首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple assay method for alpha-amylase was developed based on fluorophore-modified cyclodextrins (CDs). Four kinds of CD derivatives bearing a 4-amino-7-nitrobenz-2-oxa-1,3-diazole (NBD-amine) moiety were prepared as artificial substrates for the assay method. The fluorescence intensity of all the NBD-amine-modified CDs decreased upon addition of Aspergillus oryzae alpha-amylase, indicating a reduction in hydrophobicity near the NBD-amine moiety induced by hydrolysis of the CD ring. NC4gammaCD, having a gamma-CD and an amino-tetramethylene spacer, was the most sensitive substrate for the alpha-amylase assay. The initial rate of hydrolysis of NC4gammaCD displayed a liner correlation to the concentration of the alpha-amylase. NC4gammaCD was sensitive to the alpha-amylase but was not sensitive to guest compounds that were accommodated by the native CDs.  相似文献   

2.
3.
A new chromogenic substrate for assay and detection of alpha-amylase   总被引:1,自引:0,他引:1  
A new soluble chromogenic substrate for alpha-amylase was prepared by coupling partially hydrolyzed starch with a dye, Ostazin brilliant red H-3B. The substrate is precipitable from buffered solutions with ethanol and is equally suitable for assay of alpha-amylase, detection of separated alpha-amylase isoenzymes in gels, and selection of microbial producers of the enzyme.  相似文献   

4.
A procedure for the automated assay of purified amylase inhibitors was developed. Samples were analyzed at a rate of 60/h using ferricyanide reagent to monitor the suppression of the release of reducing groups from a solution of starch by a calibrated alpha-amylase reagent. In addition to the sequential analysis of individual samples, the use of gradients permitted the continuous analysis of the effect of substrate and of inhibitor concentration. Also described are some of the effects of starch and inhibitor concentration and time of preincubation on the amylase-inhibitor reaction. The procedure was also suitable for the assay of samples of amylase and should be applicable to the determination of the effects of inhibitors on other enzymes which release reducing sugars.  相似文献   

5.
6.
Streptomyces olivaceus 142 produces amylase in the logarithmic phase of growth of the culture. The synthesis of the enzyme is induced by maltose and starch. In the case of maltose the synthesis is induced by a contaminating compound, probably being a higher than maltose polymer of glucose. The synthesis of amylase is negatively controlled by catabolic repression. The level of the activity of the enzyme depends not only on the biosynthesis but also on it proteolytic degradation.  相似文献   

7.
8.
The effect of pH, mental ions, and denaturing reagents on the thermal stability of thermophilic alpha-amylase [EC 3.2.1.1] were examined. The enzyme was most stable at around pH 9.2, which is coincident with the isoelectric point of the enzyme. The stability of the enzyme was increased by the addition of calcium, strontium, and sodium ions. The addition of calcium ions markedly stabilized the enzyme. The protective effects of calcium and sodium ions were additive. At room temperature, no detectable destruction of the helical structure of the enzyme was observed after incubation for 1 hr in the presence of 1% sodium dodecylsulfate, 8 M urea or 6 M guanidine-HC1. The addition of 8 M urea or 6 M guanidine-HC1 lowered the thermal denaturation temperature of the enzyme. The enzyme contained one atom of tightly bound intrinsic calcium per molecule which could not be removed by electrodialysis unless the enzyme was denatured. The rate constants of inactivation and denaturation reactions in the absence and presence of calcium ions were measured and thermodynamic parameters were determined. The presence of calcium ions caused a remarkable decrease in the activation entropy.  相似文献   

9.
The existence of an extracellular α-amylase, which is secreted by virus tumors from the roots of Rumex acetosa grown in vitro, has been demonstrated and the properties of the enzyme have been studied. As far as the authors are aware, this is the first enzyme demonstrated to be secreted from intact cells of higher plants.An assay for the quantitative determination of this enzyme is presented. This assay is based on the spectrophotometric determination of the decrease in color of the starch-iodine complex due to the activity of the amylase on the starch substrate.Among the factors discussed which affect the density of the starch-iodine complex are iodine concentration, temperature, and ionic strength.The optimum pH for activity of this enzyme is 4.6, both in acetate and citrate-phosphate buffers.At pH 4.6 in 0.02 M acetate buffer, the Q10 for the hydrolysis of starch by the enzyme is 1.6 in the range of 20–40 °C. The activation energy in this range calculated by the Arrhenius equation is 8000 cal./ mole.This α-amylase is protected by calcium and is sensitive to low pH values as are the cereal α-amylases.The energy of activation for the heat denaturation of the enzyme is 43,000 cal./mole, as calculated by the Arrhenius equation.  相似文献   

10.
Two inhibitors, acarbose and cyclodextrins (CD), were used to investigate the active site structure and function of barley alpha-amylase isozymes, AMY1 and AMY2. The hydrolysis of DP 4900-amylose, reduced (r) DP18-maltodextrin and maltoheptaose (catalysed by AMY1 and AMY2) was followed in the absence and in the presence of inhibitor. Without inhibitor, the highest activity was obtained with amylose, kcat/Km decreased 103-fold using rDP18-maltodextrin and 10(5) to 10(6)-fold using maltoheptaose as substrate. Acarbose is an uncompetitive inhibitor with inhibition constant (L1i) for amylose and maltodextrin in the micromolar range. Acarbose did not bind to the active site of the enzyme, but to a secondary site to give an abortive ESI complex. Only AMY2 has a second secondary binding site corresponding to an ESI2 complex. In contrast, acarbose is a mixed noncompetitive inhibitor of maltoheptaose hydrolysis. Consequently, in the presence of this oligosaccharide substrate, acarbose bound both to the active site and to a secondary binding site. alpha-CD inhibited the AMY1 and AMY2 catalysed hydrolysis of amylose, but was a very weak inhibitor compared to acarbose.beta- and gamma-CD are not inhibitors. These results are different from those obtained previously with PPA. However in AMY1, as already shown for amylases of animal and bacterial origin, in addition to the active site, one secondary carbohydrate binding site (s1) was necessary for activity whereas two secondary sites (s1 and s2) were required for the AMY2 activity. The first secondary site in both AMY1 and AMY2 was only functional when substrate was bound in the active site. This appears to be a general feature of the alpha-amylase family.  相似文献   

11.
alpha-Amylase was purified to apparent homogeneity from normal pancreas and a transplantable pancreatic acinar carcinoma of the rat by affinity chromatography on alpha-glucohydrolase inhibitor (alpha-GHI) bound to aminohexyl-Sepharose 4B. Recovery was 95-100% for both pancreas and tumour alpha-amylases. They were monomeric proteins, with Mr approx. 54000 on SDS/polyacrylamide-gel electrophoresis. Isoelectric focusing of both normal and tumour alpha-amylases resolved each into two major isoenzymes, with pI 8.3 and 8.7. Tumour-derived alpha-amylase contained two additional minor isoenzymes, with pI 7.6 and 6.95 respectively. All four tumour isoenzymes demonstrated amylolytic activity when isoelectric-focused gels were treated with starch and stained with iodine. Two-dimensional electrophoresis, on SDS/10-20%-polyacrylamide-gradient gels after isoelectric focusing, separated each major isoenzyme into doublets of similar Mr values. Pancreatic and tumour-derived alpha-amylases had similar Km and Ki (alpha-GHI) values, but the specific activity of the tumour alpha-amylase was approximately two-thirds that of the normal alpha-amylase. Although amino acid analysis and peptide mapping with the use of CNBr, N-chlorosuccinimide or Staphylococcus aureus V8 proteinase gave comparable profiles for the two alpha-amylases, tryptic-digest fingerprint patterns were different. Antibodies raised against the purified pancreatic alpha-amylase and tumour alpha-amylase respectively showed only one positive band on immunoblotting after gel electrophoresis of crude extracts of rat pancreas and carcinoma, at the same position as that of the purified enzyme. More than 95% of the alpha-amylase activity in the pancreas and in the tumour was absorbed by an excess amount of either antibody, indicating that normal and tumour alpha-amylases are immunologically identical. The presence of additional isoenzymes in the carcinoma, and dissimilarity of tryptic-digest patterns, may reflect an alteration in gene expression or in the post-translational modification of this protein in this heterogeneously differentiated transplantable pancreatic acinar carcinoma.  相似文献   

12.
13.
The esterification of the three polysaccharides, starch, amylose and amylopectin was carried out in pyridine-DMSO by succinic anhydride. The carboxylic groups in the succinylated polysaccharides were measured by FT-IR spectroscopy. The succinic derivatives were tested as alpha-amylase (1,4-alpha-D-glucan glucano hydrolase, E.C. 3.2.1.1) substrates. A colorimetric assay of the alpha-amylase activity indicated that this enzyme is active on succinic esters of starch and amylose and that the activity shows a linear decrease with the number of succinic units introduced into the polysaccharide. Since the colorimetric test was not suitable for the detection of the alpha-amylase activity when succinylated amylopectin was the substrate, we set-up an assay based on the labeling by a paramagnetic probe of the free carboxylic groups of succinylated polysaccharides. The kinetics of the alpha-amylase reaction were monitored by ESR spectroscopy through the increase of the mobility of the paramagnetic probe. The spin label used was the commercially available 4-amino-tempo. By this method we demonstrated that alpha-amylase is active on succinylated amylopectin. The utility of the assay for monitoring alpha-amylase activity when other methods (i.e. colorimetric tests) fail, is discussed.  相似文献   

14.
The glycosyl hydrolases present a large family of enzymes that are of great significance for industry. Consequently, there is considerable interest in engineering the enzymes in this family for optimal performance under a range of very diverse conditions. Until recently, tailoring glycosyl hydrolases for specific industrial processes mainly involved stability engineering, but lately there has also been considerable interest in engineering their pH-activity profiles. We mutated four neutral residues (N190, F290, N326 and Q360) in the chimeric Bacillus Ba2 alpha-amylase to both charged and neutral amino acids. The results show that the pH-activity profile of the Ba2 alpha-amylase can be changed by inserting charged residues close to the active site. The changes in the pH-activity profile for these neutral --> charged mutations do not, however, correlate with the predictions from calculations of the p K(a) values of the active site residues. More surprisingly, the neutral --> neutral mutations change the pH-activity profile as much as the neutral --> charged mutations. From these results, it is concluded that factors other than electrostatics, presumably the dynamic aspects of the active site, are important for the shape of the pH-activity profiles of the alpha-amylases.  相似文献   

15.
The induction of alpha-amylase in Streptomyces olivaceus 142 depends on the phase of growth of culture and the nature of the carbon sources upon which the cells were grown prior to exposure to inducer. The most susceptible to induction are cells from the initial hours of growth and glycerol -- grown cells. Reduction in the susceptibility of cells to alpha-amylase induction is probably a result of catabolic repression.  相似文献   

16.
The native and oxidized alpha-amylase inhibitor Z-2685, isolated from the culture medium of Streptomyces parvullus FH-1641, and its overlapping cleavage products were degraded by the automatic Edman technique. Digestion was carried out with pepsin, thermolysin and trypsin. The alpha-amylase inhibitor is a polypeptide consisting of 76 amino acids with a molecular mass of 8 129 Da. With the exception of methionine and lysine, all naturally occurring amino acids are present. It is interesting that identical regions exist, in particular the sequence Trp-Arg-Tyr common to all four known microbial inhibitor sequences. We believe that the side chains of these three amino acids are important for interacting with the alpha-amylase molecule. Computer alignment enabled us to show a possible binding region in the alpha-amylase molecule which might react with the inhibitors. Furthermore, homology exists to mammalian alpha-amylases. This result is explained by the assumption that the inhibitor evolved from a duplication of the original gene of the enzyme.  相似文献   

17.
Expression of alpha-amylase in Bacillus licheniformis.   总被引:5,自引:4,他引:1       下载免费PDF全文
In Bacillus licheniformis, alpha-amylase production varied more than 100-fold depending on the presence or absence of a catabolite-repressing carbon source in the growth medium. alpha-Amylase was produced during the growth phase and not at the onset of the stationary phase. Induction of alpha-amylase correlated with synthesis of mRNA initiating at the promoter of the alpha-amylase gene.  相似文献   

18.
The activity of fungal alpha-amylase has been shown to be influenced by disulfide-reducing reagents. Thus, the enzymatic activity increases in the presence of dithioerythritol or 2-mercaptoethanol. L-Cysteine is also capable of increasing the activity, but the activation competes with an inactivation reaction which dominates at higher reagent concentrations (greater than 20 mM). A possible scheme interpreting the results is given.  相似文献   

19.
A new substrate of alpha-amylases, O-6-deoxy-6-[(2-pyridyl)amino]-alpha-D-glucopyranosyl-(1 leads to 4)-O-alpha-D-glucopyranosyl-(1 leads to 4)-O-alpha-D-glucopyranosyl-(1 leads to 4)-O-alpha-D-glucopyranosyl-(1 leads to 4)-D-glucopyranose, was prepared using dextrin as a starting material. Compared with other substrates so far reported, the fluorogenic substrate is unique in that it is resistant to exo-alpha-glucosidases due to the blocking group introduced into the non-reducing end glucose residue. The product of alpha-amylase digestion was rapidly separated from the substrate and was detected very sensitively by HPLC and a fluorescence detector. This method for alpha-amylase assay was also applied for determination of alpha-amylase in human serum.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号