首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In Saccharomyces cerevisiae, the initiation of DNA replication and mitotic progression requires SKP1p function. SKP1p is an essential subunit of a newly identified class of E3 ubiquitin protein ligases, the SCF complexes, that catalyze ubiquitin-mediated proteolysis of key cell-cycle-regulatory proteins at distinct times in the cell cycle. SKP1p is also required for proper kinetochore assembly. Little is known about the corresponding human homolog, p19(SKP1), except that it is expressed throughout the cell cycle and that it too is a component of an S-phase-regulating SCF-E3 ligase complex. Here we show by immunofluorescence microscopy that p19(SKP1) localizes to the centrosomes. Centrosome association occurs throughout the mammalian cell cycle, including all stages of mitosis. These findings suggest that p19(SKP1) is a novel component of the centrosome and the mitotic spindle, which, in turn, implies a physiological role of this protein in the regulation of one or more aspects of the centrosome cycle.  相似文献   

2.
The p34cdc2 protein kinase plays a key role in the control of the mitotic cell cycle of fission yeast, being required for both entry into S-phase and for entry into mitosis in the mitotic cell cycle, as well as for the initiation of the second meiotic nuclear division. In recent years, structural and functional homologues of p34cdc2, as well as several of the proteins that interact with and regulate p34cdc2 function in fission yeast, have been identified in a wide range of higher eukaryotic cell types, suggesting that the control mechanisms uncovered in this simple eukaryote are likely to be well conserved across evolution. Here we describe the construction and characterisation of a fission yeast strain in which the endogenous p34cdc2 protein is entirely absent and is replaced by its human functional homologue p34CDC2, We have used this strain to analyse aspects of the function of the human p34CDC2 protein genetically. We show that the function of the human p34CDC2 protein in fission yeast cells is dependent upon the action of the protein tyrosine phosphatase p80cdc25 that it responds to altered levels of both the mitotic inhibitor p1072331 and the p34cdc2-binding protein p13suc1, and is lethal in combination with the mutant B-type cyclin p56cdc13-117. In addition, we demonstrate that the human p34CDC2 protein is proficient for fission yeast meiosis, and examine the behaviour of two mutant p34CDC2 proteins in fission yeast.  相似文献   

3.
The protein kinase cdc2p is a key regulator of the G1-S and G2-M cell cycle transitions in the yeast Schizosaccharomyces pombe. Activation of cdc2p is regulated by its phosphorylation state and by interaction with other proteins. We have analyzed the consequences for cell cycle progression of altering the conserved threonine phosphorylation site, within the activation loop of cdc2p, to glutamic acid. This mutant, T167 E, promotes entry into mitosis, as judged by the accumulation of mitotic spindles and condensed chromosomes, despite the fact that it lacks demonstrable kinase activity both in vitro and in vivo. However, T167 E cannot promote the metaphase-anaphase transition. Since a component of the anaphase-promoting complex (APC) in S. pombe, cut9p, remains hypophosphorylated at the T167 E arrest point, the cell cycle block might be due to the inability of T167 E to activate the APC. T167 E is lethal when overexpressed, and overproduction also causes a mitotic arrest. Multicopy suppressors of the dominant negative phenotype were isolated, and identified as cdc13 + and suc1 + . Overexpression of suc1 + suppresses the effects of T167 E overproduction by restoring sufficient amounts of suc1p to the cell to allow passage through mitosis. Received: 3 April 1998 / Accepted: 23 May 1998  相似文献   

4.
p14ARF对人黑色素瘤细胞增殖的影响及其作用机理的初探   总被引:2,自引:0,他引:2  
ARF(alternative reading frame)作为INK4a/ARF的β转录产物,能够稳定p53, 诱导细胞周期阻断或凋亡.利用高表达p14ARF的人黑色素瘤细胞模型,探讨了ARF抑制细胞增殖的分子作用机理.研究发现p14ARF高表达能将细胞周期阻断在G1和G2期, p53, p21cip1和p27kip1蛋白水平明显增强, 而p-ERK1/2,CyclinD1和CyclinE蛋白水平下降, 明显抑制细胞生长. 提示p14ARF能通过ERK(extracellular signal-regulated kinase)信号通路相互协调作用抑制A375细胞增殖.  相似文献   

5.
CEP215 is a human orthologue of Drosophila centrosomin which is a core centrosome component for the pericentriolar matrix protein recruitment. Recent investigations revealed that CEP215 is required for centrosome cohesion, centrosomal attachment of the g-TuRC, and microtubule dynamics. However, it remains to be obscure how CEP215 functions for recruitment of the centrosomal proteins during the centrosome cycle. Here, we investigated a role of CEP215 during mitosis. Knockdown of CEP215 resulted in characteristic mitotic phenotypes, including monopolar spindle formation, a decrease in distance between the spindle pole pair, and detachment of the centrosomes from the spindle poles. We noticed that CEP215 is critical for centrosomal localization of dynein throughout the cell cycle. As a consequence, the selective centrosomal proteins were not recruited to the centrosome properly. Finally, the centrosomal localization of CEP215 also depends on the dynein-dynactin complex. Based on the results, we propose that CEP215 regulates a dynein-dependent transport of the pericentriolar matrix proteins during the centrosome maturation.  相似文献   

6.
In response to DNA damage, cells need robust repair mechanisms to complete the cell cycle successfully. Severe forms of DNA damage are repaired by homologous recombination (HR), in which the XRCC2 protein plays a vital role. Cells deficient in XRCC2 also show disruption of the centrosome, a key component of the mitotic apparatus. We find that this centrosome disruption is dynamic and when it occurs during mitosis it is linked directly to the onset of mitotic catastrophe in a significant fraction of the XRCC2-deficient cells. However, we also show for the first time that XRCC2 and other HR proteins, including the key recombinase RAD51, co-localize with the centrosome. Co-localization is maintained throughout the cell cycle, except when cells are finishing mitosis when RAD51 accumulates in the midbody between the separating cells. Taken together, these data suggest a tight functional linkage between the centrosome and HR proteins, potentially to coordinate the deployment of a DNA damage response at vulnerable phases of the cell cycle.  相似文献   

7.
8.
Cell cycle arrest in potentially dividing cells is often mediated by inhibitors of G1/S-phase cyclin-dependent kinases. The cyclin E/CDK2-inhibitor p27Kip1 has been implicated in this context in epithelial cells. We cloned and sequenced p27Kip1 of ducklings (Anas platyrhynchos) and used an in vitro assay system to study the mechanism of p27Kip1 downregulation in the nasal gland which precedes an increase in proliferation rate upon initial exposure of the animals to osmotic stress. Western blot studies revealed that p27Kip1 is downregulated during 24 h of osmotic stress in ducklings with the steepest decline in protein levels between 5 and 8 h. As indicated by the results of Northern blot and semi-quantitative PCR studies, protein downregulation is not accompanied by similar changes in mRNA levels indicating that Kip1 is regulated mainly at the translational (synthesis) or posttranslational level (degradation). Using recombinant duck Kip1 protein expressed in E. coli, we showed that Kip1 is subject to polyubiquitinylation by cytosolic enzymes from nasal gland cells indicating that loss of Kip1 may be regulated, at least in part, by acceleration of protein degradation. In cultured nasal gland tissue, attenuation of Kip1 expression could be induced by activation of the muscarinic acetylcholine receptor indicating that mAChR-receptor signalling may play a role in the re-entry of quiescent gland cells into the cell cycle.  相似文献   

9.
Before the secretion of hard dental tissues, tooth germs undergo several distinctive stages of development (dental lamina, bud, cap and bell). Every stage is characterized by specific proliferation patterns, which is regulated by various morphogens, growth factors and homeodomain proteins. The role of MSX homeodomain proteins in odontogenesis is rather complex. Expression domains of genes encoding for murine Msx1/2 during development are observed in tissues containing highly proliferative progenitor cells. Arrest of tooth development in Msx knockout mice can be attributed to impaired proliferation of progenitor cells. In Msx1 knockout mice, these progenitor cells start to differentiate prematurely as they strongly express cyclin-dependent kinase inhibitor p19INK4d. p19INK4d induces terminal differentiation of cells by blocking the cell cycle in mitogen-responsive G1 phase. Direct suppression of p19INK4d by Msx1 protein is, therefore, important for maintaining proliferation of progenitor cells at levels required for the normal progression of tooth development. In this study, we examined the expression patterns of MSX1, MSX2 and p19INK4d in human incisor tooth germs during the bud, cap and early bell stages of development. The distribution of expression domains of p19INK4d throughout the investigated period indicates that p19INK4d plays active role during human tooth development. Furthermore, comparison of expression domains of p19INK4d with those of MSX1, MSX2 and proliferation markers Ki67, Cyclin A2 and pRb, indicates that MSX-mediated regulation of proliferation in human tooth germs might not be executed by the mechanism similar to one described in developing tooth germs of wild-type mouse.  相似文献   

10.
The protein kinase cdc2p is a key regulator of the G1-S and G2-M cell cycle transitions in the yeast Schizosaccharomyces pombe. Activation of cdc2p is regulated by its phosphorylation state and by interaction with other proteins. We have analyzed the consequences for cell cycle progression of altering the conserved threonine phosphorylation site, within the activation loop of cdc2p, to glutamic acid. This mutant, T167 E, promotes entry into mitosis, as judged by the accumulation of mitotic spindles and condensed chromosomes, despite the fact that it lacks demonstrable kinase activity both in vitro and in vivo. However, T167 E cannot promote the metaphase-anaphase transition. Since a component of the anaphase-promoting complex (APC) in S. pombe, cut9p, remains hypophosphorylated at the T167 E arrest point, the cell cycle block might be due to the inability of T167 E to activate the APC. T167 E is lethal when overexpressed, and overproduction also causes a mitotic arrest. Multicopy suppressors of the dominant negative phenotype were isolated, and identified as cdc13 + and suc1 + . Overexpression of suc1 + suppresses the effects of T167 E overproduction by restoring sufficient amounts of suc1p to the cell to allow passage through mitosis.  相似文献   

11.
12.
The protein kinase p34cdc2 is required at the onset of DNA replication and for entry into mitosis. The catalytic subunit and its regulatory proteins, notably the cyclins, are conserved from yeast to man. This suggests that the control mechanisms necessary for progression through the cell cycle in fission yeast are conserved throughout evolution. This work describes the characterization of a fission yeast strain that is dependent for cell cycle progression on the activity of the p34CDC2 protein kinase from chicken. The response of the chicken p34CDC2 protein kinase to cell cycle components of fission yeast was examined. Cells expressing the chicken p34CDC2 protein divide at reduced size at 31° C. Cells are temperature sensitive at 35.5° C and die as a result of mitotic catastrophe. This phenotype can be rescued by delaying cell cycle progression at the G1-S transition by adding low concentrations of hydroxyurea. Schizosaccharomyces pombe cells that are dependent on chicken p34CDC2 are cold sensitive. At 19° C to 25° C cells arrest in the G1 phase, while traversal of the G2-M transition is not blocked at low temperature. Expression of chicken p34CDC2 in the cold-sensitive G2-M mutant cdc2A21 suppresses the G1 arrest. Received: 14 October 1998 / Accepted: 15 March 1999  相似文献   

13.
Summary The p34cdc2 protein kinase plays a central role in the regulation of the eukaryotic cell cycle, being required both in late G1 for the commitment to S-phase and in late G2 for the initiation of mitosis. p34cdc2 also determines the precise timing of entry into mitosis in fission yeast, where a number of gene produts that regulate p34cdc2 activity have been identified and characterised. To investigate further the mitotic role of p34cdc2 in this organism we have isolated new cold-sensitive p34cdc2 mutants. These are defective only in their G2 function and are extragenic suppressors of the lethal premature entry into mitosis brought about by mutating the mitotic inhibitor p107wee1 and overproducing the mitotic activator p80cdc25. One of the mutant proteins p34cdc2-E8 is only functional in the absence of p107wee1, and all the mutant strains have reduced histone H1 kinase activity in vitro. Each mutant allele has been cloned and sequenced, and the lesions responsible for the cold-sensitive phenotypes identified. All the mutations were found to map to regions that are conserved between the fission yeast p34cdc2 and functional homologues from higher eukaryotes.  相似文献   

14.
15.
16.
The PTEN tumor suppressor acts as a phosphatase for phosphatidylinositol-3,4,5-trisphosphate (PIP3) [1, 2]. We have shown previously that PTEN negatively controls the G1/S cell cycle transition and regulates the levels of p27(KIP1), a CDK inhibitor [3, 4]. Recently, we and others have identified an ubiquitin E3 ligase, the SCF(SKP2) complex, that mediates p27 ubiquitin-dependent proteolysis [5-7]. Here we report that PTEN and the PI 3-kinase pathway regulate p27 protein stability. PTEN-deficiency in mouse embryonic stem (ES) cells causes a decrease of p27 levels with concomitant increase of SKP2, a key component of the SCF(SKP2) complex. Conversely, in human glioblastoma cells, ectopic PTEN expression leads to p27 accumulation, which is accompanied by a reduction of SKP2. We found that ectopic expression of SKP2 alone is sufficient to reverse PTEN-induced p27 accumulation, restore the kinase activity of cyclin E/CDK2, and partially overcome the PTEN-induced G1 cell cycle arrest. Consistently, recombinant SCF(SKP2) complex or SKP2 protein alone can rescue the defect in p27 ubiquitination in extracts prepared from cells treated with a PI 3-kinase inhibitor. Our findings suggest that SKP2 functions as a critical component in the PTEN/PI 3-kinase pathway for the regulation of p27(KIP1) and cell proliferation.  相似文献   

17.
In normal and transformed cells, the F-box protein p45(SKP2) is required for S phase and forms stable complexes with p19(SKP1) and cyclin A-cyclin-dependent kinase (CDK)2. Here we identify human CUL-1, a member of the cullin family, and the ubiquitin-conjugating enzyme CDC34 as additional partners of p45(SKP2) in vivo. CUL-1 also associates with cyclin A and p19(SKP1) in vivo and, with p45(SKP2), they assemble into a large multiprotein complex. In Saccharomyces cerevisiae, a complex of similar molecular composition (an F-box protein, a member of the cullin family and a homolog of p19(SKP1)) forms a functional E3 ubiquitin protein ligase complex, designated SCFCDC4, that facilitates ubiquitination of a CDK inhibitor by CDC34. The data presented here imply that the p45(SKP2)-CUL-1-p19(SKP1) complex may be a human representative of an SCF-type E3 ubiquitin protein ligase. We propose that all eukaryotic cells may use a common ubiquitin conjugation apparatus to promote S phase. Finally, we show that multiprotein complex formation involving p45(SKP2)-CUL-1 and p19(SKP1) is governed, in part, by periodic, S phase-specific accumulation of the p45(SKP2) subunit and by the p45(SKP2)-bound cyclin A-CDK2. The dependency of p45(SKP2)-p19(SKP1) complex formation on cyclin A-CDK2 may ensure tight coordination of the activities of the cell cycle clock with those of a potential ubiquitin conjugation pathway.  相似文献   

18.
19.
The stability of a protein is regulated by a balance between its ubiquitylation and deubiquitylation. S-phase kinase-associated protein 2 (SKP2) is an oncogenic F-box protein that recognizes tumor suppressor substrates for targeted ubiquitylation by the E3 ligase SKP1-Cullin1-F-box and degradation by proteasome. SKP2 is itself ubiquitylated by the E3 ligases APC/CCDH1 and SCFFBXW2, and deubiquitylated by deubiquitylases (DUBs) USP10 and USP13. Given the biological significance of SKP2, it is likely that the other E3s or DUBs may also regulate its stability. Here, we report the identification and characterization of USP2 as a new DUB. We first screened a panel of DUBs and found that both USP2 and USP21 bound to endogenous SKP2, but only USP2 deubiquitylated and stabilized SKP2 protein. USP2 inactivation via siRNA knockdown or small-molecule inhibitor treatment remarkably shortened SKP2 protein half-life by enhancing its ubiquitylation and subsequent degradation. Unexpectedly, USP2-stabilized SKP2 did not destabilize its substrates p21 and p27. Mechanistically, USP2 bound to SKP2 via the leucine-rich repeat substrate-binding domain on SKP2 to disrupt the SKP2-substrate binding, leading to stabilization of both SKP2 and these substrates. Biologically, growth suppression induced by USP2 knockdown or USP2 inhibitor is partially mediated via modulation of SKP2 and its substrates. Our study revealed a new mechanism of the cross-talk among the E3–DUB substrates and its potential implication in targeting the USP2–SKP2 axis for cancer therapy.  相似文献   

20.
The yeast SKP1 gene and its human homolog p19 skp1 encode a kinetochore protein required for cell cycle progression at both the DNA synthesis and mitosis phases of the cell cycle. In orchids we identified a cDNA (O108) that is expressed in early stages of ovule development and is homologous to the yeast SKP1. Based on the orchid O108 cDNA clone, we identified and characterized an Arabidopsis thaliana (L.) Heynh. cDNA designated ATskp1 that also has high sequence similarity to yeast SKP1. The Arabidopsis ATskp1 is a single-copy gene that mapped to chromosome 1. The expression of the ATskp1 gene was highly correlated with meristem activity in that its mRNA accumulated in all of the plant meristems including the vegetative shoot meristem, inflorescence and floral meristems, root meristem, and in the leaf and floral organ primordia. In addition, ATskp1 was also highly expressed in the dividing cells of the developing embryo, and in other cells that become multinucleate or undergo endoreplication events such as the endosperm free nuclei, the tapetum and the endothelium. Based on its spatial pattern of expression, ATskp1 is a marker for cells undergoing division and may be required for meristem activity. Received: 6 June 1997 / Accepted: 2 July 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号