首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biodegradation potential of an innovative enclosed tubular biofilm photobioreactor inoculated with a Chlorella sorokiniana strain and an acclimated activated sludge consortium was evaluated under continuous illumination and increasing pretreated (centrifuged) swine slurry loading rates. This photobioreactor configuration provided simultaneous and efficient carbon, nitrogen, and phosphorous treatment in a single-stage process at sustained nitrogen and phosphorous removals efficiencies ranging from 94% to 100% and 70–90%, respectively. Maximum total organic carbon (TOC), NH4 +, and PO4 3− removal rates of 80 ± 5 g C mr −3 day−1, 89 ± 5 g N mr −3 day−1, and 13 ± 3 g P mr −3 day−1, respectively, were recorded at the highest swine slurry loadings (TOC of 1,247 ± 62 mg L−1, N–NH4 + of 656 ± 37 mg L−1, P–PO4 3+ of 117 ± 19 mg L−1, and 7 days of hydraulic retention time). The unusual substrates diffusional pathways established within the phototrophic biofilm (photosynthetic O2 and TOC/NH4 + diffusing from opposite sides of the biofilm) allowed both the occurrence of a simultaneous denitrification/nitrification process at the highest swine slurry loading rate and the protection of microalgae from any potential inhibitory effect mediated by the combination of high pH and high NH3 concentrations. In addition, this biofilm-based photobioreactor supported efficient biomass retention (>92% of the biomass generated during the pretreated swine slurry biodegradation).  相似文献   

2.
The oxidation of ammonia coupled with the reduction of iron is a unique pathway mostly reported in soils and sediments. An anaerobic sludge from a piggery wastewater treatment plant had been acclimated to an NH+/Fe3+-rich environment to secure an enrichment culture and investigate an anaerobic ammonia oxidation coupled with an iron reduction. The enrichment culture showed an average pH of 6.8 and the concentration of mixed liquor volatile suspended solid was measured as 1,120 mg/L. The mol ratio of oxidized NH4 + and reduced Fe3+ was 0.33 mol NH4 +/mol Fe3+. It was suggested that the culture acclimated to NH4 +/Fe3+ contained the anaerobic ammonia oxidizing bacteria as well and thus NH4 + was fully oxidized to NO3 by the bacterial consortia. In a batch experiment using the culture, the oxidation of NH4 + was increased as the initial concentration increased. However, it was suspected from the experimental results that other iron reducing bacteria had grown under the environment applied for the enrichment culture. As a result, it was observed that heterotrophic and autotrophic iron reducers were competing for Fe3+.  相似文献   

3.
Forest ecosystems are self-fertilizing systems, and development of forest stands depends on nutrient supply via biogeochemical cycling within the ecosystem. Therefore, it is important to clarify the nutrient cycle mediating growth and development. In addition, long-term hydrochemical monitoring is needed to understand the influence of environmental changes on biogeochemical cycling in forest ecosystems. The Oyasan Experimental Forest Watershed (OEFW) is located in the Field Museum Oyasan, the university forest of Tokyo University of Agriculture and Technology, in Gunma prefecture, Japan. OEFW comprises two small adjacent forested watersheds—A-watershed and B-watershed—with respective areas of 1.3 and 1.8 ha. A-watershed is a reestablished forest planted with sugi (Japanese cedar; Cryptomeria japonica) and hinoki (Japanese cypress; Chamaecyparis obtusa) in 1976, and has been managed intensively with fertilizer application. By contrast, B-watershed is an established forest planted with sugi and hinoki in 1907. No forest practices have been carried out except for thinning of suppressed trees in 1983. However, the sugi plantation on the lowest slope (18% of the watershed area) was cut in 2000, and sugi was replanted the following year. In this data paper, we present data on the daily precipitation, discharge, pH, and concentrations of major nutrients (Ca2+, Mg2+, K+, Na+, NH4 +, Cl, NO3 , and SO4 2−) in rainwater and stream water since November 1978. The arithmetical mean pH of precipitation, stream water in A- and B-watershed from the beginning of the monitoring to the present were 4.77 ± 0.67, 6.85 ± 0.41 and 6.88 ± 0.36 (average ± SD), respectively. The arithmetical mean concentrations in precipitation in mmolc L−1 were 0.030 ± 0.030 for Ca2+, 0.010 ± 0.011 for Mg2+, 0.009 ± 0.013 for K+, 0.020 ± 0.024 for Na+, 0.035 ± 0.041 for NH4 +, 0.026 ± 0.029 for Cl, 0.033 ± 0.038 for NO3 , and 0.046 ± 0.043 for SO4 2−. The mean concentrations in stream water in A-watershed were 0.180 ± 0.032 for Ca2+, 0.073 ± 0.013 for Mg2+, 0.018 ± 0.009 for K+, 0.182 ± 0.024 for Na+, 0.010 ± 0.010 for NH4 +, 0.060 ± 0.008 for Cl, 0.111 ± 0.038 for NO3 , and 0.074 ± 0.012 for SO4 2−; whereas for B-watershed the mean concentrations were 0.169 ± 0.025 for Ca2+, 0.079 ± 0.016 for Mg2+, 0.018 ± 0.005 for K+, 0.192 ± 0.026 for Na+, 0.010 ± 0.010 for NH4 +, 0.065 ± 0.010 for Cl, 0.093 ± 0.025 for NO3 , and 0.087 ± 0.011 for SO4 2−.  相似文献   

4.
Efficient nitrification and denitrification of wastewater containing 1,700 mgl−1 of ammonium-nitrogen was achieved using aerobic granular sludge cultivated at medium-to-high organic loading rates. The cultivated granules were tested in a sequencing batch reactor (SBR) fed with 6.4 or 10.2 kg NH4+-N m−3 day−1, a loading significantly higher than that reported in literature. With alternating 2 h oxic and 2 h anoxic operation (OA) modes, removal rate was 45.5 mg NH4+-N g−1 volatile suspended solids−1 h−1 at 6.4 kg NH4+-N m−3 day−1 loading and 41.3 ± 2.0 at 10.2 kg NH4+-N m−3 day−1 loading. Following the 60 days SBR test, granules were intact. The fluorescence in situ hybridization and confocal laser scanning microscopy results indicate that the SBR-OA granules have a distribution with nitrifers outside and heterotrophs outside that can effectively expose functional strains to surrounding substrates at high concentrations with minimal mass transfer limit. This microbial alignment combined with the smooth granule surface achieved nitrification–denitrification of wastewaters containing high-strength ammonium using aerobic granules. Conversely, the SBR continuous aeration mode yielded a distribution with nitrifers outside and heterotrophs inside with an unsatisfactory denitrification rate and floating granules as gas likely accumulated deep in the granules.  相似文献   

5.
The antibacterial effect of cationic surfactants against the pure culture of phosphate (P)-accumulating bacterium Acinetobacter junii was investigated. The estimated EC50 values of the N-dodecylpyridinium chloride (DPC) for growth inhibition was 1.4±0.5 × 10−6 mol L−1 and for the inhibition of the P-uptake rates 7.3±2.6 × 10−5 mol L−1. The estimated EC50 values of the N-cetylpyridinium chloride (CPC) for growth inhibition was 4.9±1.3 × 10−7 mol L−1 and for the inhibition of the P-uptake rates 7.7±2.9 × 10−6 mol L−1. This suggests the importance of controlling the amounts of cationic surfactants in influent of the wastewater treatment systems in order to avoid the possible failure of the biological P removal from wastewaters.  相似文献   

6.
It is possible to cultivate aerobic granular sludge at a low organic loading rate and organics-to-total nitrogen (COD/N) ratio in wastewater in the reactor with typical geometry (height/diameter = 2.1, superficial air velocity = 6 mm/s). The noted nitrification efficiency was very high (99%). At the highest applied ammonia load (0.3 ± 0.002 mg NH4+–N g total suspended solids (TSS)−1 day−1, COD/N = 1), the dominating oxidized form of nitrogen was nitrite. Despite a constant aeration in the reactor, denitrification occurred in the structure of granules. Applied molecular techniques allowed the changes in the ammonia-oxidizing bacteria (AOB) community in granular sludge to be tracked. The major factor influencing AOB number and species composition was ammonia load. At the ammonia load of 0.3 ± 0.002 mg NH4+–N g TSS−1 day−1, a highly diverse AOB community covering bacteria belonging to both the Nitrosospira and Nitrosomonas genera accounted for ca. 40% of the total bacteria in the biomass.  相似文献   

7.
We investigated modulation by ATP, Mg2+, Na+, K+ and NH4 + and inhibition by ouabain of (Na+,K+)-ATPase activity in microsomal homogenates of whole zoeae I and decapodid III (formerly zoea IX) and whole-body and gill homogenates of juvenile and adult Amazon River shrimps, Macrobrachium amazonicum. (Na+,K+)-ATPase-specific activity was increased twofold in decapodid III compared to zoea I, juveniles and adults, suggesting an important role in this ontogenetic stage. The apparent affinity for ATP (K M = 0.09 ± 0.01 mmol L−1) of the decapodid III (Na+,K+)-ATPase, about twofold greater than the other stages, further highlights this relevance. Modulation of (Na+,K+)-ATPase activity by K+ also revealed a threefold greater affinity for K+ (K 0.5 = 0.91 ± 0.04 mmol L−1) in decapodid III than in other stages; NH4 + had no modulatory effect. The affinity for Na+ (K 0.5 = 13.2 ± 0.6 mmol L−1) of zoea I (Na+,K+)-ATPase was fourfold less than other stages. Modulation by Na+, Mg2+ and NH4 + obeyed cooperative kinetics, while K+ modulation exhibited Michaelis-Menten behavior. Rates of maximal Mg2+ stimulation of ouabain-insensitive ATPase activity differed in each ontogenetic stage, suggesting that Mg2+-stimulated ATPases other than (Na+,K+)-ATPase are present. Ouabain inhibition suggests that, among the various ATPase activities present in the different stages, Na+-ATPase may be involved in the ontogeny of osmoregulation in larval M. amazonicum. The NH4 +-stimulated, ouabain-insensitive ATPase activity seen in zoea I and decapodid III may reflect a stage-specific means of ammonia excretion since functional gills are absent in the early larval stages.  相似文献   

8.
This study examined the distribution pattern of aquaporin-2 (AQP2), relative medullary thickness (RMT) and urine properties in the bottlenose dolphin Tursiops truncatus and Baird’s beaked whale Berardius bairdii. Immunohistochemical studies revealed that AQP2 was localized in the collecting tubules/ducts of both species’ renicules, as in terrestrial mammals. The collecting ducts with AQP2 were thinner and arranged more densely in the dolphin than in the whale. RMT values in the renicule were moderate in both species, but were significantly higher in the dolphin (6.0 ± 0.9) than the whale (4.9 ± 0.7). Urine of the bottlenose dolphin is comparatively concentrated (osmolality: 1715.7 ± 279.4 mOsm kg−1, Na+: 490.1 ± 87.9 mmol l−1, Cl: 402.7 ± 79.6 mmol l−1, K+: 80.7 ± 25.8 mmol l−1, urea nitrogen: 703.5 ± 253.9 mmol l−1), while urine of the dead Baird’s beaked whale is less concentrated (osmolality: 837.5 ± 293.8 mOsm kg−1, Na+: 192.9 ± 81.5 mmol l−1, Cl: 159.9 ± 71.4 mmol l−1, K+: 44.3 ± 29.5 mmol l−1, urea nitrogen: 270.7 ± 120.3 mmol l−1). These data suggest it is possible that the differences in these renal morphological features may be related in some way to the difference in urine composition between the species, although further studies are necessary. M. Suzuki and N. Endo are equal contributors to this study.  相似文献   

9.
Zhang J  Wu P  Hao B  Yu Z 《Bioresource technology》2011,102(21):9866-9869
A strain YZN-001 was isolated from swine manure effluent and was identified as Pseudomonas stutzeri. It can utilise not only nitrate and nitrite, but also ammonium. The strain had the capability to fully remove as much as 275.08 mg L−1 NO3–N and 171.40 mg L−1 NO2–N under aerobic conditions. Furthermore, At 30 °C, the utilization of ammonium is approximately 95% by 18 h with a similar level removed by 72 h and 2 weeks at 10 and 4 °C, respectively. Triplicate sets of tightly sealed serum bottles were used to test the heterotrophic nitrifying ability of P. stutzeri YZN-001. The results showing that 39% of removed NH4+–N was completely oxidised to nitrogen gas by 18 h. Indicating that the strain has heterotrophic nitrification and aerobic denitrification abilities, with the notable ability to remove ammonium at low temperatures, demonstrating a potential using the strain for future application in waste water treatment.  相似文献   

10.
The mechanism of transbranchial excretion of total ammonia of brackish-water acclimated shore crabs, Carcinus maenas was examined using isolated, perfused gills. Applying physiological gradients of NH4Cl (100–200 μmol · l−1) directed from the haemolymph space to the bath showed that the efflux of total ammonia consisted of two components. The saturable component (excretion of NH4 +) greatly exceeded the linear component (diffusion of NH3). When an outwardly directed gradient (200 μmol · l−1) was applied, total ammonia in the perfusate was reduced by more than 50% during a single passage of saline through the gill. Effluxes of ammonia along the gradient were sensitive to basolateral dinitrophenol, ouabain, and Cs+ and to apical amiloride. Acetazolamide (1 mmol · l−1 basolateral) or Cl-free conditions had no substantial effects on ammonia flux, which was thus independent of both carbonic anhydrase mediated pH regulation and osmoregulatory NaCl uptake. When an inwardly directed gradient (200 μmol · l−1) was employed, influx rates were about 10-fold smaller and unaffected by basolateral ouabain (5 mmol · l−1) or dinitrophenol (0.5 mmol · l−1). Under symmetrical conditions (100 μmol · l−1 NH4Cl on both sides) ammonia was actively excreted against the gradient of total ammonia, which increased strongly during the experiment and against the gradient of the partial pressure of NH3. The active excretion rate was reduced to 7% of controls by basolateral dinitrophenol (0.5 mmol · l−1), to 44% by basolateral ouabain (5 mmol · l−1), to 46% by Na+-free conditions and to 42% by basolateral Cs+ (10 mmol · l−1), indicating basolateral membrane transport of NH4 + via the Na+/K+-ATPase and K+-channels and a second active, apically located, Na+ independent transport mechanism of NH4 +. Anterior gills, which are less capable of active ion uptake than posterior gills, exhibited even increased rates of active excretion of ammonia. We conclude that, under physiological conditions, branchial excretion of ammonia is a directed process with a high degree of effectiveness. It even allows active extrusion against an inwardly directed gradient, if necessary. Accepted: 11 March 1998  相似文献   

11.
Effluents of anaerobic digesters are an underestimated source of greenhouse gases, as they are often saturated with methane. A post-treatment with methane-oxidizing bacterial consortia could mitigate diffuse emissions at such sites. Semi-continuously fed stirred reactors were used as model systems to characterize the influence of the key parameters on the activity of these mixed methanotrophic communities. The addition of 140 mg L−1 NH4+–N had no significant influence on the activity nor did a temperature increase from 28°C to 35°C. On the other hand, addition of 0.64 mg L−1 of copper(II) increased the methane removal rate by a factor of 1.5 to 1.7 since the activity of particulate methane monooxygenase was enhanced. The influence of different concentrations of NaCl was also tested, as effluents of anaerobic digesters often contain salt levels up to 10 g NaCl L−1. At a concentration of 11 g NaCl L−1, almost no methane-oxidizing activity was observed in the reactors without copper addition. Yet, reactors with copper addition exhibited a sustained activity in the presence of NaCl. A colorimetric test based on naphthalene oxidation showed that soluble methane monooxygenase was inhibited by copper, suggesting that the particulate methane monooxygenase was the active enzyme and thus more salt resistant. The results obtained demonstrate that the treatment of methane-saturated effluents, even those with increased ammonium (up to 140 mg L−1 NH4+–N) and salt levels, can be mitigated by implementation of methane-oxidizing microbial consortia.  相似文献   

12.
A pyridine-degrading strain Gemmobacter sp. ZP-12, isolated from an activated sludge, was able to use pyridine as the sole carbon and nitrogen source for the growth. The strain could effectively degrade pyridine and remove TOC over a wide range of initial pyridine concentrations. The pyridine degradation rate for 100, 500, 1000, 1500 and 2000 mg/L was 2.90 ± 0.17; 13.72 ± 0.21, 20.40 ± 0.24, 31.09 ± 0.26, 27.63 ± 0.17 mg/L/h, respectively. During the pyridine degraded, a large amount of NH4+-N was released and accumulated. The accumulation of NH4+-N increased with the increase of pyridine concentration. For further removing the NH4+-N producing in pyridine degradation, an aerobic-moving bed biofilm reactor coupled with intermittent-aeration membrane biological reactor (a-MBBR-IMBR) was constructed, in which the strain and the aerobic / anoxic mixed sludge combined to remove the pollutants in the wastewater containing 500 mg/L pyridine. After 96 h of operation, the final TOC removal efficiency was 96.5 ± 1.05 %. The average residual concentration of NO3-N and NH4+-N was respectively 9.09 ± 4.13 mg/L and 7.85 ± 3.88 mg/L. The study provides a viable option for treating pyridine wastewater.  相似文献   

13.
Providencia rettgeri strain YL was found to be efficient in heterotrophic nitrogen removal under aerobic conditions. Maximum removal of NH4 +–N occurred under the conditions of pH 7 and supplemented with glucose as the carbon source. Inorganic ions such as Mg2+, Mn2+, and Zn2+ largely influenced the growth and nitrogen removal efficiency. A quantitative detection of nitrogen gas by gas chromatography was conducted to evaluate the nitrogen removal by strain YL. From the nitrogen balance during heterotrophic growth with 180 mg/l of NH4 +–N, 44.5% of NH4 +–N was in the form of N2 and 49.7% was found in biomass, with only a trace amount of either nitrite or nitrate. The utilization of nitrite and nitrate during the ammonium removal process demonstrated that the nitrogen removal pathway by strain YL was heterotrophic nitrification-aerobic denitrification. A further enzyme assay of nitrate reductase and nitrite reductase activity under the aerobic condition confirmed this nitrogen removal pathway.  相似文献   

14.
The effects of feeding on both acid–base and ion exchange with the environment, and internal acid–base and ion balance, in freshwater and seawater-acclimated flounder were investigated. Following voluntary feeding on a meal of 2.5–5% body mass and subsequent gastric acid secretion, no systemic alkaline tide or respiratory compensation was observed in either group. Ammonia efflux rates more than doubled from 489 ± 35 and 555 ± 64 μmol kg−1 h−1 under control conditions to 1,228 ± 127 and 1,300 ± 154 μmol kg−1 h−1 post-feeding in freshwater and seawater-acclimated fish, respectively. Based on predictions of gastric acid secreted during digestion, we calculated net postprandial internal base gains (i.e., HCO3 secreted from gastric parietal cells into the blood) of 3.4 mmol kg−1 in seawater and 9.1 mmol kg−1 in freshwater-acclimated flounder. However, net fluxes of ammonia, titratable alkalinity, Na+ and Cl indicated that branchial Cl/HCO3 and Na+/H+ exchange played minimal roles in counteracting these predicted base gains and cannot explain the absence of alkaline tide. Instead, intestinal Cl/HCO3 exchange appears to be enhanced after feeding in both freshwater and seawater flounder. This implicates the intestine rather than the gills as a potential route of postprandial base excretion in fish, to compensate for gastric acid secretion.  相似文献   

15.
The harmful effects of surfactants to the environment are well known. We were interested in investigating their potential toxicity in a pure culture of Acinetobacter junii, a phosphate (P)-accumulating bacterium. Results showed a high acute toxicity of sodium dodecyl sulfate (SDS) and hexadecyltrimethylammonium bromide (HDTMA) against A. junii. The estimated EC50 values of the HDTMA for the inhibition of CFUs in the pure culture of A. junii was 3.27 ± 1.12 × 10−7 mol L−1 and for the inhibition of the P-uptake rates 2.47 ± 0.51 × 10−6 mol L−1. For SDS, estimated EC50 values for the inhibition of CFUs in the pure culture of A. junii was 5.00 ± 2.95 × 10−6 mol L−1 and for the inhibition of the P-uptake rates 3.33 ± 0.96 × 10−4 mol L−1. The obtained EC50 values in the standardised yeast toxicity test using Saccharomyces cerevisiae were 3.03 ± 0.38 × 10−4 and 4.33 ± 0.32 × 10−5 mol L−1 for SDS and HDTMA, respectively. These results emphasized the need to control concentrations of surfactants entering the activated sludge system. The negative effects of these toxicants could greatly decrease populations of P-accumulating bacteria, as well as eukaryotic organisms, inhabiting activated sludge systems, which in turn could result in the decrease of the system efficiency.  相似文献   

16.
Withania somnifera is an important medicinal plant that contains withanolides and withaferins, both bioactive compounds. We have tested the effects of macroelements and nitrogen source in W. somnifera cell suspension cultures with the aim of optimizing the production of biomass and withanolide A. The effects of the macroelements NH4NO3, KNO3, CaCl2, MgSO4 and KH2PO4 at concentrations of 0.0, 0.5, 1.0, 1.5 and 2.0× strength and of the nitrogen source [NH4 +/NO3 (mM/mM) ratio of: 0.00/18.80, 7.19/18.80, 14.38/18.80, 21.57/18.80, 28.75/18.80, 14.38/0.00, 14.38/9.40, 14.38/18.80, 14.38/28.20, and 14.38/37.60 (mM)] in Murashige and Skoog medium were tested for biomass and withanolide A production. The highest accumulation of biomass [147.81 g l−1 fresh weight (FW) and 14.02 g l−1 (dry weight (DW)] was recorded in the medium containing a 0.5× concentration of NH4NO3, and the highest production of withanolide A content was recorded in the medium with 2.0× KNO3 (4.36 mg g−1 DW). The NH4 +/NO3 ratio also influenced cell growth and withanolide A production, with both parameters being larger when the NO3 concentration was higher than that of NH4 +. Maximum biomass growth (110.45 g l−1 FW and 9.29 g l−1 DW) was achieved at an NH4 +/NO3 ratio of 7.19/18.80, while withanolide A production was greatest (3.96 mg g−1 DW) when the NH4 +/NO3 ratio was 14.38/37.60 mM.  相似文献   

17.
Animal waste causes environmental problems like eutrophication of ground and surface water or the pollution of the atmosphere because of its high NH4 + content. The aim of our study was to fix the nitrogen of swine waste as biomass. Therefore, an isolated alga, Chlorella sp., and bacteria naturally living in liquid manure were grown in batch cultures (containing diluted swine waste supplied with a nutrient solution) and continuous cultures (undiluted liquid manure) to achieve reduction of NH4 + and total organic carbon (TOC) contents. For continuous cultivation, a photobioreactor of our own design was used. The batch cultivation of Chlorella sp. and bacteria in swine waste resulted in good growth of both groups of organisms and in a reduction of 25% NH4 + and 80% TOC. In the continuous cultivation a steady state was not achieved owing to a change in the composition of the bacterial population. NH4 + was totally removed, but NO2 (up to 100 mM) was transiently released. NO3 was not detected. These effects might be explained by the presence of heterotrophic nitrifiers, which are able to oxidize NH4 + to NO2 and to reduce NO2 to gaseous compounds. Received: 21 January 1999 / Received revision: 9 March 1999 / Accepted: 14 March 1999  相似文献   

18.
Oxygen consumption was measured in five Dermophis mexicanus and averaged (±SEM) 0.047 ± 0.004 ml O2 g−1 h−1. Carbon dioxide production averaged 0.053 ± 0.005 ml CO2 g−1 h−1 in the same five animals 1 week later. This metabolic rate is similar to metabolic rates of other Gymnophionans but lower than metabolic rates reported for Anurans and Urodeles. Total nitrogen excretion averaged 1.37 μmol N g−1 h−1 which is higher than that found for other amphibians. Of this, 82.5% (1.13 μmol N g−1 h−1) was in the form of urea while 17.5% (0.24 μmol N g−1 h−1) was in the form of NH3 + NH+ 4. Such ureotelism is typical of terrestrial amphibians like D. mexicanus. Osmotic water flux averaged 0.0193 ml g−1 h−1 in control (sham injected) animals and was not significantly altered by injection of either arginine vasotocin or mesotocin. This osmotic flux is similar to osmotic fluxes found for other terrestrial amphibians. The combined data suggest that metabolism in D. mexicanus is, like most other Gymnophionans, lower than other amphibians. The high rates of nitrogen (especially urea) excretion suggests that this fossorial animal accumulates urea like other burrowing amphibians. Accepted: 27 June 2000  相似文献   

19.
20.
In a study screening anaerobic microbes utilizing d-galactitol as a fermentable carbon source, four bacterial strains were isolated from an enrichment culture producing H2, ethanol, butanol, acetic acid, butyric acid, and hexanoic acid. Among these isolates, strain BS-1 produced hexanoic acid as a major metabolic product of anaerobic fermentation with d-galactitol. Strain BS-1 belonged to the genus Clostridium based on phylogenetic analysis using 16S rRNA gene sequences, and the most closely related strain was Clostridium sporosphaeroides DSM 1294T, with 94.4% 16S rRNA gene similarity. In batch cultures, Clostridium sp. BS-1 produced 550 ± 31 mL L−1 of H2, 0.36 ± 0.01 g L−1 of acetic acid, 0.44 ± 0.01 g L−1 of butyric acid, and 0.98 ± 0.03 g L−1 of hexanoic acid in a 4-day cultivation. The production of hexanoic acid increased to 1.22 and 1.73 g L−1 with the addition of 1.5 g L−1 of sodium acetate and 100 mM 2-(N-morpholino)ethanesulfonic acid (MES), respectively. Especially when 1.5 g L−1 of sodium acetate and 100 mM MES were added simultaneously, the production of hexanoic acid increased up to 2.99 g L−1. Without adding sodium acetate, 2.75 g L−1 of hexanoic acid production from d-galactitol was achieved using a coculture of Clostridium sp. BS-1 and one of the isolates, Clostridium sp. BS-7, in the presence of 100 mM MES. In addition, volatile fatty acid (VFA) production by Clostridium sp. BS-1 from d-galactitol and d-glucose was enhanced when a more reduced culture redox potential (CRP) was applied via addition of Na2S·9H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号