首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beta-arrestins are cytosolic proteins that regulate the signaling and the internalization of G protein-coupled receptors (GPCRs). Although termination of receptor coupling requires beta-arrestin binding to agonist-activated receptors, GPCR endocytosis involves the coordinate interactions between receptor-beta-arrestin complexes and other endocytic proteins such as adaptor protein 2 (AP-2) and clathrin. Clathrin interacts with a conserved motif in the beta-arrestin C-terminal tail; however, the specific molecular determinants in beta-arrestin that bind AP-2 have not been identified. Moreover, the respective contributions of the interactions of beta-arrestin with AP-2 and clathrin toward the targeting of GPCRs to clathrin-coated vesicles have not been established. Here, we identify specific arginine residues (Arg(394) and Arg(396)) in the beta-arrestin 2 C terminus that mediate beta-arrestin binding to AP-2 and show, in vitro, that these domains in beta-arrestin 1 and 2 interact equally well with AP-2 independently of clathrin binding. We demonstrate in HEK 293 cells by fluorescence microscopy that beta(2)-adrenergic receptor-beta-arrestin complexes lacking the beta-arrestin-clathrin binding motif are still targeted to clathrin-coated pits. In marked contrast, receptor-beta-arrestin complexes lacking the beta-arrestin/AP-2 interactions are not effectively compartmentalized in punctated areas of the plasma membrane. These results reveal that the binding of a receptor-beta-arrestin complex to AP-2, not to clathrin, is necessary for the initial targeting of beta(2)-adrenergic receptor to clathrin-coated pits.  相似文献   

2.
Internalization of beta-adrenergic receptors (betaARs) occurs by the sequential binding of beta-arrestin, the clathrin adaptor AP-2, and clathrin. D-3 phosphoinositides, generated by the action of phosphoinositide 3-kinase (PI3K) may regulate the endocytic process; however, the precise molecular mechanism is unknown. Here we demonstrate that betaARKinase1 directly interacts with the PIK domain of PI3K to form a cytosolic complex. Overexpression of the PIK domain displaces endogenous PI3K from betaARK1 and prevents betaARK1-mediated translocation of PI3K to activated beta2ARs. Furthermore, disruption of the betaARK1/PI3K interaction inhibits agonist-stimulated AP-2 adaptor protein recruitment to the beta2AR and receptor endocytosis without affecting the internalization of other clathrin dependent processes such as internalization of the transferrin receptor. In contrast, AP-2 recruitment is enhanced in the presence of D-3 phospholipids, and receptor internalization is blocked in presence of the specific phosphatidylinositol-3,4,5-trisphosphate lipid phosphatase PTEN. These findings provide a molecular mechanism for the agonist-dependent recruitment of PI3K to betaARs, and support a role for the localized generation of D-3 phosphoinositides in regulating the recruitment of the receptor/cargo to clathrin-coated pits.  相似文献   

3.
Lin FT  Chen W  Shenoy S  Cong M  Exum ST  Lefkowitz RJ 《Biochemistry》2002,41(34):10692-10699
Beta-arrestins mediate agonist-dependent desensitization and internalization of G protein-coupled receptors. Previously, we have shown that phosphorylation of beta-arrestin1 by ERKs at Ser-412 regulates its association with clathrin and its function in promoting clathrin-mediated internalization of the receptor. In this paper we report that beta-arrestin2 is also phosphorylated, predominantly at residues Thr-383 and Ser-361. Isoproterenol stimulation of the beta(2)-adrenergic receptor promotes dephosphorylation of beta-arrestin2. Mutation of beta-arrestin2 phosphorylation sites to aspartic acid decreases the association of beta-arrestin2 with clathrin, thereby reducing its ability to promote internalization of the beta(2)-adrenergic receptor. Its ability to bind and desensitize the beta(2)-adrenergic receptor is, however, unaltered. These results suggest that, analogous to beta-arrestin1, phosphorylation/dephosphorylation of beta-arrestin2 regulates clathrin-mediated internalization of the beta(2)-adrenergic receptor. In contrast to beta-arrestin1, which is phosphorylated by ERK1 and ERK2, phosphorylation of beta-arrestin2 at Thr-383 is shown to be mediated by casein kinase II. Recently, it has been reported that phosphorylation of visual arrestin at Ser-366 prevents its binding to clathrin. Thus it appears that the function of all arrestin family members in mediating internalization of G protein-coupled receptors is regulated by distinct phosphorylation/dephosphorylation mechanisms.  相似文献   

4.
The non-visual arrestins, arrestin-2 and arrestin-3, play a critical role in regulating the signaling and trafficking of many G protein-coupled receptors (GPCRs). Molecular insight into the role of arrestins in GPCR trafficking has suggested that arrestin interaction with clathrin, beta(2)-adaptin (the beta-subunit of the adaptor protein AP2), and phosphoinositides contributes to this process. In the present study, we have attempted to better define the molecular basis and functional role of arrestin-2 interaction with clathrin and beta(2)-adaptin. Site-directed mutagenesis revealed that the C-terminal region of arrestin-2 mediated beta(2)-adaptin and clathrin interaction with Phe-391 and Arg-395 having an essential role in beta(2)-adaptin binding and LIELD (residues 376-380) having an essential role in clathrin binding. Interestingly, arrestin-2-R169E, an activated form of arrestin that binds to GPCRs in a phosphorylation-independent manner, has significantly enhanced binding to beta(2)-adaptin and clathrin. This suggests that receptor-induced conformational changes in the C-terminal tail of arrestin-2 will likely play a major role in mediating arrestin interaction with clathrin-coated pits. In an effort to clarify the role of these interactions in GPCR trafficking we generated arrestin mutants that were completely and selectively defective in either clathrin (arrestin-2-DeltaLIELD) or beta(2)-adaptin (arrestin-2-F391A) interaction. Analysis of these mutants in COS-1 cells revealed that arrestin/clathrin interaction was essential for agonist-promoted internalization of the beta(2)-adrenergic receptor, while arrestin/beta(2)-adaptin interaction appeared less critical. Arrestin-2 mutants defective in both clathrin and beta(2)-adaptin binding functioned as effective dominant negatives in HEK293 cells and significantly attenuated beta(2)-adrenergic receptor internalization. These mutants should prove useful in better defining the role of arrestins in mediating receptor trafficking.  相似文献   

5.
Agonist-dependent desensitization of the beta-adrenergic receptor requires translocation and activation of the beta-adrenergic receptor kinase1 by liberated Gbetagamma subunits. Subsequent internalization of agonist-occupied receptors occurs as a result of the binding of beta-arrestin to the phosphorylated receptor followed by interaction with the AP2 adaptor and clathrin proteins. Receptor internalization is known to require D-3 phosphoinositides that are generated by the action of phosphoinositide 3-kinase. Phosphoinositide 3-kinases form a family of lipid kinases that couple signals via receptor tyrosine kinases and G-protein-coupled receptors. The molecular mechanism by which phosphoinositide 3-kinase acts to promote beta-adrenergic receptor internalization is not well understood. In the present investigation we demonstrate a novel finding that beta-adrenergic receptor kinase 1 and phosphoinositide 3-kinase form a cytosolic complex, which leads to beta-adrenergic receptor kinase 1-mediated translocation of phosphoinositide 3-kinase to the membrane in an agonist-dependent manner. Furthermore, agonist-induced translocation of phosphoinositide 3-kinase results in rapid interaction with the receptor, which is of functional importance, since inhibition of phosphoinositide 3-kinase activity attenuates beta-adrenergic receptor sequestration. Therefore, agonist-dependent recruitment of phosphoinositide 3-kinase to the membrane is an important step in the process of receptor sequestration and links phosphoinositide 3-kinase to G-protein-coupled receptor activation and sequestration.  相似文献   

6.
Clathrin-coated pits at the cell surface select material for transportation into the cell interior. A major mode of cargo selection at the bud site is via the micro 2 subunit of the AP-2 adaptor complex, which recognizes tyrosine-based internalization signals. Other internalization motifs and signals, including phosphorylation and ubiquitylation, also tag certain proteins for incorporation into a coated vesicle, but the mechanism of selection is unclear. Disabled-2 (Dab2) recognizes the FXNPXY internalization motif in LDL-receptor family members via an N-terminal phosphotyrosine-binding (PTB) domain. Here, we show that in addition to binding AP-2, Dab2 also binds directly to phosphoinositides and to clathrin, assembling triskelia into regular polyhedral coats. The FXNPXY motif and phosphoinositides contact different regions of the PTB domain, but can stably anchor Dab2 to the membrane surface, while the distal AP-2 and clathrin-binding determinants regulate clathrin lattice assembly. We propose that Dab2 is a typical member of a growing family of cargo-specific adaptor proteins, including beta-arrestin, AP180, epsin, HIP1 and numb, which regulate clathrin-coat assembly at the plasma membrane by synchronizing cargo selection and lattice polymerization events.  相似文献   

7.
Plasma membrane clathrin-coated vesicles form after the directed assembly of clathrin and the adaptor complex, AP2, from the cytosol onto the membrane. In addition to these structural components, several other proteins have been implicated in clathrin-coated vesicle formation. These include the large molecular weight GTPase, dynamin, and several Src homology 3 (SH3) domain-containing proteins which bind to dynamin via interactions with its COOH-terminal proline/arginine-rich domain (PRD). To understand the mechanism of coated vesicle formation, it is essential to determine the hierarchy by which individual components are targeted to and act in coated pit assembly, invagination, and scission.To address the role of dynamin and its binding partners in the early stages of endocytosis, we have used well-established in vitro assays for the late stages of coated pit invagination and coated vesicle scission. Dynamin has previously been shown to have a role in scission of coated vesicles. We show that dynamin is also required for the late stages of invagination of clathrin-coated pits. Furthermore, dynamin must bind and hydrolyze GTP for its role in sequestering ligand into deeply invaginated coated pits.We also demonstrate that the SH3 domain of endophilin, which binds both synaptojanin and dynamin, inhibits both late stages of invagination and also scission in vitro. This inhibition results from a reduction in phosphoinositide 4,5-bisphosphate levels which causes dissociation of AP2, clathrin, and dynamin from the plasma membrane. The dramatic effects of the SH3 domain of endophilin led us to propose a model for the temporal order of addition of endophilin and its binding partner synaptojanin in the coated vesicle cycle.  相似文献   

8.
Members of the seven-transmembrane receptor (7TMR) superfamily are sequestered from the plasma membrane following stimulation both to limit cellular responses as well as to initiate novel G protein-independent signaling pathways. The best studied mechanism for 7TMR internalization is via clathrin-coated pits, where clathrin and adaptor protein complex 2 nucleate and polymerize upon encountering the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP(2)) to form the outer layer of the clathrin-coated vesicle. Activated receptors are recruited to clathrin-coated pits by beta-arrestins, scaffolding proteins that interact with agonist-occupied 7TMRs as well as adaptor protein complex 2 and clathrin. We report here that following stimulation of the beta2-adrenergic receptor (beta2-AR), a prototypical 7TMR, beta-arrestins bind phosphatidylinositol 4-phosphate 5-kinase (PIP5K) Ialpha, a PIP(2)-producing enzyme. Furthermore, beta-arrestin2 is required to form a complex with PIP5K Ialpha and agonist-occupied beta2-AR, and beta-arrestins synergize with the kinase to produce PIP(2) in response to isoproterenol stimulation. Interestingly, beta-arrestins themselves bind PIP(2), and a beta-arrestin mutant deficient in PIP(2) binding no longer internalizes 7TMRs, fails to interact with PIP5K Ialpha, and is not associated with PIP kinase activity assayed in vitro. However, a chimeric protein in which the core kinase domain of PIP5K Ialpha has been fused to the same beta-arrestin mutant rescues internalization of beta2-ARs. Collectively, these data support a model in which beta-arrestins direct the localization of PIP5K Ialpha and PIP(2) production to agonist-activated 7TMRs, thereby regulating receptor internalization.  相似文献   

9.
Endocytosis of the low density lipoprotein (LDL) receptor (LDLR) in coated pits employs the clathrin adaptor protein ARH. Similarly, agonist-dependent endocytosis of heptahelical receptors in coated pits employs the clathrin adaptor beta-arrestin proteins. In mice fed a high fat diet, we found that homozygous deficiency of beta-arrestin2 increased total and LDL plus intermediate-density lipoprotein cholesterol levels by 23 and 53%, respectively (p < 0.05), but had no effect on high density lipoprotein cholesterol levels. We therefore tested whether beta-arrestins could affect the constitutive endocytosis of the LDLR. When overexpressed in cells, beta-arrestin1 and beta-arrestin2 each associated with the LDLR, as judged by co-immunoprecipitation, and augmented LDLR endocytosis by approximately 70%, as judged by uptake of fluorescent LDL. However, physiologic expression levels of only beta-arrestin2, and not beta-arrestin1, enhanced endogenous LDLR endocytosis (by 65%) in stably transfected beta-arrestin1/beta-arrestin2 double-knockout mouse embryonic fibroblasts (MEFs). Concordantly, when RNA interference was used to suppress expression of beta-arrestin2, but not beta-arrestin1, LDLR endocytosis was reduced. Moreover, beta-arrestin2-/- MEFs demonstrated LDLR endocytosis that was 50% less than cognate wild type MEFs. In fusion protein pull-down assays, beta-arrestin2 bound to the LDLR cytoplasmic tail stoichiometrically, and binding was abolished by mutation of LDLR Tyr807 to Ala. Mutation of LDLR cytoplasmic tail Ser833 to Asp enhanced both the affinity of LDLR fusion protein binding to beta-arrestin2, and the efficiency of LDLR endocytosis in cells expressing beta-arrestin2 physiologically. We conclude that beta-arrestin2 can bind to and enhance endocytosis of the LDLR, both in vitro and in vivo, and may thereby influence lipoprotein metabolism.  相似文献   

10.
Phosphoinositides play key regulatory roles in vesicular transport pathways in eukaryotic cells. Clathrin-mediated membrane trafficking has been shown to require phosphoinositides, but little is known about the enzyme(s) responsible for their formation. Here we report that clathrin functions as an adaptor for the class II PI 3-kinase C2alpha (PI3K-C2alpha), binding to its N-terminal region and stimulating its catalytic activity, especially toward phosphorylated inositide substrates. Further, we show that endogenous PI3K-C2alpha is localized in coated pits and that exogenous expression affects clathrin-mediated endocytosis and sorting in the trans-Golgi network. These findings provide a mechanistic basis for localized inositide generation at sites of clathrin-coated bud formation, which, with recruitment of inositide binding proteins and subsequent synaptojanin-mediated phosphoinositide hydrolysis, may regulate coated vesicle formation and uncoating.  相似文献   

11.
Adaptor protein complex 2 alpha and beta-appendage domains act as hubs for the assembly of accessory protein networks involved in clathrin-coated vesicle formation. We identify a large repertoire of beta-appendage interactors by mass spectrometry. These interact with two distinct ligand interaction sites on the beta-appendage (the "top" and "side" sites) that bind motifs distinct from those previously identified on the alpha-appendage. We solved the structure of the beta-appendage with a peptide from the accessory protein Eps15 bound to the side site and with a peptide from the accessory cargo adaptor beta-arrestin bound to the top site. We show that accessory proteins can bind simultaneously to multiple appendages, allowing these to cooperate in enhancing ligand avidities that appear to be irreversible in vitro. We now propose that clathrin, which interacts with the beta-appendage, achieves ligand displacement in vivo by self-polymerisation as the coated pit matures. This changes the interaction environment from liquid-phase, affinity-driven interactions, to interactions driven by solid-phase stability ("matricity"). Accessory proteins that interact solely with the appendages are thereby displaced to areas of the coated pit where clathrin has not yet polymerised. However, proteins such as beta-arrestin (non-visual arrestin) and autosomal recessive hypercholesterolemia protein, which have direct clathrin interactions, will remain in the coated pits with their interacting receptors.  相似文献   

12.
Activation-dependent conformational changes in {beta}-arrestin 2   总被引:2,自引:0,他引:2  
Beta-arrestins are multifunctional adaptor proteins, which mediate desensitization, endocytosis, and alternate signaling pathways of seven membrane-spanning receptors (7MSRs). Crystal structures of the basal inactive state of visual arrestin (arrestin 1) and beta-arrestin 1 (arrestin 2) have been resolved. However, little is known about the conformational changes that occur in beta-arrestins upon binding to the activated phosphorylated receptor. Here we characterize the conformational changes in beta-arrestin 2 (arrestin 3) by comparing the limited tryptic proteolysis patterns and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) profiles of beta-arrestin 2 in the presence of a phosphopeptide (V(2)R-pp) derived from the C terminus of the vasopressin type II receptor (V(2)R) or the corresponding nonphosphopeptide (V(2)R-np). V(2)R-pp binds to beta-arrestin 2 specifically, whereas V(2)R-np does not. Activation of beta-arrestin 2 upon V(2)R-pp binding involves the release of its C terminus, as indicated by exposure of a previously inaccessible cleavage site, one of the polar core residues Arg(394), and rearrangement of its N terminus, as indicated by the shielding of a previously accessible cleavage site, residue Arg(8). Interestingly, binding of the polyanion heparin also leads to release of the C terminus of beta-arrestin 2; however, heparin and V(2)R-pp have different binding site(s) and/or induce different conformational changes in beta-arrestin 2. Release of the C terminus from the rest of beta-arrestin 2 has functional consequences in that it increases the accessibility of a clathrin binding site (previously demonstrated to lie between residues 371 and 379) thereby enhancing clathrin binding to beta-arrestin 2 by 10-fold. Thus, the V(2)R-pp can activate beta-arrestin 2 in vitro, most likely mimicking the effects of an activated phosphorylated 7MSR. These results provide the first direct evidence of conformational changes associated with the transition of beta-arrestin 2 from its basal inactive conformation to its biologically active conformation and establish a system in which receptor-beta-arrestin interactions can be modeled in vitro.  相似文献   

13.
To determine whether the interaction of the TRH receptor with beta-arrestin is necessary for TRH activation of MAPK, cells expressing either intact or truncated, internalization-defective TRH receptors were transfected with a beta-arrestin-green fluorescent protein conjugate. In cells expressing the wild-type pituitary TRH receptor, TRH caused translocation of the beta-arrestin-green fluorescent protein conjugate from the cytosol to the plasma membrane within 30 sec. After 5 min, the beta-arrestin-green fluorescent protein conjugate was visible in vesicles, where it colocalized with rhodamine-labeled TRH. In hypertonic sucrose, the beta-arrestin-green fluorescent protein conjugate translocated to the plasma membrane after TRH addition but did not internalize. In cells expressing the truncated TRH receptor, TRH did not cause translocation of the beta-arrestin-green fluorescent protein conjugate. TRH activated MAPK strongly in cells expressing intact or truncated TRH receptors, indicating that the receptor does not need to bind beta-arrestin or internalize. MAPK activation by TRH, epidermal growth factor, and phorbol ester was strongly inhibited by hypertonic sucrose and concanavalin A, which block movement of proteins into coated pits and coated pit assembly. Hypertonic sucrose did not affect MAPK activation in cells overexpressing MAPK kinase 1. Dominant negative dynamin, which blocks conversion of coated pits to vesicles, also reduced receptor internalization and TRH activation of MAPK. TRH activation of MAPK required PKC but was insensitive to pertussis toxin and did not require ras, epidermal growth factor receptor kinase, or PI3K. These results show that the TRH receptor itself does not need to bind beta-arrestin or undergo sequestration to activate MAPK but that the endocytic pathway must be intact.  相似文献   

14.
Adaptors mediate the interaction of clathrin with select groups of receptors. Two distinct types of adaptors, the HA-II adaptors (found in plasma membrane coated pits) and the HA-I adaptors (localized to Golgi coated pits) bind to the cytoplasmic portion of the 270 kd mannose 6-phosphate (M6P) receptor-a receptor which is concentrated in coated pits on both the plasma membrane and in the trans-Golgi network. Neither type of adaptor appears to compete with the other for binding, suggesting that each type recognizes a distinct site on the M6P receptor tail. Mutation of the two tyrosines in the tail essentially eliminates the interaction with the HA-II plasma membrane adaptor, which recognizes a 'tyrosine' signal on other endocytosed receptors (for example, the LDL receptor and the poly Ig receptor). In contrast, the wild type and the mutant M6P receptor tail (lacking tyrosines) are equally effective at binding HA-I adaptors. This suggests that there is an HA-I recognition signal in another region of the M6P receptor tail, C-terminal to the tyrosine residues, which remains intact in the mutant. This signal is presumably responsible for the concentration of the M6P receptor, with bound lysosomal enzymes, into coated pits which bud from the trans-Golgi network, thus mediating efficient transfer of these enzymes to lysosomes.  相似文献   

15.
The clathrin-associated AP-2 adaptor protein is a major polyphosphoinositide-binding protein in mammalian cells. A high affinity binding site has previously been localized to the NH(2)-terminal region of the AP-2 alpha subunit (Gaidarov et al. 1996. J. Biol. Chem. 271:20922-20929). Here we used deletion and site- directed mutagenesis to determine that alpha residues 21-80 comprise a discrete folding and inositide-binding domain. Further, positively charged residues located within this region are involved in binding, with a lysine triad at positions 55-57 particularly critical. Mutant peptides and protein in which these residues were changed to glutamine retained wild-type structural and functional characteristics by several criteria including circular dichroism spectra, resistance to limited proteolysis, and clathrin binding activity. When expressed in intact cells, mutated alpha subunit showed defective localization to clathrin-coated pits; at high expression levels, the appearance of endogenous AP-2 in coated pits was also blocked consistent with a dominant-negative phenotype. These results, together with recent work indicating that phosphoinositides are also critical to ligand-dependent recruitment of arrestin-receptor complexes to coated pits (Gaidarov et al. 1999. EMBO (Eur. Mol. Biol. Organ.) J. 18:871-881), suggest that phosphoinositides play a critical and general role in adaptor incorporation into plasma membrane clathrin-coated pits.  相似文献   

16.
Proteases cleave proteinase-activated receptors (PARs) to expose N-terminal tethered ligands that bind and activate the cleaved receptors. The tethered ligand, once exposed, is always available to interact with its binding site. Thus, efficient mechanisms must prevent continuous activation, including receptor phosphorylation and uncoupling from G-proteins, receptor endocytosis, and lysosomal degradation. beta-Arrestins mediate uncoupling and endocytosis of certain neurotransmitter receptors, which are activated in a reversible manner. However, the role of beta-arrestins in trafficking of PARs, which are irreversibly activated, and the effects of proteases on the subcellular distribution of beta-arrestins have not been examined. We studied trafficking of PAR2 and beta-arrestin1 coupled to green fluorescent protein. Trypsin induced the following: (a) redistribution of beta-arrestin1 from the cytosol to the plasma membrane, where it co-localized with PAR2; (b) internalization of beta-arrestin1 and PAR2 into the same early endosomes; (c) redistribution of beta-arrestin1 to the cytosol concurrent with PAR2 translocation to lysosomes; and (d) mobilization of PAR2 from the Golgi apparatus to the plasma membrane. Overexpression of a C-terminal fragment of beta-arrestin-319-418, which interacts constitutively with clathrin but does not bind receptors, inhibited agonist-induced endocytosis of PAR2. Our results show that beta-arrestins mediate endocytosis of PAR2 and support a role for beta-arrestins in uncoupling of PARs.  相似文献   

17.
The functions of beta-arrestin1 to facilitate clathrin-mediated endocytosis of the beta2-adrenergic receptor and to promote agonist-induced activation of extracellular signal-regulated kinases (ERK) are regulated by its phosphorylation/dephosphorylation at Ser-412. Cytoplasmic beta-arrestin1 is almost stoichiometrically phosphorylated at Ser-412. Dephosphorylation of beta-arrestin1 at the plasma membrane is required for targeting a signaling complex that includes the agonist-occupied receptors to the clathrin-coated pits. Here we demonstrate that beta-arrestin1 phosphorylation and function are modulated by an ERK-dependent negative feedback mechanism. ERK1 and ERK2 phosphorylate beta-arrestin1 at Ser-412 in vitro. Inhibition of ERK activity by a dominant-negative MEK1 mutant significantly attenuates beta-arrestin1 phosphorylation, thereby increasing the concentration of dephosphorylated beta-arrestin1. Under such conditions, beta-arrestin1-mediated beta2-adrenergic receptor internalization is enhanced as is its ability to bind clathrin. In contrast, if ERK-mediated phosphorylation is increased by transfection of a constitutively active MEK1 mutant, receptor internalization is inhibited. Our results suggest that dephosphorylated beta-arrestin1 mediates endocytosis-dependent ERK activation. Following activation, ERKs phosphorylate beta-arrestin1, thereby exerting an inhibitory feedback control of its function.  相似文献   

18.
Receptors compete for adaptors found in plasma membrane coated pits.   总被引:79,自引:18,他引:61       下载免费PDF全文
B M Pearse 《The EMBO journal》1988,7(11):3331-3336
An affinity matrix of LDL receptor cytoplasmic tails binds the HA-II 100/50/16 kd complexes found in plasma membrane coated pits. Other receptors (or their cytoplasmic domains), which are localized in coated pits during endocytosis, inhibit this binding. This includes an 8 residue peptide containing tyrosine, corresponding to the cytoplasmic portion of a mutant influenza haemagglutinin. In contrast, the equivalent peptide lacking tyrosine (like the tail of the native haemagglutinin, a protein excluded from coated pits) does not compete. These results imply that the HA-II complex has a recognition site for a common signal, probably involving a tyrosine residue, carried by the LDL receptor and competing receptors also found in plasma membrane coated pits. The HA-II complex therefore fulfils the role of an 'adaptor', the name proposed for the structural units which mediate the binding of clathrin to receptors in coated vesicles. Another related complex, the HA-I adaptor, which is restricted to Golgi coated pits, probably does not recognize the 'tyrosine signal' on the LDL receptor tail. The HA-I adaptor is likely to contain a recognition site for a different signal carried by receptors, e.g. the mannose-6-phosphate receptor, which are found in Golgi coated pits.  相似文献   

19.
Previous studies have demonstrated that beta-arrestin1 serves to target G protein-coupled receptors for internalization via clathrin-coated pits and that its endocytic function is regulated by dephosphorylation at the plasma membrane. Using the yeast two-hybrid system, we have identified a novel beta-arrestin1-binding protein, NSF (N-ethylmaleimide-sensitive fusion protein), an ATPase essential for many intracellular transport reactions. We demonstrate that purified recombinant beta-arrestin1 and NSF interact in vitro and that these proteins can be coimmunoprecipitated from cells. beta-Arrestin1-NSF complex formation exhibits a conformational dependence with beta-arrestin1 preferentially interacting with the ATP bound form of NSF. In contrast to the beta-arrestin1-clathrin interaction, however, the phosphorylation state of beta-arrestin1 does not affect NSF binding. Functionally, overexpression of NSF in HEK 293 cells significantly enhances agonist-mediated beta2-adrenergic receptor (beta2-AR) internalization. Furthermore, when coexpressed with a beta-arrestin1 mutant (betaarr1S412D) that mimics a constitutively phosphorylated form of beta-arrestin1 and that acts as a dominant negative with regards to beta2-AR internalization, NSF rescues the betaarr1S412D-mediated inhibition of beta2-AR internalization. The demonstration of beta-arrestin1-NSF complex formation and the functional consequences of NSF overexpression suggest a hitherto unappreciated role for NSF in facilitating clathrin coat-mediated G protein-coupled receptor internalization.  相似文献   

20.
Eps15 has been identified as a substrate of the EGF receptor tyrosine kinase. In this report, we show that activation of the EGF receptor by either EGF or TGF-α results in phosphorylation of Eps15. Stimulation of cells with PDGF or insulin did not lead to Eps15 phosphorylation, suggesting that phosphorylation of Eps15 is a receptor-specific process. We demonstrate that Eps15 is constitutively associated with both α-adaptin and clathrin. Upon EGF stimulation, Eps15 and α-adaptin are recruited to the EGF receptor. Using a truncated EGF receptor mutant, we demonstrate that the regulatory domain of the cytoplasmic tail of the EGF receptor is essential for the binding of Eps15. Fractionation studies reveal that Eps15 is present in cell fractions enriched for plasma membrane and endosomal membranes. Immunofluorescence studies show that Eps15 colocalizes with adaptor protein-2 (AP-2) and partially with clathrin. No colocalization of Eps15 was observed with the early endosomal markers rab4 and rab5. These observations indicate that Eps15 is present in coated pits and coated vesicles of the clathrin-mediated endocytic pathway, but not in early endosomes. Neither AP-2 nor clathrin are required for the binding of Eps15 to coated pits or coated vesicles, since in membranes lacking AP-2 and clathrin, Eps15 still shows the same staining pattern. These findings suggest that Eps15 may play a critical role in the recruitment of active EGF receptors into coated pit regions before endocytosis of ligand-occupied EGF receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号