首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the human thymus, AIRE (autoimmune regulator) gene is expressed in a very limited type of medullary thymic epithelial cells (mTECs) and no cognate cell lines are available, hence the molecular analysis of AIRE gene function has been difficult. To improve this situation, we attempted to isolate Aire-expressing cells and established three cell lines (Aire+TEC1, Aire+TEC2, Aire+DC) from the abnormally enlarged thymus, which was developed in the transgenic mice expressing SV40 T-antigen driven by the mouse Aire gene promoter. When these Aire+ cell lines were co-cultured with fresh thymocytes, they adhered to the majority of thymocytes and induced apoptosis as if negative selection of T-cells in the thymus is occurring in vitro. Further analysis revealed that these Aire+ cell lines are derived from mTECs and exhibit characteristic natures of “antigen presenting cells” including several distinct abilities: to express a variety of peripheral tissue-specific antigens, to produce immunoproteasome and immunological synapse, and to express some of TNFSFs (tumor necrosis factor super families). Thus, the newly established Aire+ cell lines will be invaluable for the further detailed analysis of AIRE gene function in the central tolerance of immunity and autoimmune disease.  相似文献   

3.
Chondrocyte differentiation is controlled by various regulators, such as Sox9 and Runx2, but the process is complex. To further understand the precise underlying molecular mechanisms of chondrocyte differentiation, we aimed to identify a novel regulatory factor of chondrocyte differentiation using gene expression profiles of micromass-cultured chondrocytes at different differentiation stages. From the results of microarray analysis, the autoimmune regulator, Aire, was identified as a novel regulator. Aire stable knockdown cells, and primary cultured chondrocytes obtained from Aire−/− mice, showed reduced mRNA expression levels of chondrocyte-related genes. Over-expression of Aire induced the early stages of chondrocyte differentiation by facilitating expression of Bmp2. A ChIP assay revealed that Aire was recruited on an Airebinding site (T box) in the Bmp2 promoter region in the early stages of chondrocyte differentiation and histone methylation was modified. These results suggest that Aire can facilitate early chondrocyte differentiation by expression of Bmp2 through altering the histone modification status of the promoter region of Bmp2.  相似文献   

4.
The autoimmune regulator gene Aire shows predominant expression in thymus and other immunologically relevant tissues, and is assigned the major function of programming autoreactive T-cell deletion. However, the expression of this gene in tissues outside the immune system raises a question about its possible function beyond the T-cell deletion dogma. We detected Aire in mouse testis, and the expression of AIRE protein was remarkably high in postmeiotic germ cells. Sequencing results indicate that testis expressed Aire variant 1a. AIRE could be detected in spermatozoa, with heavy localization on the principal acrosomal domains. Mouse oocytes stained negatively for AIRE before fertilization, but stained positively for AIRE 30?min after fertilization. In the zygote, the levels of AIRE correlated negatively with cyclin B2 levels. Goat testicular lysates spiked with recombinant human AIRE exhibited augmented cyclin B2 degradation in the presence of protease inhibitors, which was inhibited by MG-132, indicating the operation of proteasomal pathways. Thus, this study identifies a correlation between the presence of AIRE and proteasomal breakdown of cyclin B2, which leads us to speculate that cyclin B2 could be a target of AIRE's E3-ubiquitin ligase activity.  相似文献   

5.
The autoimmune regulator (AIRE) gene is a gene responsible for autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Here we show that AIRE is expressed in human peripheral CD4-positive T-cells, and most highly in antigen-and interleukin 2-stimulated T (IL-2T) cells. Mitogen-activated protein kinases (MAPKs), including MAPK kinase (MEK) 1/2 and p38 MAPK, were phosphorylated in IL-2T cells and the expression of the AIRE gene was inhibited by a specific p38 MAPK inhibitor (SB203580), thereby indicating that AIRE gene expression is controlled by the MAPK pathway in IL-2T cells. These data suggested the possible significance of the AIRE gene in the peripheral immune system.  相似文献   

6.
Although mutations of autoimmune regulator (AIRE) gene are responsible for autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), presenting a wide spectrum of many characteristic and non-characteristic clinical features, some patients lack AIRE gene mutations. Therefore, something other than a mutation, such as dysregulation of AIRE gene, may be a causal factor for APECED or its related diseases. However, regulatory mechanisms for AIRE gene expression and/or translation have still remained elusive. We found that IL-2-stimulated CD4+ T (IL-2T) cells showed a high expression of AIRE gene, but very low AIRE protein production, while Epstein–Barr virus-transformed B (EBV-B) cells express both AIRE gene and AIRE protein. By using microarray analysis, we could identify miR-220b as a possible regulatory mechanism for AIRE gene translation in IL-2T cells. Here we report that miR-220b significantly reduced the expression of AIRE protein in AIRE gene with 3′UTR region transfected 293T cells, whereas no alteration of AIRE protein production was observed in the open reading frame of AIRE gene alone transfected cells. In addition, anti-miR-220b reversed the inhibitory function of miR-220b for the expression of AIRE protein in AIRE gene with 3′UTR region transfected cells. Moreover, when AIRE gene transfected cells with mutated 3′UTR were transfected with miR-220b, no reduction of AIRE protein production was observed. Taken together, it was concluded that miR-220b inhibited the AIRE gene translation through the 3′UTR region of AIRE gene, indicating that miR-220b could serve as a regulator for human AIRE gene translation.  相似文献   

7.
8.
Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), also known as autoimmune polyglandular syndrome Type I (APS1), is an autosomal recessive autoimmune disease caused by mutations in a gene designated as AIRE (autoimmune regulator). Here we have studied the expression of Aire in transfected cell lines and in adult mouse tissues. Our results show that Aire has a dual subcellular location and that it is expressed in multiple immunologically relevant tissues such as the thymus, spleen, lymph nodes, and bone marrow. In addition, Aire expression was detected in various other tissues such as kidney, testis, adrenal glands, liver, and ovary. These findings suggest that APECED protein might also have a function(s) outside the immune system.(J Histochem Cytochem 49:197-208, 2001)  相似文献   

9.
We previously isolated a cDNA fragment homologous to theDrosophila Bicaudal-Dgene (Bic-D) using a hybridization selection procedure with cosmids derived from the short arm of human chromosome 12. A PCR-mediated cDNA cloning strategy was applied to obtain the coding sequence of the human homologue (BICD1) and to generate a partial mouse (Bicdh1) cDNA. TheDrosophila Bicaudal-Dgene encodes a coiled coil protein, characterized by five α-helix domains and a leucine zipper motif, that forms part of the cytoskeleton and mediates the correct sorting of mRNAs for oocyte- and axis-determining factors during oogenesis. Analysis of the predicted amino acid sequence of theBICD1cDNA clones indicates that the sequence similarity is essentially limited to the amphipatic helices and the leucine zipper, but the conserved order of these domains suggests a similar function of the protein in mammalians. A database search further indicates the existence of a second human homologue on chromosome arm 9q and aCaenorhabditis eleganshomologue. Northern blot analysis indicates that both the human and the murine homologues produce an mRNA species of 9.5 kb expressed in brain, heart, and skeletal muscle and during mouse embryonic development. The conserved structural characteristics of theBICD1protein and its expression in muscle and especially brain suggest thatBICD1is a component of a cytoskeleton-based mRNA sorting mechanism conserved during evolution.  相似文献   

10.
11.
12.
13.
14.
15.
16.
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy is an autoimmune disorder caused by mutations in the autoimmune regulator gene AIRE. We examined the expression of Aire in different organs (thymus, spleen, and lymph nodes) in C57BL/6 mice, using a novel rat mAb, specific for murine Aire. Using flow cytometry, directly fluorochrome-labeled mAb revealed Aire expression in a rare thymic cellular subset that was CD45(-), expressed low levels of Ly51, and was high for MHC-II and EpCam. This subset also expressed a specific pattern of costimulatory molecules, including CD40, CD80, and PD-L1. Immunohistochemical analysis revealed that Aire(+) cells were specifically localized to the thymus or, more precisely, to the cortico-medulla junction and medulla, correlating with the site of negative selection. Although in agreement with previous studies, low levels of Aire mRNA was detected in all dendritic cell subtypes however lacZ staining, immunohistochemistry and flow cytometry failed to detect Aire protein. At a cellular level, Aire was expressed in perinuclear speckles within the nucleus. This report provides the first detailed analysis of Aire protein expression, highlighting the precise location at both the tissue and cellular level.  相似文献   

17.
Although the autoimmune regulator (Aire) knockout (KO) mouse model has been reported to present various organ-specific autoimmune diseases depending on genetic background, autoimmune pancreatitis in mice of BALB/c background has not yet been reported. Here, we report that Aire KO mice with BALB/cAnN background showed significant lymphoid cell infiltration in the pancreas and stomach. To examine whether the phenotype in the pancreas and stomach is due to autoimmune reaction associated with autoantibody production, indirect immunofluorescence staining followed by Western blot analysis was performed. Consequently, the autoantibody against pancreas and stomach was detected in the sera of Aire KO mice, and the target antigen of the autoantibody was identified as protein disulfide isomerase-associated 2 (Pdia2), which was reported to be expressed preferentially in the pancreas and stomach. Thus, Aire KO mice of BALB/cAnN background can serve as a useful animal model for autoimmune gastro-pancreatitis with anti-Pdia2 autoantibody production.  相似文献   

18.
Gene expression of peripheral tissue antigens (PTAs) in stromal medullary thymic epithelial cells (mTECs) is a key process to the negative selection of autoreactive thymocytes. This phenomenon was termed “promiscuous gene expression” (PGE), which is partially controlled by the Aire gene. Nevertheless, reasons for the correlation of Aire and PTAs with the emergence of autoimmune diseases are largely unknown, though it may be a result of a chronological effect. Although the effect of Aire mutations in pathogenic autoimmunity is well know, it could not be a unique cause for autoimmunity. Independently of mutations, temporal deregulation of Aire expression may imbalance Aire-dependent PTAs and/or wide PGE. This deregulation may be an early warning sign for autoimmune diseases as it guarantees autoantigen representation in the thymus. To assess this hypothesis, we studied the expression levels of Aire, Aire-dependent (Ins2) and Aire-independent (Gad67 and Col2a1) PTAs using real-time-PCR of the thymic stromal cells of NOD mice during the development of autoimmune type 1 diabetes mellitus (DM-1). Wide PGE was studied by microarrays in which the PTA genes were identified through parallel CD80+ mTEC 3.10 cell line expression profiling. The results show that Aire gene was down-regulated in young pre-autoimmune (pre-diabetic) NOD mice. PGE and specific PTA genes were down-regulated in adult autoimmune diabetic animals. These findings represent evidence indicating that chronological deregulation of genes important to negative selection may be associated with the development of an autoimmune disease (DM-1) in mice.  相似文献   

19.
ZNF179,a RING finger protein encoding gene, has been mapped within the critical deletion region for Smith–Magenis syndrome (SMS), a disorder characterized by mental retardation and multiple congenital anomalies associated with del(17)(p11.2). Here we report the cloning ofZnf179,the mouse homologue ofZNF179,and characterization of its gene structure. The 3028-bp cDNA has a 1.9-kb open reading frame that contains a RING finger domain at its N-terminus and an alanine-rich and glycine-rich domain at its C-terminus.Znf179genomic sequence includes 15 introns and spans about 10 kb on mouse chromosome 11, which maintains conserved synteny with human 17p. Northern analysis indicates thatZnf179is predominantly expressed in brain and testis. Although contained within the SMS common deletion interval, FISH experiments show thatZNF179is not deleted in two SMS patients with smaller deletions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号