首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The strength and duration of extracellular dopamine concentrations are regulated by the presynaptic dopamine transporter (DAT) and dopamine D2 autoreceptors (D2autoRs). There is a functional interaction between these two proteins. Activation of D2autoRs increases DAT trafficking to the surface whereas disruption of this interaction compromises activities of both proteins and alters dopaminergic transmission. Previously we reported that DAT expression and activity are subject to modulation by protein kinase Cβ (PKCβ). Here, we further demonstrate that PKCβ is integral for the interaction between DAT and D2autoR. Inhibition or absence of PKCβ abolished the communication between DAT and D2autoR. In mouse striatal synaptosomes and transfected N2A cells, the D2autoR‐stimulated membrane insertion of DAT was abolished by PKCβ inhibition. Moreover, D2autoR‐stimulated DAT trafficking is mediated by a PKCβ‐extracellular signal‐regulated kinase signaling cascade where PKCβ is upstream of extracellular signal‐regulated kinase. The increased surface DAT expression upon D2autoR activation resulted from enhanced DAT recycling as opposed to reduced internalization. Further, PKCβ promoted accelerated DAT recycling. Our study demonstrates that PKCβ critically regulates D2autoR‐activated DAT trafficking and dopaminergic signaling. PKCβ is a potential drug target for correcting abnormal extracellular dopamine levels in diseases such as drug addiction and schizophrenia.  相似文献   

3.
The relationship between the local backbone conformation and bond angles at Cα of symmetrically substituted Cα,α-dialkylated glycines (Cα,α-dimethylglycine or α-aminoisobutyric acid, Aib; Cα,α-diethylglycine, Deg; Cα,α-di-n-propylglycine, Dpg) has been investigated by molecular dynamics (MD) simulation adopting flat bottom harmonic potentials, instead of the usual harmonic restraints, for the Cα bond angles. The MD simulations show that the Cα bond angles are related to the local backbone conformation, irrespectively of the side-chain length of Aib, Deg, and Dpg residues. Moreover, the N-Cα-C′ (τ) angle is the most sensitive conformational parameter and, in the folded form, is always larger and more flexible than in the extended one. © 1998 John Wiley & Sons, Inc. Biopoly 46: 239–244, 1998  相似文献   

4.
In the present study, we examined the effect of vasopressin on the induction of the low-molecular-weight heat shock proteins heat shock protein 27 (HSP27) and αB-crystallin in an aortic smooth muscle cell line, A10 cells. Vasopressin induced a time-dependent accumulation of HSP27 and αB-crystallin. The stimulatory effects of vasopressin were dose-dependent over the range 0.1 nmol/L to 0.1 μmol/L. The EC50values for vasopressin were 2 (HSP27) and 4 nmol/L (αB-crystallin). Vasopressin induced increases in the levels of the mRNAs for HSP27 and αB-crystallin. 12-O-Tetradecanoylphorbol 13-acetate (TPA), a protein kinase C (PKC)-activating phorbol ester, induced an accumulation of HSP27 (EC50, 20 nmol/L) and αB-crystallin (EC50, 2 nmol/L). In contrast, 4α-phorbol 12,13-didecanoate, a non-PKC-activating phorbol ester, had no such effect. Staurosporine and calphostin C, inhibitors of PKC, significantly reduced the vasopressin-induced accumulation of HSP27 and αB-crystallin as well as that induced by TPA. BAPTA/AM and TMB-8, inhibitors of intracellular Ca2+mobilization, significantly reduced the vasopressin-induced accumulation of HSP27 and αB-crystallin. These results strongly suggest that vasopressin stimulates the induction of HSP27 and αB-crystallin via PKC activation in vascular smooth muscle cells and that this effect of vasopressin is dependent on intracellular Ca2+mobilization.  相似文献   

5.
The crystal structures of three fully protected tripeptides containing the Dϕg residue (Cα,α-diphenylglycine) in the central position are reported, namely Z-Gly-Dϕg-Gly-OMe ( a ), Z-Gly-Dϕg-Aib-OMe ( b ) and Z-Aib-Dϕg-Aib-OMe ( c ). The molecular conformations are quite unusual because the Dϕg residue adopts a folded conformation in the 310-helical region when the following residue adopts a folded conformation of opposite handedness (peptides b and c ). In contrast, the Dϕg residue adopts the more frequently observed fully extended conformation when the following residue adopts a semi-extended conformation (peptide a ). These findings are in agreement with the theoretical calculations on Ac-Dϕg-Aib-NHCH3 and Ac-Aib-Dϕg-NHCH3 also reported in this work. © 1998 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
β‐dystroglycan (β‐DG) is a widely expressed transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton, and thereby contributing to plasma membrane integrity and signal transduction. We previously observed nuclear localization of β‐DG in cultured cell lines, implying the existence of a nuclear targeting mechanism that directs it to the nucleus instead of the plasma membrane. In this study, we delineate the nuclear import pathway of β‐DG, characterizing a functional nuclear localization signal (NLS) in the β‐DG cytoplasmic domain, within amino acids 776–782. The NLS either alone or in the context of the whole β‐DG protein was able to target the heterologous GFP protein to the nucleus, with site‐directed mutagenesis indicating that amino acids R779 and K780 are critical for NLS functionality. The nuclear transport molecules Importin (Imp)α and Impβ bound with high affinity to the NLS of β‐DG and were found to be essential for NLS‐dependent nuclear import in an in vitro reconstituted nuclear transport assay; cotransfection experiments confirmed the dependence on Ran for nuclear accumulation. Intriguingly, experiments suggested that tyrosine phosphorylation of β‐DG may result in cytoplasmic retention, with Y892 playing a key role. β‐DG thus follows a conventional Impα/β‐dependent nuclear import pathway, with important implications for its potential function in the nucleus. J. Cell. Biochem. 110: 706–717, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
We report a selective, differential stimulus-dependent enrichment of the actin-associated protein α-actinin and of isoforms of the signaling enzyme protein kinase C (PKC) in the neutrophil cytoskeleton. Chemotactic peptide, activators of PKC, and cell adhesion all induce a significant increase in the amount of cytoskeletal α-actinin and actin. Increased association of PKCβI and βII with the cytoskeletal fraction of stimulated cells was also observed, with phorbol ester being more effective than chemotactic peptide. A fraction of phosphatase 2A was constitutively associated with the cytoskeleton independent of cell activation. None of the stimuli promoted association of vinculin or myosin II with the cytoskeleton. Phosphatase inhibitors okadaic acid and calyculin A prevented increases in cytoskeletal actin, α-actinin, and PKCβII induced by phorbol ester, suggesting the requirement for phosphatase activity in these events. Increases in cytoskeletal α-actinin and PKCβII showed differing sensitivity to agents that prevent actin polymerization (cytochalasin D, latrunculin A). Latrunculin A (1 μM) completely blocked PMA-induced increases in cytoskeletal α-actinin but reduced cytoskeletal recruitment of PKCβII only by 16%. Higher concentrations of latrunculin A (4 μM), which almost abolished the cytoskeletal actin pool, reduced cytoskeletal PKCβII by 43%. In conclusion, a selective enrichment of cytoskeletal and signaling proteins in the cytoskeleton of human neutrophils is induced by specific stimuli.  相似文献   

8.
Deregulated expression or activity of kinases can lead to melanomas, but often the particular kinase isoform causing the effect is not well established, making identification and validation of different isoforms regulating disease development especially important. To accomplish this objective, an siRNA screen was undertaken that which identified glycogen synthase kinase 3α (GSK3α) as an important melanoma growth regulator. Melanocytes and melanoma cell lines representing various stages of melanoma tumor progression expressed both GSK3α and GSK3β, but analysis of tumors in patients with melanoma showed elevated expression of GSK3α in 72% of samples, which was not observed for GSK3β. Furthermore, 80% of tumors in patients with melanoma expressed elevated levels of catalytically active phosphorylated GSK3α (pGSK3αY279), but not phosphorylated GSK3β (pGSK3βY216). siRNA‐mediated reduction in GSK3α protein levels reduced melanoma cell survival and proliferation, sensitized cells to apoptosis‐inducing agents and decreased xenografted tumor development by up to 56%. Mechanistically, inhibiting GSK3α expression using siRNA or the pharmacological agent AR‐A014418 arrested melanoma cells in the G0/G1 phase of the cell cycle and induced apoptotic death to retard tumorigenesis. Therefore, GSK3α is a key therapeutic target in melanoma.  相似文献   

9.
Protein kinase C (PKC) has been shown to be activated by parathyroid hormone (PTH) in osteoblasts. Prior evidence suggests that this activation mediates responses leading to bone resorption, including production of the osteoclastogenic cytokine interleukin-6 (IL-6). However, the importance of specific PKC isozymes in this process has not been investigated. A selective antagonist of PKC-β, LY379196, was used to determine the role of the PKC-β isozyme in the expression of IL-6 in UMR-106 rat osteoblastic cells and in bone resorption in fetal rat limb bone organ cultures. PTH, tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) induced translocation of PKC-α and -βI to the plasma membrane in UMR-106 cells within 5 min. The stimulation of PKC-βI translocation by PTH, TNF-α or IL-1β was inhibited by LY379196. In contrast, LY379196 did not affect PTH, TNF-α-, or IL-1β-stimulated translocation of PKC-α. PTH, TNF-α, and IL-1β increased luciferase expression in UMR-106 cells transiently transfected with a −224/+11 bp IL-6 promoter-driven reporter construct. The IL-6 responses were also attenuated by treatment with LY379196. Furthermore, LY379196 inhibited bone resorption elicited by PTH in fetal rat bone organ cultures. These results indicate that PKC-βI is a component of the signaling pathway that mediates PTH-, TNF-α-, and IL-1β-stimulated IL-6 expression and PTH-stimulated bone resorption.  相似文献   

10.
The construction of novel functional proteins has been a key area of protein engineering. However, there are few reports of functional proteins constructed from artificial scaffolds. Here, we have constructed a genetic library encoding α3β3 de novo proteins to generate novel scaffolds in smaller size using a binary combination of simplified hydrophobic and hydrophilic amino acid sets. To screen for folded de novo proteins, we used a GFP‐based screening system and successfully obtained the proteins from the colonies emitting the very bright fluorescence as a similar intensity of GFP. Proteins isolated from the very bright colonies (vTAJ) and bright colonies (wTAJ) were analyzed by circular dichroism (CD), 8‐anilino‐1‐naphthalenesulfonate (ANS) binding assay, and analytical size‐exclusion chromatography (SEC). CD studies revealed that vTAJ and wTAJ proteins had both α‐helix and β‐sheet structures with thermal stabilities. Moreover, the selected proteins demonstrated a variety of association states existing as monomer, dimer, and oligomer formation. The SEC and ANS binding assays revealed that vTAJ proteins tend to be a characteristic of the folded protein, but not in a molten‐globule state. A vTAJ protein, vTAJ13, which has a packed globular structure and exists as a monomer, was further analyzed by nuclear magnetic resonance. NOE connectivities between backbone signals of vTAJ13 suggested that the protein contains three α‐helices and three β‐strands as intended by its design. Thus, it would appear that artificially generated α3β3 de novo proteins isolated from very bright colonies using the GFP fusion system exhibit excellent properties similar to folded proteins and would be available as artificial scaffolds to generate functional proteins with catalytic and ligand binding properties.  相似文献   

11.
12.
Excitotoxic neuronal death mediated by N-methyl-D -aspartate (NMDA) glutamate receptors can contribute to the extended brain damage that often accompanies trauma or disease. Both the inflammatory cytokine tumor necrosis factor-α (TNF-α) and nicotine have been identified as possible neuroprotective agents to NMDA assault. We find that TNF-α protection of a subpopulation of cultured cortical neurons to chronic NMDA-mediated excitotoxic death requires both the activation of the p55/TNFRI, but not p75/TNFRII, and the release of endogenous TNF-α. Nicotine protection to NMDA was mediated through an α-bungarotoxin-sensitive receptor. When coapplied, neuroprotection to NMDA by either TNF-α or nicotine was abolished but could be recovered with α-bungarotoxin. These results suggest that the cytokine TNF-α and α-bungarotoxin-sensitive nicotinic neurotransmitter receptors confer neuroprotection through potentially antagonistic pathways. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 29–36, 1998  相似文献   

13.
14.
Hematopoietic homeostasis depends on the maintenance of hematopoietic stem cells (HSCs), which are regulated within a specialized bone marrow (BM) niche. When HSC sense external stimuli, their adhesion status may be critical for determining HSC cell fate. The cell surface molecule, integrin αvβ3, is activated through HSC adhesion to extracellular matrix and niche cells. Integrin β3 signaling maintains HSCs within the niche. Here, we showed the synergistic negative regulation of the pro‐inflammatory cytokine interferon‐γ (IFNγ) and β3 integrin signaling in murine HSC function by a novel definitive phenotyping of HSCs. Integrin αvβ3 suppressed HSC function in the presence of IFNγ and impaired integrin β3 signaling mitigated IFNγ‐dependent negative action on HSCs. During IFNγ stimulation, integrin β3 signaling enhanced STAT1‐mediated gene expression via serine phosphorylation. These findings show that integrin β3 signaling intensifies the suppressive effect of IFNγ on HSCs, which indicates that cell adhesion via integrin αvβ3 within the BM niche acts as a context‐dependent signal modulator to regulate the HSC function under both steady‐state and inflammatory conditions.  相似文献   

15.
The 90‐kDa heat shock protein (Hsp90α) has been identified on the surface of cancer cells, and is implicated in tumor invasion and metastasis, suggesting that it is a potentially important target for tumor therapy. However, the regulatory mechanism of Hsp90α plasma membrane translocation during tumor invasion remains poorly understood. Here, we show that Hsp90α plasma membrane expression is selectively upregulated upon epidermal growth factor (EGF) stimulation, which is a process independent of the extracellular matrix. Abrogation of EGF‐mediated activation of phospholipase (PLCγ1) by its siRNA or inhibitor prevents the accumulation of Hsp90α at cell protrusions. Inhibition of the downstream effectors of PLCγ1, including Ca2+ and protein kinase C (PKCγ), also blocks the membrane translocation of Hsp90α, while activation of PKCγ leads to increased levels of cell‐surface Hsp90α. Moreover, overexpression of PKCγ increases extracellular vesicle release, on which Hsp90α is present. Furthermore, activation or overexpression of PKCγ promotes tumor cell motility in vitro and tumor metastasis in vivo, whereas a specific neutralizing monoclonal antibody against Hsp90α inhibits such effects, demonstrating that PKCγ‐induced Hsp90α translocation is required for tumor metastasis. Taken together, our study provides a mechanistic basis for the role for the PLCγ1–PKCγ pathway in regulating Hsp90α plasma membrane translocation, which facilitates tumor cell motility and promotes tumor metastasis.  相似文献   

16.
Folding type-specific secondary structure propensities of 20 naturally occurring amino acids have been derived from α-helical, β-sheet, α/β, and α+β proteins of known structures. These data show that each residue type of amino acids has intrinsic propensities in different regions of secondary structures for different folding types of proteins. Each of the folding types shows markedly different rank ordering, indicating folding type-specific effects on the secondary structure propensities of amino acids. Rigorous statistical tests have been made to validate the folding type-specific effects. It should be noted that α and β proteins have relatively small α-helices and β-strands forming propensities respectively compared with those of α+β and α/β proteins. This may suggest that, with more complex architectures than α and β proteins, α+β and α/β proteins require larger propensities to distinguish from interacting α-helices and β-strands. Our finding of folding type-specific secondary structure propensities suggests that sequence space accessible to each folding type may have differing features. Differing sequence space features might be constrained by topological requirement for each of the folding types. Almost all strong β-sheet forming residues are hydrophobic in character regardless of folding types, thus suggesting the hydrophobicities of side chains as a key determinant of β-sheet structures. In contrast, conformational entropy of side chains is a major determinant of the helical propensities of amino acids, although other interactions such as hydrophobicities and charged interactions cannot be neglected. These results will be helpful to protein design, class-based secondary structure prediction, and protein folding. © 1998 John Wiley & Sons, Inc. Biopoly 45: 35–49, 1998  相似文献   

17.
18.
Phosphorylation of phospholipase C‐δ1 (PLC‐δ1) in vitro and in vivo was investigated. Of the serine/threonine kinases tested, protein kinase C (PKC) phosphorylated the serine residue(s) of bacterially expressed PLC‐δ1 most potently. It was also demonstrated that PLC‐δ1 directly bound PKC‐α via its pleckstrin homology (PH) domain. Using deletion mutants of PLC‐δ1 and synthetic peptides, Ser35 in the PH domain was defined as the PKC mediated in vitro phosphorylation site of PLC‐δ1. In vitro phosphorylation of PLC‐δ1 by PKC stimulated [3H]PtdIns(4,5)P2 hydrolyzing activity and [3H]Ins(1,4,5)P3‐binding of the PLC‐δ1. On the other hand, endogenous PLC‐δ1 was constitutively phosphorylated and phosphoamino acid analysis revealed that major phosphorylation sites were threonine residues in quiescent cells. The phosphorylation level and the species of phosphoamino acid were not changed by various stimuli such as PMA, EGF, NGF, and forskolin. Using matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectrometry, we determined that Thr209 of PLC‐δ1 is one of the constitutively phosphorylated sites in quiescent cells. The PLC activity was potentiated when constitutively phosphorylated PLC‐δ1 was dephosphorylated by endogenous phosphatase(s) in vitro. Additionally, coexpression with PKC‐α reduced serine phosphorylation of PLC‐δ1 detected by an anti‐phosphoserine antibody and PLC‐δ1‐dependent basal production of inositol phosphates in NIH‐3T3 cells, suggesting PKC‐α activates phosphatase or inactivates another kinase involved in PLC‐δ1 serine phosphorylation to modulate the PLC‐δ1 activity in vivo. Taken together, these results suggest that PLC‐δ1 has multiple phosphorylation sites and phosphorylation status of PLC‐δ1 regulates its activity positively or negatively depends on the phosphorylation sites. J. Cell. Biochem. 108: 638–650, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
The maturation of connective tissue involves the organization of collagen fibres by resident fibroblasts. Fibroblast attachment to collagen has been demonstrated to involve cell surface receptors, integrins of the β1 family. Integrins are associated with cytoplasmic actin of microfilaments either directly or through focal adhesions. The major actin isoform of fibroblast microfilaments is β actin and to a lesser extent α smooth muscle (α SM) actin. Cultured human dermal fibroblasts derived from adult dermis, newborn foreskin or keloid scar were grown on either uncoated or collagen-coated surfaces. The expression and synthesis of both α2β1 integrin and α SM actin were followed by immunohistology and immunoprecipitation. Fibroblasts on uncoated surfaces expressed little α2β1 integrin on their surface, while 20 per cent of them demonstrated α SM actin within microfilaments. Fibroblasts grown on a collagen-coated surface minimally expressed α SM actin in microfilament structures and a majority of the cells were positive for α2β1 integrin on their membranes. Using [35S]-methionine incorporation and immunoprecipitation, it was shown that fibroblasts grown in uncoated dishes synthesized more α SM actin than fibroblasts grown on collagen-coated dishes. In contrast, fibroblasts grown on collagen coated dishes synthesized more α2β1 integrin compared to the same cells grown on uncoated dishes. Fibroblasts maintained on a type I collagen upregulate the expression and synthesis of α2β1 integrin, and downregulate the expression and synthesis of α SM actin. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
Cyclooxygenase‐2 (COX‐2) has been recently identified to be involved in the pathogenesis of Alzheimer's disease (AD). Yet, the role of an important COX‐2 metabolic product, prostaglandin (PG) I2, in the pathogenesis of AD remains unknown. Using human‐ and mouse‐derived neuronal cells as well as amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice as model systems, we elucidated the mechanism of anterior pharynx‐defective (APH)‐1α and pharynx‐defective‐1β induction. In particular, we found that PGI2 production increased during the course of AD development. Then, PGI2 accumulation in neuronal cells activates PKA/CREB and JNK/c‐Jun signaling pathways by phosphorylation, which results in APH‐1α/1β expression. As PGI2 is an important metabolic by‐product of COX‐2, its suppression by NS398 treatment decreases the expression of APH‐1α/1β in neuronal cells and APP/PS1 mice. More importantly, β‐amyloid protein (Aβ) oligomers in the cerebrospinal fluid (CSF) of APP/PS1 mice are critical for stimulating the expression of APH‐1α/1β, which was blocked by NS398 incubation. Finally, the induction of APH‐1α/1β was confirmed in the brains of patients with AD. Thus, these findings not only provide novel insights into the mechanism of PGI2‐induced AD progression but also are instrumental for improving clinical therapies to combat AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号