首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent prospects on trans-Saharan migration of songbirds   总被引:3,自引:0,他引:3  
FRANZ BAIRLEIN 《Ibis》1992,134(S1):41-46
Many palaearctic migrants in tropical Africa have to cross the inhospitable land of the Sahara desert. Moreau (1961, 1972) hypothesized that these migrants crossed the Sahara in a single non-stop flight. Recent field data, however, revealed that some migrants stop-over in suitable desert habitats. The majority of grounded migrants showed a high body-mass and fat-loading, indicating sufficient reserves for onward flights. Further evidence on resting periods, retrapping rates and experiments with caged migrants supports the hypothesis of an intermittent migratory strategy, with regular stopovers during the day and flight at night, for some desert-crossing passerines.  相似文献   

2.
IDO IZHAKI  ASAF MAITAV 《Ibis》1998,140(2):223-233
Migrating Blackcaps Sylvia atricapilla were mist netted at the desert edge in northern Israel and in Elat (southern Israel) during spring and autumn migrations between 1970 and 1991. Birds in spring in northern Israel were representative of birds that had completed the crossing of the Sahara, while those in Elat still had to cross the 150 km of the Negev Desert, which separates Elat and northern Israel. In autumn, birds captured in northern Israel were representative of those about to cross the Sahara Desert, while those in Elat had already started to cross the desert. The data allowed analysis of seasonal and location differences in the physiological state of Blackcaps before and after crossing the Sahara. Data analysed included body mass, visible fat score and calculated fat content. Autumn migrants were in better physiological condition than spring migrants at both locations, probably as a consequence of their migration route through fertile areas in autumn compared with the crossing of the Sahara in spring. Body mass was less variable after the Sahara crossing in spring than before the crossing in autumn. In spring, 71% and 67% of the birds were fat depleted (fat scores 0 and 1) at Elat and in northern Israel, respectively, while in autumn 34% and 42% were fat depleted. Blackcaps at Elat were 1.6 g lighter than those in northern Israel in autumn and 1.9 g lighter in spring. Potential flight ranges were estimated on the basis of meteorological conditions and flight altitude of passerines above the Negev in Israel (northern Sahara edge) during migration and on a simulation model that considered both energy and water as potential limiting factors for flight duration and distance. The simulation model predicted that half of the Blackcaps that stopped over in Elat and the majority of those that stopped over in northern Israel could not make a nonstop flight over the Sahara Desert in autumn without the assistance of at least an 8 m per s tailwind. Such a wind would still not be sufficient for 34% of the birds in Elat and 42% in northern Israel, and clearly they had insufficient fat reserves to cross the Sahara in a single flight. Although the fattest Blackcaps had accumulated sufficient fat to enable them to traverse the Sahara in a single flight, they probably faced dehydration by at least 12% of their initial body mass when they reached the southern Sahara edge. These birds should use intermittent migration with stopovers at sites with drinking and feeding potential. Their decision to stop over during the day in the desert at sites with shade but without food and water would be beneficial if the meteorological conditions during daytime migration imposed greater risks of dehydration than at night. Spring migrants could not reach their breeding areas in Europe without feeding, but those examined in Elat could cross the remainder of the desert in a single flight.  相似文献   

3.
Radar observations of the diurnal timing of bird migration in the Sahara Desert are presented for autumn migration. Study sites were on a transect along the north-south migratory direction. Three groups of birds migrating either during day, evening or night in the northern part of the Western desert in Egypt were identified. The maximum of day and night groups occurred later the further south the study sites were. Based on the distance between sites and the timing of peak migration, birds were flying at an estimated ground speed of about 20 m/s. The maximum of the evening group was at about 21:00 h at all sites. The three groups were classified according to three different strategies of migration across the Mediterranean Sea and the Sahara Desert: (1) the day group of birds performed a non-stop flight across the sea and at least the northern part of the desert; [2] the night group performed an intermittent migratory strategy with stopover at the coast of Egypt to continue migration the next evening; (3) the evening group birds were also intermittent migratory fliers, but they stopped somewhere in the desert after a continuous flight across the sea and part of the desert. About 20% of all migrants are involved in non-stop migration and 80% in intermittent migration with stopover at the coast (70%) or with stopover in the desert (10%). It is argued that any species of small passerine has the option to use any of the three strategies.  相似文献   

4.
Birds on migration spend much more time on stopover sites to refuel for the next migration step than aloft, but empirical data on stopover duration are rare, especially for Palearctic trans-Sahara migrants whilst crossing the desert. Previous studies suggest that stopover duration of fat birds in oases is much shorter than that of lean birds. During 2003 and 2004 capture–recapture data of migrating passerines from two inland oases in spring and from one coastal site in autumn in Mauritania, West Africa, were analysed to test whether the probability of being a transient and the stopover duration depend on fuel stores at first capture. The application of capture–recapture models revealed that during autumn migration at the coast the proportion of transients (individuals that stop over only for 1 day) was relatively high (77–90%) in three out of four species investigated and stopover duration was short (1.9–4.6 days). In the inland oases in spring, transients were detected in only four out of 12 analyses. Stopover duration was longer than at the coast in autumn and surprisingly long in some species with durations of up to 30 days. Models taking into account the initial fat load of birds on the first capture occasion were, with one exception, never the most parsimonious ones. This indicates that the time spent after and before capture at the stopover site did not depend on the fat stores at first capture. Therefore, we cannot confirm the assumption that birds arriving at stopover sites in the desert with low fat loads stay longer than birds that arrive with high fat loads.  相似文献   

5.
The daily pattern of autumn bird migration in the northern Sahara   总被引:2,自引:0,他引:2  
The temporal pattern of migration by passerine birds during the night, and their arrival during the day at the Egyptian coast and in the northern Sahara Desert was investigated. The mean direction of nocturnal migration at the coast was south-southeast, while at all desert sites it was south-southwest.
Birds arrived at the Egyptian coast only during the second half of the night which is explained by the fact that no birds could have taken off from the Mediterranean Sea. At least some of the birds landed at the coast where they spent the day before taking off shortly after sunset. These birds passed the desert sites at the expected time of day assuming a ground speed of 18 m per second. However, the origin of the birds passing the desert sites early at night is unclear. They must either have spent the day in the desert north of the study sites or they had overflown the Egyptian coast in the afternoon without landing.
The landing of birds during the day at the desert sites was bimodal. This pattern of arrival is explained either by some birds having landed at the Egyptian coast in the early morning before continuing, or by deteriorating conditions later in the day during flight or when resting in the desert, that obliged them to seek shelter at the desert sites.
A correlation between the number of migrants observed during the night and the number of resting birds in the desert on the following day suggests that an unknown proportion of birds might regularly use an intermittent migratory strategy that includes rest periods by day when crossing the desert, whereas others might adapt a non-stop migratory strategy.  相似文献   

6.
Large numbers of passerine migrants cross the Sahara desert every year on their way to-and-from wintering areas in tropical Africa. In the desert, hardly any fuelling opportunities exist and most migrants have to prepare in advance. A central question is how inexperienced birds know where to fuel. Inexperienced garden warblers Sylvia borin were studied in Greece just before the desert crossing in autumn. Body mass data collected at two sites indicate that most birds do not fuel for the desert crossing further north. For the first time, detailed information about stopover duration close to the Sahara desert was studied by using light weight radio-transmitters. Results from Crete show that most first-year garden warblers arrive with relatively small fuel loads in relation to lean body mass (<30%), stay for 13–20 d and depart with an average fuel load of about 100%. Radio-tagged birds performed small scale movements initially and took advantage of fig fruits. Birds trapped at fig trees were heavier than birds trapped with tape lures, showing that tape lures can bias the sample of migrants trapped. The precise fuelling pattern found indicates that first-year migrants must also include external spatial cues to make the preparation for crossing the desert in the right area.  相似文献   

7.
By using morphometric data and geolocator tracking we investigated fuel loads and spatio‐temporal patterns of migration and non‐breeding in Temminck's stints Calidris temminckii. Body masses in stints captured at autumn stopover sites from Scandinavia to northern Africa were generally not much higher than during breeding and did not vary geographically. Thus, we expected migrating stints to make several stopovers and either circumventing the Sahara desert with low fuel loads or fuelling at north African stopover sites before desert crossing. Geolocation revealed that birds (n = 6) departed their Norwegian breeding site in the last part of July and all but one migrated south‐west over continental western Europe. A single bird headed south‐east to the Balkan Peninsula where the geolocator died. As predicted, southbound migration proceeded in a typical skipping manner with 1–4 relatively short stopovers (median 4 d) during 10–27 d of migration before reaching north‐west Africa. Here birds spent 11–20 d before crossing the Sahara. The non‐breeding sites were located at or near the Niger River in Mali and were occupied continuously for more than 215 d with no indications of itinerancy. Spring migration commenced in late April/early May when birds crossed the desert and used stopover sites in the western Mediterranean basin in a similar manner as during autumn. The lowest body masses were recorded in spring at islands in the central Mediterranean basin, indicating that crossing the Sahara and Mediterranean barriers is exhausting to these birds. Hence, the skipping‐type pattern of migration revealed by geolocators is likely to be natural in this species and not an effect of instrumentation.  相似文献   

8.
Radar observations on the altitude of bird migration and altitudinal profiles of meteorological conditions over the Sahara desert are presented for the autumn migratory period. Migratory birds fly at an average altitude of 1016 m (a.s.l.) during the day and 571 m during the night. Weather data served to calculate flight range using two models: an energy model (EM) and an energy-and-water model (EWM). The EM assumes that fuel supply limits flight range whereas the EWM assumes that both fuel and water may limit flight range. Flight ranges estimated with the EM were generally longer than those with the EWM. This indicates that trans-Sahara migrants might have more problems balancing their water than their energy budget. However, if we assume fuel stores to consist of 70% instead of 100% fat (the remainder consisting of 9% protein and 21% water), predicted flight ranges of the EM and EWM largely overlap. Increased oxygen extraction, reduced flight costs, reduced exhaled air temperature, reduced cutaneous water loss and increased tolerance to water loss are potential physiological adaptations that would improve the water budget in migrants. Both the EM and EWM predict optimal flight altitudes in agreement with radar observations in autumn. Optimal flight altitudes are differently predicted by the EM and EWM for nocturnal spring migration. During spring, the EWM predicts moderately higher and the EM substantially higher flight altitudes than during autumn. EWM predictions are therefore in better agreement with radar observations on flight altitude of migrants over the Negev desert in spring than EM predictions.  相似文献   

9.
The Sahara desert acts as an ecological barrier for billions of passerine birds on their way to and from their African wintering areas. The Garden Warbler Sylvia borin is one of the most common migrants involved. We used body mass of this species from Greece in autumn and spring to simulate the desert crossing and to assess how body mass relates to fuel requirement. The flight range estimates were adjusted to the seasonal extent of the desert, 2200 km in autumn and about 2800 km in spring. In autumn, with an average fuel load of about 100% of body mass without fuel, birds were not able to cross the desert in still air, but northerly winds prevail during September and with the average wind assistance only one in 14 was predicted to fail to make the crossing. Body mass data from spring, after the desert crossing, was used to estimate departure body mass from south of the desert. The average wind assistance in spring is close to zero and departure body mass of the average bird arriving at Antikythira, a small Greek island, under such conditions was estimated to be 34.6 g, which corresponded to a fuel load of 116%. Calculations based on 1% body mass loss per hour of flight showed slightly larger body mass loss than that calculated from flight range estimates. The results suggest that passerine birds about to cross the eastern part of the Sahara desert need to attain a larger fuel load in spring than in autumn.  相似文献   

10.
Many European songbirds winter in Africa south of the Sahara.Along their migratory routes they must fly over the huge desert belt of the Sahara twice a year. For decades ornithologists have assumed that most migrants cross this 'ecological barrier' in one long non-stop flight of thousands of kilometres. Results of recent research, however, suggest that many of the songbirds that migrate across the Sahara follow an intermittent migratory strategy with regular stopovers in the desert.  相似文献   

11.
In the Palaearctic-African migration system, birds face several trade-offs on their first autumn migration. The shortest route, minimising travelling time, would lead them directly south across the Mediterranean Sea and the Sahara Desert, involving long stretches of no refuelling possibilities. This route is risky because of flight range constraints. Besides taking longer, a detour along the Iberian peninsula may require a more complex orientation mechanism. We simulated migrants with stopover and orientation behaviour and investigated the effect of flight costs and behavioural rules (e.g. crossing or flying along coast lines, a shift in migratory direction) on the resulting flight path and especially on the evolution of endogenous directions. The simulation of autumn migration from southern Scandinavia to south of the Sahara showed that it would be possible to reach the winter quarters by vector summation with a constant endogenous direction, but then either orientation must be very accurate or flight costs must be small. For small passerines both requirements are so far not corroborated by empirical studies. Alternatively, flying along coast lines or shifting direction in northern Africa from south-westerly to southerly, resulted in similar survival rates as with a constant south-westerly endogenous direction, but with a larger range of feasible values. Although weather factors were not included, our results suggest that the Mediterranean Sea and the Sahara desert had a dominating influence on the evolution of endogenous directions. This influence is probably acting through flight range constraints.  相似文献   

12.
Bird migration requires high energy expenditure, and long-distance migrants accumulate fat for use as fuel during stopovers throughout their journey. Recent studies have shown that long-distance migratory birds, besides accumulating fat for use as fuel, also show adaptive phenotypic flexibility in several organs during migration. The migratory routes of many songbirds include stretches of sea and desert where fuelling is not possible. Large fuel loads increase flight costs and predation risk, therefore extensive fuelling should occur only immediately prior to crossing inhospitable zones. However, despite their crucial importance for the survival of migratory birds, both strategic refuelling decisions and variation in phenotypic flexibility during migration are not well understood. First-year thrush nightingales (Luscinia luscinia) caught in the early phase of the onset of autumn migration in southeast Sweden and exposed to a magnetic treatment simulating a migratory flight to northern Egypt increased more in fuel load than control birds. By contrast, birds trapped during the late phase of the onset of autumn migration accumulated a high fuel load irrespective of magnetic treatment. Furthermore, early birds increased less in flight-muscle size than birds trapped later in autumn. We suggest that the relative importance of endogenous and environmental factors in individual birds is affected by the time of season and by geographical area. When approaching a barrier, environmental cues may act irrespective of the endogenous time programme.  相似文献   

13.
Flight-range estimates for small trans-Sahara migrants   总被引:1,自引:0,他引:1  
HERBERT BIEBACH 《Ibis》1992,134(S1):47-54
Arguments in support of the non-stop and the intermittent strategies for crossing the Sahara have been based on data on the fat reserves of birds before the crossing and of birds grounded in the desert. In this paper, flight-range estimates were calculated and the necessary assumptions about air speed, energy input during flight, and energy equivalent of body reserves were evaluated. As examples, Willow Warblers Phylloscopus trochilus and Garden Warblers Sylvia borin were investigated during autumn migration from two study sites north of the Sahara and two study sites in the desert. In still air, the flight-range for both species at all study sites was too short to reach the Sahel zone without refuelling. It is concluded that birds depend on tailwinds for a successful crossing, independent of a non-stop or an intermittent migratory strategy, and that weather conditions in autumn allow them to rely on tailwinds.  相似文献   

14.
R. E. Moreau 《Ibis》1967,109(2):232-259
An investigation is made of the extent to which Palaearctic birds belonging to typically water-bird families occur south of the Sahara in areas remote from both the sea and the Nile, namely, Darfur, Northern Nigeria and the Inundation Zone of the Niger, and hence may be presumed to cross the Sahara. Fifty-seven species fall to be considered and for these occurrences within the Sahara are also collated. The results owe a great deal to work done in the last few years, especially ringing. Most of the 57 species dealt with occur regularly in appreciable numbers in one or more of the areas under consideration and some of the species are enormously common. In general there is evidence to show that many birds winter in Africa far to the west of their Palaearctic breeding grounds, from which much diagonal passage of the Sahara is to be inferred. The results are considered in relation to the ecological conditions on the northern and southern edges of the desert and in relation to the meteorological conditions over it. A remarkable circumstance is that few water-birds indeed of any species have been observed in the oases of the Sahara, so that their crossing of the desert is clearly very efficient, although so much of it is by lengthy diagonal and although many birds entering Africa in the middle longitudes meet with no suitable habitat between Europe and the tropics. Except perhaps for storks, which soar, and certainly for herons, which proceed by heavy flapping, the air speed of water-birds is much greater than that of the small passerine migrants, the necessary potentiality of which has been calculated as 50–60 hours of flight without refuelling; but too little is known of the aerodynamics and physiology involved for it to be calculated whether water-birds need to start with the comparable accumulations of fat and no definite information exists except for the Wood Sandpiper, which has been shown to put on up to 32% of fat. By comparison with passerines, more individual water-bird species winter partly north and partly south of the Sahara; the factors affecting each bird's behaviour in this respect are unknown.  相似文献   

15.
In order to succeed in crossing extensive ecological barriers, migratory birds usually deposit fuel en route. High rates of fuel deposition may enable birds to shorten their total migration time and are therefore advantageous for time-minimizing migrants. Several studies have suggested that water provision may increase food utilization in non-migratory birds. The goal of this study was to test the influence of water availability on the fuel deposition of en route migratory passerines. We studied fuel deposition of blackcaps Sylvia atricapilla and lesser whitethroats S. curruca staging in a plantation of Mount Atlas gum-tree Pistacia atlantica in the northern Negev desert, Israel, during the autumns of 2000 and 2002. We manipulated water availability at the site and measured the effect of water supplementation on fuel deposition of birds of both species. We found that when water was available, blackcaps had higher fuel loads and higher fuel deposition rates than during control trials. However, water availability had no effect on fuel deposition of lesser whitethroats. Species-specific differences in adaptations to arid conditions, reflected in the species' winter habitat preferences, may be responsible for the between-species dissimilarity in responding to water provision. We suggest that water availability may have strong ecological and evolutionary consequences for birds migrating through arid environments, by its possible effect on bird behavior and physiology.  相似文献   

16.
Afro‐Palaearctic migrants are declining to a greater degree than other European species, suggesting that processes occurring in Africa or on migration may be driving these trends. Constraints on food availability on the wintering grounds may contribute to these declines but little is known about when and where these resource constraints may occur. Sufficient resources are particularly important prior to spring migration, when migrants must cross the Sahara Desert. We examined mass gain and departure phenology in a long‐distance Palaearctic passerine migrant to determine the degree to which pre‐migratory fattening occurs in their long‐term non‐breeding territories in the Guinea Savannah region of Africa. We monitored 75 Whinchats Saxicola rubetra for departure from their non‐breeding territories in one spring, and analysed mass data of 377 Whinchats collected over three non‐breeding seasons plus 141 migrating Whinchats caught in April over 8 years, all within the same few square kilometres of human‐modified Guinea Savannah in central Nigeria. Whinchats left their winter territories throughout April, with males departing on average 8 days earlier than females. However, there was no evidence that time of departure from territory was linked to age, body size or mass at capture. Whinchats departed their territories with a predicted mass of 16.8 ± 0.3 g, considerably less than the c. 24 g required for the average Whinchat to cross the Sahara directly. Comparing departure dates with arrival dates in southern Europe showed a discrepancy of at least 2 weeks, suggesting that many Whinchats spend considerable time on pre‐migratory fuelling outside their winter territory prior to crossing the Sahara. Overwintering birds gained mass slowly during February and March (0.03 g/day), and non‐territorial or migrating birds at a much higher rate in April (at least 0.23 g/day), with up to 20% of migrating Whinchats in April potentially having sufficient fuel loads to cross the Sahara directly from central Nigeria. Our results suggest that most Whinchats leave their winter territories to fatten up locally or, possibly, by staging further north, closer to the southern limit of the Sahara. Resource constraints are therefore likely to be particularly focused in West Africa during mid‐April and possibly at staging areas before the crossing of the Sahara Desert.  相似文献   

17.
Most studies of lean mass dynamics in free-living passerine birds have focused on Old World species at geographical barriers where they are challenged to make the longest non-stop flight of their migration. We examined lean mass variation in New World passerines in an area where the distribution of stopover habitat does not require flights to exceed more than a few hours and most migrants stop flying well before fat stores near exhaustion. We used either quantitative magnetic resonance (QMR) analysis or a morphometric model to measure or estimate, respectively, the fat and lean body mass of migrants during stopovers in New York, USA. With these data, we examined (1) variance in total body mass explained by lean body mass, (2) hourly rates of fat and lean body mass change in single-capture birds, and (3) net changes in fat and lean mass in recaptured birds. Lean mass contributed to 50% of the variation in total body mass among white-throated sparrows Zonotrichia albicollis and hermit thrushes Catharus guttatus. Lean mass of refueling gray catbirds Dumetella carolinensis and white-throated sparrows, respectively, increased 1.123 and 0.320 g h−1. Lean mass of ovenbirds Seiurus aurocapillus accounted for an estimated 33–40% of hourly gains in total body mass. On average 35% of the total mass gained among recaptured birds was lean mass. Substantial changes in passerine lean mass are not limited to times when birds are forced to make long, non-stop flights across barriers. Protein usage during migration is common across broad taxonomic groups, migration systems, and migration strategies.  相似文献   

18.
In order to succeed in crossing extensive ecological barriers, migratory birds usually deposit fuel en route. High rates of fuel deposition may enable birds to shorten their total migration time and are therefore advantageous for time‐minimizing migrants. Several studies have suggested that water provision may increase food utilization in non‐migratory birds. The goal of this study was to test the influence of water availability on the fuel deposition of en route migratory passerines. We studied fuel deposition of blackcaps Sylvia atricapilla and lesser whitethroats S. curruca staging in a plantation of Mount Atlas gum‐tree Pistacia atlantica in the northern Negev desert, Israel, during the autumns of 2000 and 2002. We manipulated water availability at the site and measured the effect of water supplementation on fuel deposition of birds of both species. We found that when water was available, blackcaps had higher fuel loads and higher fuel deposition rates than during control trials. However, water availability had no effect on fuel deposition of lesser whitethroats. Species‐specific differences in adaptations to arid conditions, reflected in the species’ winter habitat preferences, may be responsible for the between‐species dissimilarity in responding to water provision. We suggest that water availability may have strong ecological and evolutionary consequences for birds migrating through arid environments, by its possible effect on bird behavior and physiology.  相似文献   

19.
Migratory birds wintering in Africa face the challenge of passing the Sahara desert with few opportunities to forage. During spring migration birds thus arrive in the Mediterranean area with very low energy reserves after crossing the desert. Since early arrival to the breeding grounds often is of importance to maximize reproductive success, finding stopover sites with good refuelling possibilities after the Saharan passage is of utmost importance. Here we report on extensive fuelling in the great reed warbler Acrocephalus arundinaceus on the south coast of Crete in spring, the first land that they encounter after crossing the Sahara desert and the Mediterranean Sea in this area. Birds were studied at a river mouth and due to an exceptional high recapture rate (45 and 51% in two successive years), we were able to get information about stopover behaviour in 56 individual great reed warblers during two spring seasons. The large proportion of trapped great reed warbler compared to other species and the large number of recaptures suggest that great reed warblers actively choose this area for stopover. They stayed on average 3–4 d, increased on average about 3.5 g in body mass and the average rate of body mass increase was 4.8% of lean body mass d–1. Wing length affected the rate of increase and indicated that females have a slower increase than males. The results found show that great reed warblers at this site regularly deposit larger fuel loads than needed for one continued flight stage. The low body mass found in great reed warblers (also in birds with high fat scores) is a strong indication that birds staging at Anapodaris still had not been able to rebuild their structural tissue after the strenuous Sahara crossing, suggesting that rebuilding structural tissue may take longer time than previously thought.  相似文献   

20.
Billions of songbirds breeding in the Western Palaearctic cross the largest desert of the world, the Sahara, twice a year. While crossing Europe, the vast majority use an intermittent flight strategy, i.e. fly at night and rest or feed during the day. However, it was long assumed that they overcome the Sahara in a 40 h non-stop flight. In this study, we observed bird migration with radar in the plain sand desert of the Western Sahara (Mauritania) during autumn and spring migration and revealed a clear prevalence of intermittent migration. Massive departures of songbirds just after sunset independent of site and season suggests strongly that songbirds spent the day in the plain desert. Thus, most songbirds cross the Sahara predominantely by the intermittent flight strategy. Autumn migration took place mainly at low altitudes with high temperatures, its density decreased abruptly before sunrise, followed by very little daytime migration. Migration was highly restricted to night-time and matched perfectly the intermittent flight strategy. However, in spring, when migratory flights occurred at much higher altitudes than in autumn, in cool air, about 17% of the songbird migration occurred during the day. This suggests that flying in high temperatures and turbulent air, as is the case in autumn, may lead to an increase in water and/or energy loss and may prevent songbirds from prolonged flights into the day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号