首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
J. I. Horabin  D. Bopp  J. Waterbury    P. Schedl 《Genetics》1995,141(4):1521-1535
Unlike sex determination in the soma, which is an autonomous process, sex determination in the germline of Drosophila has both inductive and autonomous components. In this paper, we examined how sexual identity is selected and maintained in the Drosophila germline. We show that female-specific expression of genes in the germline is dependent on a somatic signaling pathway. This signaling pathway requires the sex-non-specific transformer 2 gene but, surprisingly, does not appear to require the sex-specific genes, transformer and doublesex. Moreover, in contrast to the soma where pathway initiation and maintenance are independent processes, the somatic signaling pathway appears to function continuously from embryogenesis to the larval stages to select and sustain female germline identity. We also show that the primary target for the somatic signaling pathway in germ cells can not be the Sex-lethal gene.  相似文献   

2.
M. T. O''Neil  J. M. Belote 《Genetics》1992,131(1):113-128
The transformer (tra) gene of Drosophila melanogaster occupies an intermediate position in the regulatory pathway controlling all aspects of somatic sexual differentiation. The female-specific expression of this gene's function is regulated by the Sex lethal (Sxl) gene, through a mechanism involving sex-specific alternative splicing of tra pre-mRNA. The tra gene encodes a protein that is thought to act in conjunction with the transformer-2 (tra-2) gene product to control the sex-specific processing of doublesex (dsx) pre-mRNA. The bifunctional dsx gene carries out opposite functions in the two sexes, repressing female differentiation in males and repressing male differentiation in females. Here we report the results from an evolutionary approach to investigate tra regulation and function, by isolating the tra-homologous genes from selected Drosophila species, and then using the interspecific DNA sequence comparisons to help identify regions of functional significance. The tra-homologous genes from two Sophophoran subgenus species, Drosophila simulans and Drosophila erecta, and two Drosophila subgenus species, Drosophila hydei and Drosophila virilis, were cloned, sequenced and compared to the D. melanogaster tra gene. This comparison reveals an unusually high degree of evolutionary divergence among the tra coding sequences. These studies also highlight a highly conserved sequence within intron one that probably defines a cis-acting regulator of the sex-specific alternative splicing event.  相似文献   

3.
4.
In the past two decades, scientists have elucidated the molecular mechanisms behind Drosophila sex determination and dosage compensation. These two processes are controlled essentially by two different sets of genes, which have in common a master regulatory gene, Sex-lethal (Sxl). Sxl encodes one of the best-characterized members of the family of RNA binding proteins. The analysis of different mechanisms involved in the regulation of the three identified Sxl target genes (Sex-lethal itself, transformer, and male specific lethal-2) has contributed to a better understanding of translation repression, as well as constitutive and alternative splicing. Studies using the Drosophila system have identified the features of the protein that contribute to its target specificity and regulatory functions. In this article, we review the existing data concerning Sxl protein, its biological functions, and the regulation of its target genes.  相似文献   

5.
Recent studies show that the timeless (tim) gene is not an essential component of the circadian clock in some insects. In the present study, we have investigated whether the tim gene was originally involved in the insect clock or acquired as a clock component later during the course of evolution using an apterygote insect, Thermobia domestica. A cDNA of the clock gene tim (Td'tim) was cloned, and its structural analysis showed that Td'TIM includes 4 defined functional domains, that is, 2 regions for dimerization with PERIOD (PER-1, PER-2), nuclear localization signal (NLS), and cytoplasmic localization domain (CLD), like Drosophila TIM. Td'tim exhibited rhythmic expression in its mRNA levels with a peak during late day to early night in LD, and the rhythm persisted in DD. A single injection of double-stranded RNA (dsRNA) of Td'tim (dstim) into the abdomen of adult firebrats effectively knocked down mRNA levels of Td'tim and abolished its rhythmic expression. Most dsRNA-injected firebrats lost their circadian locomotor rhythm in DD up to 30 days after injection. DsRNA of cycle (cyc) and Clock genes also abolished the rhythmic expression of Td'tim mRNA by knocking down Td'tim mRNA to its basal level of intact firebrats, suggesting that the underlying molecular clock of firebrats resembles that of Drosophila. Interestingly, however, dstim also reduced cyc mRNA to its basal level of intact animals and eliminated its rhythmic expression, suggesting the involvement of Td'tim in the regulation of cyc expression. These results suggest that tim is an essential component of the circadian clock of the primitive insect T. domestica; thus, it might have been involved in the clock machinery from a very early stage of insect evolution, but its role might be different from that in Drosophila.  相似文献   

6.
7.
To understand better both the development and evolution of insect mouthparts, we have compared the expression pattern of several developmentally important genes in insects with either mandibulate or stylate-haustellate mouthparts. Specifically, we examined the expression of the proboscipedia (pb) and Distal-less (Dll) gene products as well as three regulators of pb, Sex combs reduced (Scr), Deformed (Dfd), and cap 'n' collar (cnc). These genes are known to control the identity of cells in the gnathal segments of Drosophila melanogaster and would appear to have similar conserved functions in other insects. Together we have made an atlas of gene expression in the heads of three insects: Thermobia domestica and Acheta domestica, which likely exemplify the mandibulate mouthparts present in the common insect ancestor, and Oncopeltus fasciatus, which has piercing-sucking mouth parts that are typical of the Hemiptera. At the earliest stages of embryogenesis, only the expression of pb was found to differ dramatically between Oncopeltus and the other insects examined, although significant differences were observed later in development. This difference in pb expression reflects an apparent divergence in the specification of gnathal identity between mandibulate and stylate-haustellate mouthparts, which may result from a "phylogenetic homeosis" that occurred during the evolution of the Hemiptera.  相似文献   

8.
9.
Fujii S  Amrein H 《The EMBO journal》2002,21(20):5353-5363
The downstream effectors of the Drosophila sex determination cascade are mostly unknown and thought to mediate all aspects of sexual differentiation, physiology and behavior. Here, we employed serial analysis of gene expression (SAGE) to identify male and female effectors expressed in the head, and report 46 sex-biased genes (>4-fold/P < 0.01). We characterized four novel, male- or female-specific genes and found that all are expressed mainly in the fat cells in the head. Tsx (turn on sex-specificity), sxe1 and sxe2 (sex-specific enzyme 1/2) are expressed in males, but not females, and are dependent on the known sex determination pathway, specifically transformer (tra) and its downstream target doublesex (dsx). Female-specific expression of the fourth gene, fit (female-specific independent of transformer), is not controlled by tra and dsx, suggesting an alternative pathway for the regulation of some effector genes. Our results indicate that fat cells in the head express sex-specific effectors, thereby generating distinct physiological conditions in the male and female head. We suggest that these differences have consequences on the male and female brain by modulating sex-specific neuronal processes.  相似文献   

10.
The medfly Ceratitis capitata contains a gene (Cctra) with structural and functional homology to the Drosophila melanogaster sex-determining gene transformer (tra). Similar to tra in Drosophila, Cctra is regulated by alternative splicing such that only females can encode a full-length protein. In contrast to Drosophila, however, where tra is a subordinate target of Sex-lethal (Sxl), Cctra seems to initiate an autoregulatory mechanism in XX embryos that provides continuous tra female-specific function and act as a cellular memory maintaining the female pathway. Indeed, a transient interference with Cctra expression in XX embryos by RNAi treatment can cause complete sexual transformation of both germline and soma in adult flies, resulting in a fertile male XX phenotype. The male pathway seems to result when Cctra autoregulation is prevented and instead splice variants with truncated open reading frames are produced. We propose that this repression is achieved by the Y-linked male-determining factor (M).  相似文献   

11.
Deng H  Xia D  Fang B  Zhang H 《Genetics》2007,177(2):847-860
Flightless I (Fli I) is an evolutionarily conserved member of the gelsolin family, containing actin-binding and severing activity in vitro. The physiological function of Fli I during animal development remains largely undefined. In this study, we reveal a key role of the Caenorhabditis elegans Fli I homolog, fli-1, in specifying asymmetric cell division and in establishing anterior-posterior polarity in the zygote. The fli-1 gene also regulates the cytokinesis of somatic cells and the development of germline and interacts with the phosphoinositol-signaling pathway in the regulation of ovulation. The fli-1 reporter gene shows that the localization of FLI-1 coincides with actin-rich regions and that the actin cytoskeleton is impaired in many tissues in the fli-1 mutants. Furthermore, the function of fli-1 in C. elegans can be functionally substituted by the Drosophila Fli I. Our studies demonstrate that fli-1 plays an important role in regulating the actin-dependent events during C. elegans development.  相似文献   

12.
Characterization of the heterochronic genes has provided a strong foundation for understanding the molecular mechanisms of developmental timing in C. elegans. In apparent contrast, studies of developmental timing in Drosophila have demonstrated a central role for gene cascades triggered by the steroid hormone ecdysone. In this review, I survey the molecular mechanisms of developmental timing in C. elegans and Drosophila and outline how common regulatory pathways are beginning to emerge.  相似文献   

13.
14.
15.
The body plan of Drosophila, and presumably that of other insects, develops under the control of anterio-posterior and dorsal ventral axes, but no evidence for a left-right axis has yet been found. We used geometric morphometrics to study the wings in three species of flies: Drosophila melanogaster, Musca domestica and Glossina palpalis gambiensis. In all three species, we found that both size and shape showed subtle, but statistically significant directional asymmetry. For size, these asymmetries were somewhat inconsistent within and between species, but for shape, highly significant directional asymmetry was found in all samples examined. These systematic left-right differences imply the existence of a left-right axis that conveys distinct positional identities to the wing imaginal discs on either body side. Hence, the wing discs of Drosophila may be a new model to study the developmental genetics of left-right asymmetry. The asymmetries of shape were similar among species, suggesting that directional asymmetry has been evolutionarily conserved since the three lineages diverged. We discuss the implications of this evolutionary conservatism in conjunction with results from earlier studies that showed a lack of genetic variation for directional asymmetry in Drosophila.  相似文献   

16.
Nature has evolved an astonishing variety of genetic and epigenetic sex-determining systems which all achieve the same result, the generation of two sexes. Genetic and molecular analyses, mainly performed during the last 20 years, have gradually revealed the mechanisms that govern sexual differentiation in a few model organisms. In this review, we will introduce the sex-determining system of Drosophila and compare the fruitfly to the housefly Musca domestica and other Dipteran insects. Despite the ostensible variety, all these insects use the same basic strategy: a primary genetic signal that is different in males and females, a key gene that responds to the primary signal, and a double-switch gene that eventually selects between two alternative sexual programmes. These parallels, however, do not extend to the molecular level. Except for the double-switch gene doublesex at the end of the cascade, no functional homologies were found between more distantly related insects. In particular, Sex-lethal, the key gene that controls sexual differentiation in Drosophila, does not have a sex-determining function in any other genus studied so far. These results show that sex-determining cascades, in comparison to other regulatory pathways, evolve much more rapidly.  相似文献   

17.
Siera SG  Cline TW 《Genetics》2008,180(4):1963-1981
We describe a surprising new regulatory relationship between two key genes of the Drosophila sex-determination gene hierarchy, Sex-lethal (Sxl) and transformer (tra). A positive autoregulatory feedback loop for Sxl was known to maintain somatic cell female identity by producing SXL-F protein to continually instruct the target gene transformer (tra) to make its feminizing product, TRA-F. We discovered the reciprocal regulatory effect by studying genetically sensitized females: TRA-F from either maternal or zygotic tra expression stimulates Sxl-positive autoregulation. We found female-specific tra mRNA in eggs as predicted by this tra maternal effect, but not predicted by the prevailing view that tra has no germline function. TRA-F stimulation of Sxl seems to be direct at some point, since Sxl harbors highly conserved predicted TRA-F binding sites. Nevertheless, TRA-F stimulation of Sxl autoregulation in the gonadal soma also appears to have a cell-nonautonomous aspect, unprecedented for somatic Sxl regulation. This tra-Sxl retrograde regulatory circuit has evolutionary implications. In some Diptera, tra occupies Sxl's position as the gene that epigenetically maintains female identity through direct positive feedback on pre-mRNA splicing. The tra-mediated Sxl feedback in Drosophila may be a vestige of regulatory redundancy that facilitated the evolutionary transition from tra to Sxl as the master sex switch.  相似文献   

18.
《Fly》2013,7(4):197-199
Innate immunity is essential for the survival of organisms across the evolutionary spectrum. Drosophila is well studied as a model of innate immunity and has been instrumental in establishing principles of defense and gene signaling pathways that are shared with humans. Previous studies in Drosophila have not focused on differences between the sexes, and in this report we present evidence that it is essential to include differences between the sexes. Survival rates post-infection, after a fungal or bacterial infection, varied according to the combination of signaling pathway (Toll and Imd) and sex tested. We also found that antimicrobial protein gene mRNA levels for Drosomycin and Metchnikowin showed both similarities and differences between the sexes. These studies highlight the need to include both sexes in studies of immune function as well as the associated opportunities for advancing our understanding of immunity.  相似文献   

19.
Taylor K  Kimbrell DA 《Fly》2007,1(4):197-204
Innate immunity is essential for the survival of organisms across the evolutionary spectrum. Drosophila is well studied as a model of innate immunity and has been instrumental in establishing principles of defense and gene signaling pathways that are shared with humans. Previous studies in Drosophila have not focused on differences between the sexes, and in this report we present evidence that it is essential to include differences between the sexes. Survival rates post-infection, after a fungal or bacterial infection, varied according to the combination of signaling pathway (Toll and Imd) and sex tested. We also found that antimicrobial protein gene mRNA levels for Drosomycin and Metchnikowin showed both similarities and differences between the sexes. These studies highlight the need to include both sexes in studies of immune function as well as the associated opportunities for advancing our understanding of immunity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号