic invertebrate abundance, water column nutrient concentrations, size distribution of benthic particulate organic matter (BPOM), and sedimentation rates were measured across a range of fish densities (0–26.6 fish m–2) over a 35-day period. In addition, effects of fish density on algal standing crop and benthic invertebrates in experimental streams were examined over a longer time span (156 and 203 days). After 35 days, benthic primary productivity was positively associated with fish density, with an approximate three-fold increase in productivity between experimental streams stocked with no fish and those with 26.6 fish m–2. No effects on other ecosystem properties were detected after 35 days. Additionally, there was no effect on algal standing crop after 156 or 203 days and no effect on benthic invertebrates after 203 days. Because red shiners fed primarily on terrestrial insects, this experiment suggests that water column minnows can affect primary productivity in streams by transporting nutrients from terrestrial sources to the benthic compartment of the ecosystem. However, this effect may only be important in streams or during periods when nutrients are limiting.  相似文献   

16.
For over a century, evolutionary biologists have debated whether and how phenotypic plasticity impacts the processes of adaptation and diversification. The empirical tests required to resolve these issues have proven elusive, mainly because it requires documentation of ancestral reaction norms, a difficult prospect where many ancestors are either extinct or have evolved. The threespine stickleback radiation is not limited in this regard, making it an ideal system in which to address general questions regarding the role of plasticity in adaptive evolution. As retreating ice sheets have exposed new habitats, oceanic stickleback founded innumerable freshwater populations, many of which have evolved parallel adaptations to their new environments. Because the founding oceanic population is extant, we can directly evaluate whether specific patterns of ancestral phenotypic expression in the context of novel environments (plasticity), or over ontogeny, predisposed the repeated evolution of "benthic" and "limnetic" ecotypes in shallow and deep lakes, respectively. Consistent with this hypothesis, we found that oceanic stickleback raised in a complex habitat and fed a macroinvertebrate diet expressed traits resembling derived, benthic fish. Alternatively, when reared in a simple environment on a diet of zooplankton, oceanic stickleback developed phenotypes resembling derived, limnetic fish. As fish in both treatments grew, their body depths increased allometrically, as did the size of their mouths, while their eyes became relatively smaller. Allometric trajectories were subtly but significantly impacted by rearing environment. Thus, both environmental and allometric influences on development, along with their interactive effects, produced variation in phenotypes consistent with derived benthic and limnetic fish, which may have predisposed the repeated genetic accommodation of this specific suite of traits. We also found significant shape differences between marine and anadromous stickleback, which has implications for evaluating the ancestral state of stickleback traits.  相似文献   

17.
Global climate change is rapidly altering disturbance regimes in many ecosystems including coral reefs, yet the long-term impacts of these changes on ecosystem structure and function are difficult to predict. A major ecosystem service provided by coral reefs is the provisioning of physical habitat for other organisms, and consequently, many of the effects of climate change on coral reefs will be mediated by their impacts on habitat structure. Therefore, there is an urgent need to understand the independent and combined effects of coral mortality and loss of physical habitat on reef-associated biota. Here, we use a unique series of events affecting the coral reefs around the Pacific island of Moorea, French Polynesia to differentiate between the impacts of coral mortality and the degradation of physical habitat on the structure of reef fish communities. We found that, by removing large amounts of physical habitat, a tropical cyclone had larger impacts on reef fish communities than an outbreak of coral-eating sea stars that caused widespread coral mortality but left the physical structure intact. In addition, the impacts of declining structural complexity on reef fish assemblages accelerated as structure became increasingly rare. Structure provided by dead coral colonies can take up to decades to erode following coral mortality, and, consequently, our results suggest that predictions based on short-term studies are likely to grossly underestimate the long-term impacts of coral decline on reef fish communities.  相似文献   

18.

Interbasin water transfers are becoming an increasingly common tool to satisfy municipal and agricultural water demand, but their impacts on movement and gene flow of aquatic organisms are poorly understood. The Grand Ditch is an interbasin water transfer that diverts water from tributaries of the upper Colorado River on the west side of the Continental Divide to the upper Cache la Poudre River on the east side of the Continental Divide. We used single nucleotide polymorphisms to characterize population genetic structure in cutthroat trout (Oncorhynchus clarkii) and determine if fish utilize the Grand Ditch as a movement corridor. Samples were collected from two sites on the west side and three sites on the east side of the Continental Divide. We identified two or three genetic clusters, and relative migration rates and spatial distributions of admixed individuals indicated that the Grand Ditch facilitated bidirectional fish movement across the Continental Divide, a major biogeographic barrier. Previous studies have demonstrated ecological impacts of interbasin water transfers, but our study is one of the first to use genetics to understand how interbasin water transfers affect connectivity between previously isolated watersheds. We also discuss implications on native trout management and balancing water demand and biodiversity conservation.

  相似文献   

19.
The round goby (Neogobius melanostomus) first invaded North America in 1990 when it was discovered in the St. Clair River. Despite more than 15 years of potential invasion, many Great Lakes’ lotic systems remained uninvaded. Recently, we captured the round goby from several Great Lakes tributaries known as species-at-risk hotspots. With a combination of field sampling of round gobies and literature review of the impact of round gobies on native taxa, we assess the potential impacts of the secondary invasion to native species using three mechanisms: competition; predation; and indirect impacts from the loss of obligate mussel hosts. We estimate that 89% (17/19) of benthic fishes and 17% (6/36) of mussels that occur in these systems are either known or suspected to be impacted by the secondary invasion of round goby. In particular, we note that the distribution of potential impacts of round goby invasion was largely associated with species with a conservation designation, including seven endangered species (1 fish, 6 mussels). As these recent captures of round goby represent novel occurrences in high diversity watersheds, understanding the potential impacts of secondary invasion to native biota is fundamental to prevent species declines and to allow early mitigation.  相似文献   

20.
Human activities frequently result in either intentional or unintentional introductions of species to new locations, and freshwater environments worldwide are particularly vulnerable to species invasions. An introduced freshwater diatom, Didymosphenia geminata, was first discovered in New Zealand in 2004 but there was limited research available to predict the drivers of D. geminata biomass and how biomass variability might influence higher trophic levels (e.g. invertebrates and fish). We examined the effect of D. geminata biomass on benthic invertebrates, invertebrate drift and fish communities in 20 rivers in New Zealand with variable hydrology, physical habitat and water chemistry. Variation in D. geminata biomass was best explained by a model that showed D. geminata biomass increased with time since the last flow event exceeding three times the median annual discharge and decreasing concentration of dissolved reactive phosphorus. Analyses of biotic responses showed that high D. geminata biomass did not affect either invertebrate or fish diversity but altered the structure of benthic communities, changed the composition of drifting invertebrate communities and reduced fish biomass by 90 %, particularly trout. A partial least squares path model was used to disentangle both direct and indirect effects of D. geminata on fish communities and showed D. geminata had a significant negative direct effect on fish communities. This is the first study to show how the potential effects of the introduced diatom D. geminata can impact fish communities and has shown that D. geminata impacts fish both directly and indirectly through changes in their invertebrate prey community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号