首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tumor suppressor protein, p53 plays a crucial role in protecting genetic integrity. Once activated by diverse cell stresses, p53 reversibly activates downstream target genes to regulate cell cycle and apoptosis. However, few studies have investigated the effects of thermal stress in turbot, specifically the p53 signaling pathway. In this study, the rapid amplification of cDNA ends was used to obtain a full-length cDNA of the turbot p53 gene (Sm-p53) and perform bioinformatics analysis. The results showed that the cDNA of the Sm-p53 gene was 2928 bp in length, encoded a 381 amino acid protein, with a theoretical isoelectric point of 6.73. It was composed of a DNA binding and a tetramerization domain. Expression of Sm-p53 in different tissues was detected and quantified by qRT-PCR, and was highest in the liver. We also investigated the expression profiles of Sm-p53 in different tissue and TK cells after thermal stress. These result suggested that Sm-p53 plays a key role, and provides a theoretical basis for Sm-p53 changes in environmental stress responses in the turbot.  相似文献   

2.
The effects of solar radiation on thermal comfort   总被引:1,自引:0,他引:1  
The aim of this study was to investigate the relationship between simulated solar radiation and thermal comfort. Three studies investigated the effects of (1) the intensity of direct simulated solar radiation, (2) spectral content of simulated solar radiation and (3) glazing type on human thermal sensation responses. Eight male subjects were exposed in each of the three studies. In Study 1, subjects were exposed to four levels of simulated solar radiation: 0, 200, 400 and 600 Wm−2. In Study 2, subjects were exposed to simulated solar radiation with four different spectral contents, each with a total intensity of 400 Wm−2 on the subject. In Study 3, subjects were exposed through glass to radiation caused by 1,000 Wm−2 of simulated solar radiation on the exterior surface of four different glazing types. The environment was otherwise thermally neutral where there was no direct radiation, predicted mean vote (PMV)=0±0.5, [International Standards Organisation (ISO) standard 7730]. Ratings of thermal sensation, comfort, stickiness and preference and measures of mean skin temperature (tsk) were taken. Increase in the total intensity of simulated solar radiation rather than the specific wavelength of the radiation is the critical factor affecting thermal comfort. Thermal sensation votes showed that there was a sensation scale increase of 1 scale unit for each increase of direct radiation of around 200 Wm−2. The specific spectral content of the radiation has no direct effect on thermal sensation. The results contribute to models for determining the effects of solar radiation on thermal comfort in vehicles, buildings and outdoors.  相似文献   

3.
4.
We have previously derived 2 V79 clones resistant to menadione (Md1 cells) and cadmium (Cd1 cells), respectively. They both were shown to be cross-resistant to hydrogen peroxide. There was a modification in the antioxidant repertoire in these cells as compared to the parental cells. Md1 presented an increase in catalase and glutathione peroxidase activities whereas Cd1 cells exhibited an increase in metallothionein and glutathione contents. The susceptibility of the DNA of these cells to the damaging effect of H2O2 was tested using the DNA precipitation assay. Both Md1 and Cd1 DNAs were more resistant to the peroxide action. In the case of Md1 cells it seems clear that the extra resistance is provided by the increase in the two H2O2 scavenger enzymes, catalase and glutathione peroxidase. In the case of Cd1 cells the activities of these enzymes as well as of superoxide dismutases (Cu/Zn and Mn) are unaltered as compared to the parental cells. The facts that parental cells exposed to 100 μM Zn2+ in the medium exhibit an increase in metallothionein but not in glutathione and that these cells become more resistant to the DNA-damaging effect of H2O2 suggest that this protein might play a protective role in vivo against the OH radical attack on DNA.  相似文献   

5.
Mitochondria damage checkpoint in apoptosis and genome stability   总被引:3,自引:0,他引:3  
  相似文献   

6.
7.
Climate change represents a significant environmental challenge to human welfare. One of many negative impacts may be on animal reproduction. Elevated ambient temperature unfavourably influences reproductive processes in mammals. High temperature can affect reproductive processes such as follicle development and may alter follicular fluid concentrations of amino acids, fatty acids, minerals, enzymes, antioxidants defence and growth factors. These impacts may lead to inferior oocyte competence and abnormal granulosa cell (GCs) function. Mammalian oocytes are enclosed by GCs that secret hormones and signalling molecules to promote oocyte competence. GCs are essential for proper follicular development, oocyte maturation, ovulation, and luteinization. Many environmental stressors, including thermal stress, affect GC function and alter oocyte development and growth. Several studies documented a link between elevated ambient temperature and increased generation of cellular reactive oxygen species (ROS). ROS can damage DNA, reduce cell proliferation, and induce apoptosis in GCs, thus altering oocyte development. Additionally, thermal stress induces upregulation of thermal shock proteins, such as HSP70 and HSP90. This review provides an update on the influence of thermal stress on GCs of mammals. Discussions include impacts to steroidogenesis (estradiol and progesterone), proliferation and cell cycle transition, apoptosis, oxidative stress (ROS), antioxidants related genes, heat shock proteins (HSPs) and endoplasmic reticulum responses.  相似文献   

8.
9.
COVID-19 disease, which spreads worldwide, is a disease characterized by widespread inflammation and affects many organs, especially the lungs. The resulting inflammation can lead to reactive oxygen radicals, leading to oxidative DNA damage. The pneumonia severity of 95 hospitalized patients with positive RT-PCR test was determined and divided into three groups: mild, moderate, and severe/critical. Inflammation markers (neutrophil–lymphocyte ratio, serum reactive protein, procalcitonin, etc.) were determined, and IL-10 and IFN-γ measurements were analyzed using the enzyme-linked immunosorbent assay method. In evaluating oxidative damage, total thiol, native thiol, disulfide, and ischemia-modified albumin (IMA) levels were determined by measuring spectrophotometrically. The comet assay method’s percentage of tail DNA obtained was used to determine oxidative DNA damage. As a result, when the mild and severe/critical groups were compared, we found that total thiol, native thiol, and disulfide levels decreased significantly in the severe/critical group due to the increase in inflammation markers and cytokine levels (p < 0.05). We could not detect any significance in IMA levels between the groups (p > 0.05). At the same time, we determined an increase in the tail DNA percent level, that is, DNA damage, due to the increased oxidative effect. As a result, we determined that inflammation and oxidative stress increased in patients with severe pneumonia, and there was DNA damage in these patients.  相似文献   

10.
To investigate bleaching mechanisms in coral-zooxanthella symbiotic systems, it is important to study the cellular- or tissue-level responses of corals to stress. We established an experimental system to study the stress responses of coral cells using coral cell aggregates. Dissociated coral cells aggregate to form spherical bodies, which rotate by ciliary movement. These spherical bodies (tissue balls) stop rotating and disintegrate when exposed to a thermal stress. Tissue balls prepared from dissociated cells of Fungia sp. and Pavona divaricata were exposed to either elevated temperature (31 °C, with 25 °C as the control) or elevated temperature in the presence of exogenous antioxidants (ascorbic acid and catalase, or mannitol). The survival curves of tissue balls were markedly different between 31 and 25 °C. At 31 °C, most tissue balls disintegrated within 24 h, whereas at 25 °C, most tissue balls survived for more than 24 h. There was a negative correlation between survival time and the zooxanthella density of tissue balls at 31 °C, but no significant relationship was found at 25 °C. Antioxidants extended the survival time of tissue balls at high temperature, suggesting that zooxanthellae produce reactive oxygen species under stress. These results indicate that zooxanthellae produce harmful substances and damage coral cells under high-temperature stress. Tissue balls provide a good experimental system with which to study the effects of stress and various chemical reagents on corals cells.  相似文献   

11.
This study examined the importance of mycosporine-glycine (Myc-Gly) as a functional antioxidant in the thermal-stress susceptibility of two scleractinian corals, Platygyra ryukyuensis and Stylophora pistillata. Photochemical efficiency of PSII (Fv/Fm), activity of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), and composition and abundance of mycosporine-like amino acids (MAAs) in the coral tissue and in symbiotic zooxanthellae were analyzed during 12-h exposure to high temperature (33 °C). After 6- and 12-h exposures at 33 °C, S. pistillata showed a significantly more pronounced decline in Fv/Fm compared to P. ryukyuensis. A 6-h exposure at 33 °C induced a significant increase in the activities of SOD and CAT in both host and zooxanthellae components of S. pistillata while in P. ryukyuensis a significant increase was observed only in the CAT activity of zooxanthellae. After 12-h exposure, the SOD activity of P. ryukyuensis was unaffected in the coral tissue but slightly increased in zooxanthellae, whereas the CAT activity in the coral tissue showed a 2.5-fold increase. The total activity of antioxidant enzymes was significantly higher in S. pistillata than in P. ryukyuensis, suggesting that P. ryukyuensis is less sensitive to oxidative stress than S. pistillata. This differential susceptibility of the corals is consistent with a 20-fold higher initial concentration of Myc-Gly in P. ryukyuensis compared to S. pistillata. In the coral tissue and zooxanthellae of both species investigated, the first 6 h of exposure to thermal stress induced a pronounced reduction in the abundance of Myc-Gly but not in other MAAs. When exposure was prolonged to 12 h, the Myc-Gly pool continued to decrease in P. ryukyuensis and was completely depleted in S. pistillata. The delay in the onset of oxidative stress in P. ryukyuensis and the dramatic increase in the activities of the antioxidant enzymes in S. pistillata, which contains low concentrations of Myc-Gly suggest that Myc-Gly provides rapid protection against oxidative stress before the antioxidant enzymes are induced. These findings strongly suggest that Myc-Gly is functioning as a biological antioxidant in the coral tissue and zooxanthellae and demonstrate its importance in the survival of reef-building corals under thermal stress.  相似文献   

12.
13.
Iron, a key element in Fenton chemistry, causes oxygen-related toxicity to cells of most living organisms. Helicobacter pylori is a microaerophilic bacterium that infects human gastric mucosa and causes a series of gastric diseases. Exposure of H. pylori cells to air for 2 h elevated the level of free iron by about 4-fold as measured by electron paramagnetic resonance spectroscopy. H. pylori cells accumulated more free iron as they approached stationary phase growth, and they concomitantly suffered more DNA damage as indicated by DNA fragmentation analysis. Relationships between the intracellular free iron level, specific oxidative stress enzymes, and DNA damage were identified, and new roles for three oxidative stress-combating enzymes in H. pylori are proposed. Mutant cells defective in either catalase (KatA), in superoxide dismutase (SodB) or in alkyl hydroperoxide reductase (AhpC) were more sensitive to oxidative stress conditions; and they accumulated more free (toxic) iron; and they suffered more DNA fragmentation compared to wild type cells. A significant proportion of cells of sodB, ahpC, or katA mutant strains developed into the stress-induced coccoid form or lysed; they also contained significantly higher amounts of 8-oxo-guanine associated with their DNA, compared to wild type cells.  相似文献   

14.
Several studies have demonstrated that zinc is required for the optimal functioning of the skin. Changes in intracellular zinc concentrations have been associated with both improved protection of skin cells against various noxious factors as well as with increased susceptibility to external stress. Still, little is known about the role of intracellular zinc in hexavalent chromium (Cr(VI))-induced skin injury. To address this question, the effects of zinc deficiency or supplementation on Cr(VI)-induced cytotoxicity, oxidative stress, DNA injury and cell death were investigated in human diploid dermal fibroblasts during 48 h. Zinc levels in fibroblasts were manipulated by pretreatment of cells with 100 microM ZnSO4 and 4 or 25 microM zinc chelator TPEN. Cr(VI) (50, 10 and 1 microM) was found to produce time- and dose-dependent cytotoxicity resulting in oxidative stress, suppression of antioxidant systems and activation of p53-dependent apoptosis which is reported for the first time in this model in relation to environmental Cr(VI). Increased intracellular zinc partially attenuated Cr(VI)-induced cytotoxicity, oxidative stress and apoptosis by enhancing cellular antioxidant systems while inhibiting Cr(VI)-dependent apoptosis by preventing the activation of caspase-3. Decreased intracellular zinc enhanced cytotoxic effects of all the tested Cr(VI) concentrations, leading to rapid loss of cell membrane integrity and nuclear dispersion--hallmarks of necrosis. These new findings suggest that Cr(VI) as a model environmental toxin may damage in deeper regions residing skin fibroblasts whose susceptibility to such toxin depends among others on their intracellular Zn levels. Further investigation of the impact of Zn status on skin cells as well as any other cell populations exposed to Cr(VI) or other heavy metals is warranted.  相似文献   

15.
This study was aimed to determine the effects of boric acid on oxidative stress, testicular tissue and spermatozoon DNA. Experiments were performed with Swiss Albino mice divided equally into two groups based on the tratment period: one for 4 and the other for 6-week duration. These groups were further divided into subgroups as Control and those administered daily at oral doses of 115 mg/kg, 250 mg/kg and 450 mg/kg of boric acid. Then, testicular tissue were examined postmortem and analyzed using ex-vivo biochemical tools for oxidative stress, spermatozoon membrane integrity, sperm motility and live cell rate (%). In both 4 and 6-week groups, v. seminalis weight, membrane integrity, motility, live cells and GSH levels exhibited a decreasing trent compared to the controls. In addition, 6-week group had a decrease in SOD level. MDA level was higher in controls in both 4 and 6-week groups. Spermatozoon DNA was intact in the 4-week group, but damaged in the 6-week group, and the degree of the damage dependent on the administered dose. Boric acid induces oxidative stress in testicular tissue, and its long-term application (only 6 weeks) caused damage in spermatozoon DNA.  相似文献   

16.
Herein, we studied phorate for its toxicological effects in human lymphocytes. Phorate treatment for 3 h has induced significant increase in the lymphocytic DNA damage. Compared to control, comet data from highest concentration of phorate (1000 µM) showed 8.03-fold increase in the Olive tail moment (OTM). Cytokinesis blocked micronucleus (CBMN) assay revealed 6.4-fold increase in binucleated micronucleated (BNMN) cells following the exposure with phorate (200 µM) for 24 h. The nuclear division index (NDI) in phorate (200 µM) treated cells reduced to 1.8 vis-à-vis control cells showed NDI of 1.94. Comparative to untreated control, 60.43% greater DCF fluorescence was quantitated in lymphocytes treated with phorate (500 µM), affirming reactive oxygen species (ROS) generation and oxidative stress. Flow cytometric data of phorate (200 µM) treated lymphocytes showed 81.77% decline in the fluorescence of rhodamine 123 (Rh123) dye, confirming the perturbation of mitochondrial membrane potential (ΔΨm). Calf thymus DNA (ct-DNA) treated with phorate (1000 µM) exhibited 2.3-fold higher 8-Hydroxy-2′-deoxyguanosine (8-oxodG) DNA adduct formation, signified the oxidative DNA damage. The alkaline unwinding assay revealed 4.0 and 6.5 ct-DNA strand breaks when treated to phorate and phorate-Cu (II) complex. Overall, the data unequivocally suggests the cyto- and genotoxic potential of phorate in human lymphocytes, which may induce comparable toxicological consequences in persons occupationally or non-occupationally exposed to insecticide phorate.  相似文献   

17.
The role of both host and dinoflagellate symbionts was investigated in the response of reef-building corals to thermal stress in the light. Replicate coral nubbins of Stylophora pistillata and Porites cylindrica from the GBR were exposed to either 28 °C (control) or 32 °C for 5 days before being returned to an ambient reef temperature (28 °C). S. pistillata was found to contain either Symbiodinium genotype C1 or C8a, while P. cylindrica had type C15 based on ITS genotyping. Analysis of the quantum yield of photosystem (PS) II fluorescence of the symbionts in P. cylindrica showed that light-induced excitation pressure on the C15 Symbiodinium was significantly less, and the steady state quantum yield of PSII fluorescence at noon (ΔF/Fm′) greater, than that measured in C1/C8a Symbiodinium sp. from S. pistillata. Immunoblots of the PS II D1 protein were significantly lower in Symbiodinium from S. pistillata compared to those in P. cylindrica after exposure to thermal stress. The biochemical markers, heat-stress protein (HSP) 70 and superoxide dismutase (SOD), were significantly greater in P. cylindrica before the experiment, and both species of coral increased their biosynthesis of HSP 70 and SOD when exposed to thermal stress. Concentrations of MAAs, glycerol, and lipids were not significantly affected by thermal stress in these experiments, but DNA damage was greater in heat-stressed S. pistillata compared to P. cylindrica. There was minimal coral mucus, which accounts for up to half of the total energy budget of a coral and provides the first layer of defense for invading microbes, produced by S. pistillata after heat stress compared to P. cylindrica. It is concluded that P. cylindrica contains a heat resistant C15 Symbiodinium and critical host proteins are present at higher concentrations than observed for S. pistillata, the combination of which provides greater protection from bleaching conditions of high temperature in the light.  相似文献   

18.
The increasing use of mobile telephones raises the question of possible adverse effects of the electromagnetic fields (EMF) that these phones produce. In this study, we examined the oxidative stress in the brain tissue and serum of rats that resulted from exposure to a 900-MHz EMF at a whole body average specific absorption rate (SAR) of 1.08 W/kg for 1 h/day for 3 weeks. We also examined the antioxidant effect of garlic powder (500 mg/kg/day) given orally to EMF-exposed rats. We found that malondialdehyde (MDA) (p < 0.001) and advanced oxidation protein product (AOPP) (p < 0.05) increased in rat brain tissue exposed to the EMF and that garlic reduced these effects (p < 0.05). There was no significant difference in the nitric oxide (NO) levels in the brain. Paraoxonase (PON) was not detected in the brain. There was a significant increase in the levels of NO (p < 0.001) detected in the serum after EMF exposure, and garlic intake did not affect this increase in NO. Our results suggest that there is a significant increase in brain lipid and protein oxidation after electromagnetic radiation (EMR) exposure and that garlic has a protective effect against this oxidative stress.  相似文献   

19.
20.
Oxidative stress is considered as an important pathogenic factor in many human diseases including Fanconi anemia (FA), an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Members of the FA protein family are involved in DNA damage and other cellular stress responses. Loss of FA proteins renders cells hypersensitive to oxidative stress and cancer transformation. However, how FA cells respond to oxidative DNA damage remains unclear. By using an in vivo stress-response mouse strain expressing the Gadd45β-luciferase transgene, we show here that haematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA gene Fanca or Fancc persistently responded to oxidative stress. Mechanistically, we demonstrated that accumulation of unrepaired DNA damage, particularly in oxidative damage-sensitive genes, was responsible for the long-lasting response in FA HSPCs. Furthermore, genetic correction of Fanca deficiency almost completely abolished the persistent oxidative stress-induced G2/M arrest and DNA damage response in vivo. Our study suggests that FA pathway is an integral part of a versatile cellular mechanism by which HSPCs respond to oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号