首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
By introducing an α3 gene-containing plasmid into a human T cell line Jurkat, we prepared the T cells, which express a high level of the α3β1 integrin, to assess the role of laminin 5 in the skin immune system. The α3β1-expressing T cells adhered to laminin 5 and exhibited spreading. These adhered T cells showed a significant tyrosine phosphorylation of intracellular proteins including p59fynupon T-cell receptor (TCR) stimulation. Six hours after cross-linking TCR, these cells on laminin 5 secreted a three times higher level of IL-2 than those on a BSA-coated plate. Twenty hours after the stimulation, 48% of the α3β1-expressing T cells on laminin 5 caused apoptosis. The protein level of cyclin D3 and E decreased, while that of p53 increased in these T cells. These data suggest that laminin 5 may play at least two regulatory roles for T cell functions: augmentation of IL-2 production by antigen-stimulated T cells and induction of apoptosis in these T cells.  相似文献   

3.
Laminins assemble into trimers composed of α, β, and γ chains which posttranslationally are glycosylated and sometimes proteolytically cleaved. In the current paper we set out to characterize posttranslational modifications and the laminin isoforms formed by laminin α1 and α5 chains. Comparative pulse–chase experiments and deglycosylation studies in JAR cells established that the Mr 360,000 laminin α1 chain is glycosylated into a mature Mr 400,000 band while the Mr 370,000 laminin α5 chain is glycosylated into a Mr 390,000 form that upon secretion is further processed into a Mr 380,000 form. Hence, despite the shorter peptide length of α1 chain in comparison with the α5 chain, secreted α1 assumes a larger size in SDS–PAGE due to a higher degree of N-linked glycosylation and due to the lack of proteolytic processing. Immunoprecipitations and Western blotting of JAR laminins identified laminin α1 and laminin α5 chains in laminin-1 and laminin-10. In placenta laminin α1 chain (Mr 400,000) and laminin α5 chain (Mr 380,000/370,000 doublet) were found in laminin-1/-3 and laminin-10/-11. Immunohistochemically we could establish that the laminin α1 chain in placenta is deposited in the developing villous and trophoblast basement membrane, also found to contain laminin β2 chains. Surprisingly, a fraction of the laminin α1 chain from JAR cells and placenta could not be precipitated by antibodies to laminin β1–β3 chains, possibly pointing to an unexpected complexity in the chain composition of α1-containing laminin isoforms.  相似文献   

4.
α7β1 is the major integrin complex expressed in differentiated muscle cells where it functions as a laminin receptor. In this work we have expressed the α7 integrin subunit in CHO cells to investigate the functional properties of this receptor. After transfection with α7 CHO cells acquired the ability to adhere and spread on laminin 1 consistent with the laminin receptor activity of the α7β1. α7 transfectants, however, showed a 70% reduction in the ability to adhere to fibronectin and were unable to assemble a fibronectin matrix. The degree of reduction was inversely related to the level of α7 expression. To define the mechanisms underlying this adhesive defect we analyzed surface expression and functional properties of the α5β1 fibronectin receptor. Although cell surface expression of α5β1 was reduced by a factor of 20–25% in α7 transfectants compared to control untransfected cells, this slight reduction was not sufficient to explain the dramatic reduction in cell adhesion (70%) and matrix assembly (close to 100%). Binding studies showed that the affinity of125I-fibronectin for its surface receptor was decreased by 50% in α7 transfectants, indicating that the α5β1 integrin is partially inactivated in these cells. Inactivation can be reversed by Mn2+, a cation known to increase integrin affinity for their ligands. In fact, incubation of cells with Mn2+restored fibronectin binding affinity, adhesion to fibronectin, and assembly of fibronectin matrix in α7 transfectants. These data indicate that α7 expression leads to the functional down regulation of α5β1 integrin by decreasing ligand binding affinity and surface expression. In conclusion, the data reported establish the existence of anegative cooperativitybetween α7 and α5 integrins that may be important in determining functional regulation of integrins during myogenic differentiation.  相似文献   

5.
Previously, we have established K562 transfectants that express either α6Aβ1 or α6Bβ1 (Kα6A or Kα6B) on their surface. Both cell lines bind to laminin and kalinin after treatment with the β1-stimulatory antibody TS2/16. Here we introduce the full-length β4 cDNA into the α6A- and α6B-expressing K562 cells and selected stably transfected cells. The β4 subunit was expressed on the surface of both transfectants and it formed dimers with the α6A or α6B subunits. Immunoprecipitation and preclearing analyses revealed that both transfectants expressed α6β1, in addition to α6β4. While Kα6A and Kβ6B cells required TS2/16 stimulation for binding to laminin or kalinin, adhesion of the unstimulated β4-transfected Kα6A and Kα6B cells to these matrix components was already substantial. This adhesion was mediated by both α6β1 and α6β4 since it was completely blocked by an α6-specific antibody or by a combination of anti-β1 and anti-β4 antibodies, but only partially by either of these latter two antibodies alone. Adhesion to laminin was completely blocked by an antiserum to laminin fragment E8 as was the adhesion to kalinin by an antibody to kalinin, demonstrating the specificity of adhesion. Both transfectants always adhered more strongly to kalinin than to laminin. Furthermore, binding to kalinin was less well blocked by antibodies to β4 than binding to laminin, indicating that the affinity of α6β4 for kalinin is higher than that for laminin. The fact that α6β1 mediated adhesion without TS2/16 stimulation on the β4-transfected Kα6A and Kα6B cells suggests that some activation of α6β1 had occurred in these cells, even though binding was increased when they were actively stimulated by the antibody TS2/16. Finally, we show that Mn2+ induced binding of solubilized α6β4 to matrix containing kalinin, deposited by the murine cell line RAC-11P/SD. This binding was inhibited by the anti-α6 mAb GoH3. Together, these results indicate that both α6β1 and α6β4 are receptors for laminin and kalinin and that there are no differences in ligand specificity between the A and B variants of the α6 subunit when associated with either β1 or β4.  相似文献   

6.
Human colon carcinoma cells express 25-hydroxyvitamin D3-1α-hydroxylase (CYP27B1) and thus produce the vitamin D receptor (VDR) ligand 1α,25-dihydroxyvitamin D3 (1,25-D3), which can be metabolized by 25-hydroxyvitamin D3-24-hydroxylase (CYP24). Expression of VDR, CYP27B1, and CYP24 determines the efficacy of the antimitotic action of 1,25-D3 and is distinctly related to the degree of differentiation of cancerous lesions. In the present study we addressed the question of whether the effects of epidermal growth factor (EGF) and of 1,25-D3 on VDR, CYP27B1, and CYP24 gene expression in human colon carcinoma cell lines also depend on the degree of cellular differentiation. We were able to show that slowly dividing, highly differentiated Caco-2/15 cells responded in a dose-dependent manner to both EGF and 1,25-D3 by up-regulation of VDR and CYP27B1 expression, whereas in highly proliferative, less differentiated cell lines, such as Caco-2/AQ and COGA-1A and -1E, negative regulation was observed. CYP24 mRNA was inducible in all clones by 1,25-D3 but not by EGF. From the observed clonal differences in the regulatory effects of EGF and 1,25-D3 on VDR and CYP27B1 gene expression we suggest that VDR-mediated growth inhibition by 1,25-D3 would be efficient only in highly differentiated carcinomas even when under mitogenic stimulation by EGF.  相似文献   

7.
The transforming growth factors-β (TGFs-β) family of genes plays important roles in cell growth and differentiation in many cell types. TGFβ modulates the synthesis and accumulation of extracellular matrix (ECM) components and the expression of cell surface receptors for ECM components. TGFβ is increased in alveolar lining fluid during inflammatory reactions of the lung and has been identified in alveolar epithelial cells of developing lungs and hyperplastic type II cells during repair. However, little is known about how TGFβ may regulate expression of extracellular matrix proteins and ECM receptors in lung alveolar epithelial cells. Laminin, a major glycoprotein component of epithelial basement membrane, is synthesized and secreted by alveolar epithelial cells. To study the effects of TGFβ on modulation of laminin and its integrin receptors α6β1 and α3β1 in lung alveolar epithelial cells, a rat alveolar type II cell-derived cell line, LM5, was incubated with TGFβ1 (0-100 pg/ml) in serum-free medium for 0-16 h. We examined the expression of integrin subunits and laminin β2 chain (s-laminin) mRNAs and protein expression. By Northern blot analysis, TGFβ1 induced dose-dependent increases in α6 and β1 mRNA levels. TGFβ1 also increased the expression of laminin β2 chain mRNA at 12-16 h poststimulation. In contrast, TGFβ decreased α3 mRNA expression. Immunoprecipitation studies of TGFβ1-treated cells showed increased surface expression of both α6 and β1 protein while surface expression of the α3 integrin subunit was decreased. The same treatment resulted in increased laminin protein expression. These data suggest that TGFβ1 may regulate alveolar epithelial cell differentiation in part through its modulation of integrins and laminin chains.  相似文献   

8.
Laminins, a family of heterotrimeric proteins with cell adhesive/signaling properties, are characteristic components of basement membranes of vasculature and tissues. In the present study, permeabilized platelets were found to react with a monoclonal antibody to laminin γ1 chain by immunofluorescence. In Western blot analysis of platelet lysates, several monoclonal antibodies to γ1 and β1 laminin chains recognized 220- to 230-kDa polypeptides, under reducing conditions, and a structure with much slower electrophoretic mobility under nonreducing conditions. Immunoaffinity purification on a laminin β1 antibody–Sepharose column yielded polypeptides of 230, 220, 200, and 180 kDa from platelet lysates. In the purified material, mAbs to β1 and γ1 reacted with the two larger polypeptides, while affinity-purified rabbit antibodies to laminin α4 chain recognized the smallest polypeptide. Identity of the polypeptides was confirmed by microsequencing. One million platelets contained on average 1 ng of laminin (approximately 700 molecules per cell), of which 20–35% was secreted within minutes after stimulation with either thrombin or phorbol ester. Platelets adhered to plastic surfaces coated with the purified platelet laminin, and this process was largely inhibited by antibodies to β1 and α6 integrin chains. We conclude that platelets contain and, following activation, secrete laminin-8 (α4β1γ1) and that the cells adhere to the protein by using α6β1 integrin.  相似文献   

9.
During tissue morphogenesis and tumor invasion, epithelial cells must undergo intercellular rearrangement in which cells are repositioned with respect to one another and the surrounding mesenchymal extracellular matrix. Using three-dimensional aggregates of squamous epithelial cells, we show that such intercellular rearrangements can be triggered by activation of β1 integrins after their ligation with extracellular matrices. On nonadherent substrates, multicellular aggregates (MCAs) formed rapidly via E-cadherin junctional complexes and over time became compacted spheroids exhibiting a more epithelial phenotype. After MCAs were replated on culture substrates, the spheroids collapsed to yield tightly arranged cell monolayers. Cell–cell contact induced rapid elevation in E-cadherin levels, which was due to an increase in the metabolic stability of junctional receptors. During MCA remodeling of cell–cell adhesions, and monolayer formation, their E-cadherin levels fell rapidly. Similar behavior was obtained regardless of which ECM ligand—collagen type I, fibronectin, or laminin 1—MCAs were seeded on. In contrast, when seeded onto a matrix elaborated by squamous epithelial cells, cells in the MCA attached, spread, lost cell–cell junctions, and dispersed. Analysis identified laminin 5 as the active ECM ligand in this matrix, and MCA dispersion required functional β1 integrin and specifically α3β1. Furthermore, substrate-immobilized anti-integrin antibody effectively reproduced the epithelial–mesenchymal-like transition induced by the laminin 5 matrix. During the early stages of aggregate rearrangement and collapse, cells on laminin 5 substrates, but not those on collagen I substrates, exhibited intense cortical arrays of F-actin, microspikes, and fascin accumulation at their peripheral surfaces. These results suggest that engagement of specific integrin–ligand pairs regulates cadherin junctional adhesions during events common to epithelial morphogenesis and tumor invasion.  相似文献   

10.
11.
We have previously found that the mRNA and protein levels of the folate receptor alpha (FRα) are uniquely over-expressed in clinically human nonfunctional (NF) pituitary adenomas, but the mechanistic role of FRα has not fully been determined. We investigated the effect of FRα over-expression in the mouse gonadotroph αT3-1 cell line as a model for NF pituitary adenomas. We found that the expression and function of FRα were strongly up-regulated, by Western blotting and folic acid binding assay. Furthermore, we found a higher cell growth rate, an enhanced percentage of cells in S-phase by BrdU assay, and a higher PCNA staining. These observations indicate that over-expression of FRα promotes cell proliferation. These effects were abrogated in the same αT3-1 cells when transfected with a mutant FRα cDNA that confers a dominant-negative phenotype by inhibiting folic acid binding. Finally, by real-time quantitative PCR, we found that mRNA expression of NOTCH3 was up-regulated in FRα over-expressing cells. In summary, our data suggests that FRα regulates pituitary tumor cell proliferation and mechanistically may involve the NOTCH pathway. Potentially, this finding could be exploited to develop new, innovative molecular targeted treatment for human NF pituitary adenomas.  相似文献   

12.
The integrin α4β1 is involved in mediating exfiltration of leukocytes from the vasculature. It interacts with a number of proteins up-regulated during the inflammatory response including VCAM-1 and the CS-1 alternatively spliced region of fibronectin. In addition it binds the multifunctional protein osteopontin (OPN), which can act as both a cytokine and an extracellular matrix molecule. Here we map the region of human OPN that supports cell adhesion via α4β1 using GST fusion proteins. We show that α4β1 expressed in J6 cells interacts with intact OPN when the integrin is in a high activation state, and by deletion mapping that the α4β1 binding region in OPN lies between amino acid residues 125 and 168 (aa125–168). This region contains the central RGD motif of OPN, which also interacts with integrins αvβ3, αvβ5, αvβ1, α8β1, and α5β1. Mutating the RGD motif to RAD had no effect on the interaction with α4β1. To define the binding site the region incorporating aa125–168 was divided into 5 overlapping peptides expressed as GST fusion proteins. Two peptides supported adhesion via α4β1, aa132–146, and aa153–168; of these only a synthetic peptide, SVVYGLR (aa162–168), derived from aa153–168 was able to inhibit α4β1 binding to CS-1. These data identify the motif SVVYGLR as a novel peptide inhibitor of α4β1, and the primary α4β1 binding site within OPN.  相似文献   

13.
Integrins can exist in different functional states with low or high binding capacity for particular ligands. We previously provided evidence that the integrin α6β1, on mouse eggs and on α6-transfected cells, interacted with the disintegrin domain of the sperm surface protein ADAM 2 (fertilin β). In the present study we tested the hypothesis that different states of α6β1 interact with fertilin and laminin, an extracellular matrix ligand for α6β1. Using α6-transfected cells we found that treatments (e.g., with phorbol myristate acetate or MnCl2) that increased adhesion to laminin inhibited sperm binding. Conversely, treatments that inhibited laminin adhesion increased sperm binding. Next, we compared the ability of fluorescent beads coated with either fertilin β or with the laminin E8 fragment to bind to eggs. In Ca2+-containing media, fertilin β beads bound to eggs via an interaction mediated by the disintegrin loop of fertilin β and by the α6 integrin subunit. In Ca2+-containing media, laminin E8 beads did not bind to eggs. Treatment of eggs with phorbol myristate acetate or with the actin disrupting agent, latrunculin A, inhibited fertilin bead binding, but did not induce laminin E8 bead binding. Treatment of eggs with Mn2+ dramatically increased laminin E8 bead binding, and inhibited fertilin bead binding. Our results provide the first evidence that different states of an integrin (α6β1) can interact with an extracellular matrix ligand (laminin) or a membrane-anchored cell surface ligand (ADAM 2).  相似文献   

14.
The expression of laminin isoforms and laminin-binding integrin receptors known to occur in muscle was investigated during myogenic regeneration after crush injury. Comparisons were made between dystrophic 129ReJ dy/dy mice, which have reduced laminin α2 expression, and their normal littermates. The overall histological pattern of regeneration after crush injury was similar in dy/dy and control muscle, but proceeded faster in dy/dy mice. In vitro studies revealed a greater yield of mononuclear cells extracted from dy/dy muscle and a reduced proportion of desmin-positive cells upon in vitro cultivation, reflecting the presence of inflammatory cells and “preactivated” myoblasts due to ongoing regenerative processes within the endogenous dystrophic lesions. Laminin α1 was not detectable in skeletal muscle. Laminin α2 was present in basement membranes of mature myofibers and newly formed myotubes in control and dy/dy muscles, albeit weaker in dy/dy. Laminin α2-negative myogenic cells were detected in dy/dy and control muscle, suggesting the involvement of other laminin α chains in early myogenic differentiation, such as laminin α4 and α5 which were both transiently expressed in basement membranes of newly formed myotubes of dy/dy and control mice. Integrin β1 was expressed on endothelial cells, muscle fibers, and peripheral nerves in uninjured muscle and broadened after crush injury to the interstitium where it occurred on myogenic and nonmyogenic cells. Integrin α3 was not expressed in uninjured or regenerating muscle, while integrin α6 was expressed mainly on endothelial cells and peripheral nerves in uninjured muscle. Upon crush injury integrin α6 increased in the interstitium mainly on nonmyogenic cells, including infiltrating leukocytes, endothelial cells, and fibroblasts. In dy/dy muscle, integrin α6 occurred on some newly formed myotubes. Integrin α7 was expressed on muscle fibers at the myotendinous junction and showed weak and irregular expression on muscle fibers. After crush injury, integrin α7 expression extended to the newly formed myotubes and some myoblasts. However, many myoblasts and newly formed myotubes were integrin α7 negative. No marked difference was observed in integrin α7 expression between dy/dy and control muscle, either uninjured or after crush injury. Only laminin α4 and integrin α6 expression patterns were notably different between dy/dy and control muscle. Expression of both molecules was more extensive in dy/dy muscle, especially in the interstitium of regenerating areas and on newly formed myotubes. In view of the faster myogenic regeneration observed in dy/dy mice, the data suggest that laminin α4 and integrin α6 support myogenic regeneration. However, whether these accelerated myogenic effects are a direct consequence of the reduced laminin α2 expression in dy/dy mice, or an accentuation of the ongoing regenerative events in focal lesions in the muscle, requires further investigation.  相似文献   

15.
Laminins, the main components of basement membranes, are heterotrimers consisting of α, β, and γ polypeptide chains linked together by disulfide bonds. Laminins-1 and -2 are both composed of β1 and γ1 chains and differ from each other on their α chain, which is α1 and α2 for laminin-1 and -2, respectively. The present study shows that whereas laminins-1 and -2 are synthesized in the mouse developing lung and in epithelial–mesenchymal cocultures derived from it, epithelial and mesenchymal monocultures lose their ability to synthesize the laminin α1 chain. Synthesis of laminin α1 chain however returns upon re-establishment of epithelial–mesenchymal contact. Cell–cell contact is critical, since laminin α1 chain is not detected in monocultures exposed to coculture-conditioned medium or in epithelial–mesenchymal cocultures in which heterotypic cell–cell contact is prevented by an interposing filter. Immunohistochemical studies on cocultures treated with brefeldin A, an inhibitor of protein secretion, indicated both epithelial and mesenchymal cells synthesize laminin α1 chain upon heterotypic cell– cell contact. In a set of functional studies, embryonic lung explants were cultured in the presence of monoclonal antibodies to laminin α1, α2, and β/γ chains. Lung explants exposed to monoclonal antibodies to laminin α1 chain exhibited alterations in peribronchial cell shape and decreased smooth muscle development, as indicated by low levels of smooth muscle α actin and desmin. Taken together, our studies suggest that laminin α1 chain synthesis is regulated by epithelial–mesenchymal interaction and may play a role in airway smooth muscle development.  相似文献   

16.
17.
Laminin trimers composed of α, β, and γ chains are major components of basal laminae (BLs) throughout the body. To date, three α chains (α1–3) have been shown to assemble into at least seven heterotrimers (called laminins 1–7). Genes encoding two additional α chains (α4 and α5) have been cloned, but little is known about their expression, and their protein products have not been identified. Here we generated antisera to recombinant α4 and α5 and used them to identify authentic proteins in tissue extracts. Immunoprecipitation and immunoblotting showed that α4 and α5 assemble into four novel laminin heterotrimers (laminins 8–11: α4β1γ1, α4β2γ1, α5β1γ1, and α5β2γ1, respectively). Using a panel of nucleotide and antibody probes, we surveyed the expression of α1-5 in murine tissues. All five chains were expressed in both embryos and adults, but each was distributed in a distinct pattern at both RNA and protein levels. Overall, α4 and α5 exhibited the broadest patterns of expression, while expression of α1 was the most restricted. Immunohistochemical analysis of kidney, lung, and heart showed that the α chains were confined to extracellular matrix and, with few exceptions, to BLs. All developing and adult BLs examined contained at least one α chain, all α chains were present in multiple BLs, and some BLs contained two or three α chains. Detailed analysis of developing kidney revealed that some individual BLs, including those of the tubule and glomerulus, changed in laminin chain composition as they matured, expressing up to three different α chains and two different β chains in an elaborate and dynamic progression. Interspecific backcross mapping of the five α chain genes revealed that they are distributed on four mouse chromosomes. Finally, we identified a novel full-length α3 isoform encoded by the Lama3 gene, which was previously believed to encode only truncated chains. Together, these results reveal remarkable diversity in BL composition and complexity in BL development.  相似文献   

18.
Ligand affinity chromatography was used to identify receptors on platelets and two adherent cell lines, OVCAR-4 and HBL-100, for the E8 fragment of murine laminin. A complex of two polypeptides (140 and 110 kDa nonreduced) was bound by the E8 affinity columns from all three cell types and was eluted with EDTA. This heterodimeric complex was identified as the α6β1 integrin by immunoprecipitation with specific antibodies against either the α6 or the β1 subunit. The α6β1 integrin did not bind to an affinity column containing fragment P1 originating from a different part of murine laminin which, however, bound the αIIbβ3 integrin from platelets. Furthermore, in immunofluorescence staining, the α6β1 integrin localizes in focal contacts of OVCAR-4 cells attached to laminin and E8 but not to fibronectin substrates. These results, combined with previous antibody inhibition studies, unequivocally identify the α6β1 integrin as a specific receptor for fragment E8. Affinity chromatography of OVCAR-4 and HBL-100 cells on a large pepsin fragment of laminin from human placenta yielded integrin α3β1. When α3β1 was removed from lysates of OVCAR-4 cells by preclearing with an α3-specific monoclonal antibody, α6β1 was able to bind to human laminin as well. Integrin α6β1 on platelets which do not express α3β1 binds directly to human laminin. These results indicate that both α3β1 and α6β1 can act as receptors for human laminin and may interfere by steric hindrance. The α6β4 complex, which is strongly expressed on HBL-100 cells, did not bind to either mouse laminin fragment E8 or human laminin affinity columns.  相似文献   

19.
Functions of small GTPases in integrin expression were investigated when the interaction of nonadherent human colon carcinoma 201 cells with the extracellular matrix (ECM) was examined. By transfection of the constitutively active form of a small GTPase Rac1, Rac V12, adhesion of cells to the ECM increased with concomitant cell spreading and formation of membrane ruffles. Activated Cdc42 and Cdc42 V12, but not wild-type Rac1, Cdc42, or RhoA, also induced the adhesion and spreading of Colo201 cells. This adhesion is integrin β4 dependent since an antibody for integrin β4 inhibited the RacV12-dependent cell adhesion and numbers of adhesive cells on laminin-coated plates exceeded those on collagen- and fibronectin-coated plates. By immunofluorescence, in addition to clustering of integrin molecules, expression of integrin α6β4 on the cell surface of Rac V12- and Cdc42 V12-expressing cells was selectively up-regulated without an increase in biosynthesis of α6β4 integrin. Treatment of Rac V12-expressing cells with wortmannin or LY294002, specific inhibitors of phosphoinositide 3-OH kinase, decreased the up-regulated α6β4 and cell adhesion. In light of this evidence, we propose that the regulation of integrin α6β4 expression induced by Rac1 and Cdc42 may play an important role in cell adhesion and tumorigenesis of colon carcinoma cells.  相似文献   

20.
The human bladder carcinoma cell lines RT4 and T24 and the human breast adenocarcinoma cell line MCF-7 were found to be negative for vimentin when studied by means of immunofluorescence and immunoblotting. Northern blot analysis revealed that these cells lacked detectable levels of vimentin mRNA with the exception of T24, which contains trace amounts of vimentin mRNA compared to the RNA level in vimentin-containing HeLa cells. CAT assays performed on these cells showed that a hamster vimentin promoter is inactive in RT4 and MCF-7 cells. In the vimentin-lacking cells, the binding of polyribosomes, specific mRNAs, and translation factor eIF-2α to the cytoskeletal fraction was examined. Our results indicate that the presence of a vimentin network is not crucial for the association of the translation machinery with the cytoskeleton. Furthermore, in these vimentin-negative cell lines the immunofluorescence staining pattern of eIF-2α shows a fibro-granular structure that has no resemblance to the cytokeratin or actin cytoskeleton present in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号