首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dinitrotoluene (DNT) is a nitroaromatic explosive that exists as six isomers; two major isomers (2,4- and 2,6-DNT) and four minor isomers (2,3-, 2,5-, 3,4-, and 3,5-DNT). DNT has been found in soil, surface water, and groundwater near ammunition production plants. The major isomers of DNT are classified as "likely to cause cancer in humans."In vitro studies have provided conflicting data regarding the genotoxicity of the minor isomers. Studies indicate that metabolism in the gut and liver are necessary to convert DNT to genotoxic compounds. As such, in the present study the genotoxicity of isomers of DNT was assessed using two in vivo genotoxicity assays. The Comet assay was used to detect DNA damage in liver cells from male Sprague-Dawley rats following oral exposure (14-day) to individual isomers of DNT. The micronucleus assay was conducted using flow cytometric analysis to detect chromosomal damage in peripheral blood. Treatment with 2,3-, 3,4-, 2,4-, 2,5- and 3,5-DNT did not induce DNA damage in liver cells or increase the frequency of micronucleated reticulocytes (MN-RET) in peripheral blood at the doses tested. Treatment with 2,6-DNT induced DNA damage in liver tissue at all doses tested, but did not increase the frequency of micronucleated reticulocytes (MN-RET) in peripheral blood. Thus, 2,4-DNT and the minor isomers were not genotoxic under these test conditions, while 2,6-DNT was genotoxic in the target tissue, the liver. These results support previous research which indicated that the hepatocarcinogenicity of technical grade DNT (TG-DNT) could be attributed to the 2,6-DNT isomer.  相似文献   

2.
Pioglitazone is a prototype of thiazolidinediones, used for the treatment of type 2 diabetes mellitus. Previous studies suggest that pioglitazone might cause DNA damage by generation of oxidative species. In this study, we investigated the mutagenic effects of pioglitazone using sister chromatid exchanges (SCEs), and chromosomal aberrations (CAs) assays in cultured human lymphocytes. In addition, oxidative DNA damage was evaluated in cells culture by measuring 8-hydroxy-2'-deoxyguanosine (8-OH-dG) marker. We also investigated the possible protective effects of vitamin B12, which is associated with DNA repair, on DNA damage induced by pioglitazone. Treatment of the human lymphocytes with pioglitazone (100μM) significantly increases the frequency of SCEs and CAs (p<0.01). In addition, significant elevation in 8-OH-dG release from lymphocytes was observed after treatment with pioglitazone (p<0.01). On the other hand, pretreatment of cultures with vitamin B12 (13.5μg/ml) protected lymphocytes from the genotoxic effect of pioglitazone. Therefore, we conclude that pioglitazone is genotoxic, and it induces chromosomal and oxidative DNA damage in cultured lymphocytes and this toxicity is prevented by pretreatment with vitamin B12.  相似文献   

3.
Inappropriate survival signaling after DNA damage may facilitate clonal expansion of genetically compromised cells, and it is known that protein tyrosine phosphatase (PTP) inhibitors activate key survival pathways. In this study we employed the genotoxicant, hexavalent chromium [Cr(VI)], which is a well-documented carcinogen of occupational and environmental concern. Cr(VI) induces a complex array of DNA damage, including DNA double strand breaks (DSBs). We recently reported that PTP inhibition bypassed cell cycle arrest and abrogated Cr(VI)-induced clonogenic lethality. Notably, PTP inhibition resulted in an increase in forward mutations at the HPRT locus, supporting the hypothesis that PTP inhibition in the presence of DNA damage may lead to genomic instability (GIN), via cell cycle checkpoint bypass. The aim of the present study was to determine the effect of PTP inhibition on DNA DSB formation and chromosomal integrity after Cr(VI) exposure. Diploid human lung fibroblasts were treated with Cr(VI) in the presence or absence of the PTP inhibitor, sodium orthovanadate, for up to 24h, and cells were analyzed for DNA DSBs and chromosomal damage. Cr(VI) treatment induced a rapid increase in DNA DSBs, and a significant increase in total chromosomal damage (chromatid breaks and gaps) after 24h. In sharp contrast, PTP inhibition abrogated both DNA DSBs and chromosomal damage after Cr(VI) treatment. In summary, PTP inhibition in the face of Cr(VI) genotoxic stress decreases chromosomal instability (CIN) but increases mutagenesis, which we postulate to be a result of error-prone DNA repair.  相似文献   

4.

Background

In a previous study, we showed that individuals who had participated in oil clean-up tasks after the wreckage of the Prestige presented an increase of structural chromosomal alterations two years after the acute exposure had occurred. Other studies have also reported the presence of DNA damage during acute oil exposure, but little is known about the long term persistence of chromosomal alterations, which can be considered as a marker of cancer risk.

Objectives

We analyzed whether the breakpoints involved in chromosomal damage can help to assess the risk of cancer as well as to investigate their possible association with DNA repair efficiency.

Methods

Cytogenetic analyses were carried out on the same individuals of our previous study and DNA repair errors were assessed in cultures with aphidicolin.

Results

Three chromosomal bands, 2q21, 3q27 and 5q31, were most affected by acute oil exposure. The dysfunction in DNA repair mechanisms, expressed as chromosomal damage, was significantly higher in exposed-oil participants than in those not exposed (p= 0.016).

Conclusion

The present study shows that breaks in 2q21, 3q27 and 5q31 chromosomal bands, which are commonly involved in hematological cancer, could be considered useful genotoxic oil biomarkers. Moreover, breakages in these bands could induce chromosomal instability, which can explain the increased risk of cancer (leukemia and lymphomas) reported in chronically benzene-exposed individuals. In addition, it has been determined that the individuals who participated in clean-up of the oil spill presented an alteration of their DNA repair mechanisms two years after exposure.  相似文献   

5.
Formaldehyde (FA) interacts with biological molecules such as DNA and it induces DNA-protein cross-links (DPCs), oxidative stress, reactive oxygen species (ROS), methylation, chromosomal damage, fragmentation, and adducts of DNA, which are considered the most important genotoxic effects caused by exposure to FA. The purpose of this study was to evaluate the percentage of DNA fragmentation on lymphocytes and spermatozoa from Wistar rats exposed to different doses of FA. The results about the percentage of fragmentation of DNA in lymphocytes and spermatozoa, were statistical different from controlled group versus treated groups respectively to (p < 0.05). Pathological changes were observed in the seminiferous tubules, especially in rats exposed to 30 mg/kg of FA. This study provided additional evidence supporting that FA induces DNA strand breaks in both cells and therefore genotoxic damage in Wistar rats.  相似文献   

6.
Hydroquinone (HQ) is found in natural and anthropogenic sources including food, cosmetics, cigarette smoke, and industrial products. In addition to ingestion and dermal absorption, human exposure to HQ may also occur by inhaling cigarette smoke or polluted air. The adverse effects of HQ on respiratory systems have been studied, but genotoxicity HQ on human lung cells is unclear. The aim of this study was to investigate the cytotoxicity and genotoxicity of HQ in human lung alveolar epithelial cells (A549). We found that HQ induced a dose response in cell growth inhibition and DNA damage which was associated with an increase in oxidative stress. Cytotoxicity results demonstrated that HQ was most toxic after 24 h (LC50?=?33 μM) and less toxic after 1 h exposure (LC50?=?59 μM). Genotoxicity of HQ was measured using the Comet assay, H2AX phosphorylation, and chromosome aberration formation. Results from the comet assay revealed that DNA damage was highest during the earlier hours of exposure (1 and 6 h) and thereafter was reduced. A similar pattern was observed for H2AX phosphorylation suggesting that damage DNA may be repaired in later exposure hours. An increase in chromosomal aberration corresponded with maximal DNA damage which further confirmed the genotoxic effects of HQ. To investigate whether oxidative stress was involved in the cytotoxic and genotoxic effects of HQ, cellular glutathione and 8-Oxo-deoguanisone (8-Oxo-dG) formation were measured. A decrease in the reduced glutathione (GSH) and an increase oxidized glutathione (GSSG) was observed during the early hours of exposure which corresponded with elevated 8-Oxo-dG adducts. Together these results demonstrate that HQ exerts its cytotoxic and genotoxic effects in A549 lung cells, probably through DNA damage via oxidative stress.  相似文献   

7.
Flatfishes, turbots (Scophthalmus maximus), were injected intraperitoneally with two doses of fuel oil number 2. Biliary metabolites were evaluated by fixed fluorescence to verify the efficiency of intoxication. Ethoxyresorufin-O-deethylase (EROD) activity was compared with chromosomal damage measured by flow cytometry. The analysis of biliary metabolites showed a good dose–response relation and constitutes a clear reference for the subsequent measurements. Comparing flow cytometry and EROD results, a shorter delay of response for EROD activity was obtained, but chromosomal damage was significant only after 1 week. The persistence of the EROD response was shorter, while the genotoxic signal still persisted after 1 month. The measurement of chromosomal damage allowed a good differentiation between the two tested doses. In the case of EROD activity, the results were less clear. The results suggest that within a few weeks after exposure to fuel oil number 2, the measurements of chromosomal damage by flow cytometry can be used to detect a dose-dependant genotoxic response in fish.  相似文献   

8.
Flatfishes, turbots (Scophthalmus maximus), were injected intraperitoneally with two doses of fuel oil number 2. Biliary metabolites were evaluated by fixed fluorescence to verify the efficiency of intoxication. Ethoxyresorufin-O-deethylase (EROD) activity was compared with chromosomal damage measured by flow cytometry. The analysis of biliary metabolites showed a good dose-response relation and constitutes a clear reference for the subsequent measurements. Comparing flow cytometry and EROD results, a shorter delay of response for EROD activity was obtained, but chromosomal damage was significant only after 1 week. The persistence of the EROD response was shorter, while the genotoxic signal still persisted after 1 month. The measurement of chromosomal damage allowed a good differentiation between the two tested doses. In the case of EROD activity, the results were less clear. The results suggest that within a few weeks after exposure to fuel oil number 2, the measurements of chromosomal damage by flow cytometry can be used to detect a dose-dependant genotoxic response in fish.  相似文献   

9.
Earthworms are useful indicators of soil quality and are widely used as model organisms in terrestrial ecotoxicology. The assessment of genotoxic effects caused by environmental pollutants is of great concern because of their relevance in carcinogenesis. In this work, the earthworm Eisenia andrei was exposed for 10 and 28 days to artificial standard soil contaminated with environmentally relevant concentrations of benzo[a]pyrene (B[a]P) (0.1, 10, 50ppm) and 2,3,7,8-tetrachloro-dibenzo-para-dioxin (TCDD) (1×10(-5), 1×10(-4), 2×10(-3)ppm). Micronucleus (MNi) induction was evaluated in earthworm coelomocytes after DNA staining with the fluorescent dye DAPI. In the same cells, the DNA damage was assessed by means of the alkaline comet assay. Induction of MNi in coelomocytes, identified according to standard criteria, was demonstrated. B[a]P exposure for 10 and 28 days induced a significant increase in MNi frequency. In TCDD-treated earthworms, a significant effect on chromosomal damage was observed at all the concentrations used; surprisingly, greater effects were induced in animals exposed to the lowest concentration (1×10(-5)ppm). The data of the comet assay revealed a significant increase in the level of DNA damage in coelomocytes of earthworms exposed for 10 and 28 days to the different concentrations of B[a]P and TCDD. The results show that the comet and MN assays were able to reveal genotoxic effects in earthworms exposed even to the lowest concentrations of both chemicals tested here. The combined application in E. andrei of the comet assay and the micronucleus test, which reflect different biological mechanisms, may be suggested to identify genotoxic effects induced in these invertebrates by environmental contaminants in terrestrial ecosystems.  相似文献   

10.
Huang D  Zhang Y  Wang Y  Xie Z  Ji W 《Mutation research》2007,629(2):81-88
Single cell gel electrophoresis or comet assay, micronucleus (MN) test and global DNA methylation detection were used to assess the genotoxicity in toad Bufo raddei exposed to the petrochemical (mainly oil and phenol) polluted area in Lanzhou Region (LZR) comparing with a relatively unpolluted area in Liujiaxia Region (LJXR). The results from the present study indicated that DNA damage and MN frequency in toad from LZR were significantly higher than those from LJXR at the same sampling month, whereas the degree of global DNA methylation was lower, which implies that the petrochemical contaminants at environmental level in LZR were genotoxic to B. raddei. The degree of genotoxic damage was obviously related with the extent of pollution among the three sampling months in LZR. The significantly positive correlations between DNA damage and concentrations of oil and/or phenol existed in liver cells but erythrocytes, implying that liver is more suitable as a sentinel tissue for the assessment of genotoxic impact of low-level contamination. The results from both comet assay and global DNA methylation detection on liver cells showed that the genotoxicity varied significantly with oil and/or phenol concentrations, suggesting that these two methods are relatively sensitive and suitable for monitoring the genotoxicity of petrochemical pollutants on amphibians.  相似文献   

11.
Malathion is a well known pesticide and is commonly used in many agricultural and non-agricultural settings. Its toxicity has been attributed primarily to the accumulation of acetylcholine (Ach) at nerve junctions, due to the inhibition of acetylcholinesterase (AChE), and consequently overstimulation of the nicotinic and muscarinic receptors. However, the genotoxicity of malathion has not been adequately studied; published studies suggest a weak interaction with the genetic material. In the present study, we investigated the genotoxic potential of malathion in bone marrow cells and peripheral blood obtained from Sprague-Dawley rats using chromosomal aberrations (CAs), mitotic index (MI), and DNA damage as toxicological endpoints. Four groups of four male rats, each weighing approximately 60 ± 2g, were injected intraperitoneally (i.p.) once a day for five days with doses of 2.5, 5, 10, and 20mg/kg body weight (BW) of malathion dissolved in 1% DMSO. The control group was made up of four animals injected with 1% DMSO. All the animals were sacrificed 24h after the fifth day treatment. Chromosome preparations were obtained from bone marrow cells following standard protocols. DNA damage in peripheral blood leukocytes was determined using alkaline single-cell gel electrophoresis (comet assay). Malathion exposure significantly increased the number of structural chromosomal aberrations (CAs) and the percentages of DNA damage, and decreased the mitotic index (MI) in treated groups when compared with the control group. Our results demonstrate that malathion has a clastogenic/genotoxic potential as measured by the bone marrow CA and comet assay in Sprague-Dawley rats.  相似文献   

12.
The herbicide 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB) is principally used in the USA on peanuts, soybeans and alfalfa. In Europe, it is used on undersown spring barley and grassland (with clover). The genetic toxicity in vitro of the dimethylamine salt of 2,4-DB was examined by employing a range of end points including gene mutation in bacteria (Ames test) and mammalian cell cultures (CHO/HGPRT assay), cytogenetic abnormalities in mammalian cells (CHO/chromosomal aberration assay), and induction of DNA damage and repair in rat hepatocytes. There were no indications of genotoxic potential for 2,4-DB in the first three of these assays. One of the two criteria for a positive response in the UDS assay was exceeded but the increases did not exceed the second criteria for a positive response. The test material was therefore evaluated as weakly active in this assay. The weight of the evidence clearly indicates that 2, 4-DB is not genotoxic to mammals and are consistent with the reported lack of carcinogenic potential for 2,4-DB in both mice and rats.  相似文献   

13.
During genotoxic stress, reactive oxygen species hydrogen peroxide (H(2)O(2)) is a prime mediator of the DNA damage response. Telomeres function both to assist in DNA damage repair and to inhibit chromosomal end-to-end fusion. Here, we show that telomere dysfunction renders cells susceptible to H(2)O(2), via generation of multichromosomal fusion and chromosomal fragments. H(2)O(2) caused formation of multichromosomal end-to-end fusions involving more than three chromosomes, preferentially when telomeres were erosive. Interestingly, extensive chromosomal fragmentation (yielding small-sized fragments) occurred only in cells exhibiting such multichromosomal fusions. Telomeres were absent from fusion points, being rather present in the small fragments, indicating that H(2)O(2) cleaves chromosomal regions adjacent to telomeres. Restoration of telomere function or addition of the antioxidant N-acetylcysteine prevented development of chromosomal aberrations and rescued the observed hypersensitivity to H(2)O(2). Thus, chromosomal regions adjacent to telomeres become sensitive to reactive oxygen species hydrogen peroxide when telomeres are dysfunctional, and are cleaved to produce multichromosomal fusions and small chromosomal fragments bearing the telomeres.  相似文献   

14.
Exposure to genotoxic carcinogens in tobacco smoke is a major cause of lung cancer. However, the effect this has on DNA copy number and genomic stability during lung carcinogenesis is unclear. Here we used bacterial artificial chromosome array-based comparative genomic hybridization to examine the effect of NNK, a potent human lung carcinogen present in tobacco smoke, on the major genomic changes occurring during mouse lung adenocarcinogenesis. Observed were significantly more gross chromosomal changes in NNK-induced tumors compared with the spontaneous tumors. An average of 5.6 chromosomes were affected by large-scale changes in DNA copy number per NNK-induced tumor compared with only 2.0 in spontaneous lung tumors (p = 0.017). Further analysis showed that gains on chromosomes 6 and 8, and losses on chromosomes 11 and 14 were more common in NNK-induced tumors (p 相似文献   

15.
The faithful repair of DNA damage, especially chromosomal double-strand breaks (DSBs), is crucial for genomic integrity. We have previously shown that securin interacts with the Ku70/80 heterodimer of the DSB non-homologous DNA end-joining (NHEJ) repair machinery. Here we demonstrate that securin deficiency compromises cell survival and proliferation, but only after genotoxic stress. Securin(-/-) cells show a significant increase in gross chromosomal rearrangements and chromatid breaks after DNA damage, and also reveal an altered pattern of end resection in an NHEJ assay in comparison with securin(+/+) cells. These data suggest that securin has a key role in the maintenance of genomic stability after DNA damage, thereby providing a previously unknown mechanism for regulating tumour progression.  相似文献   

16.
The purpose of these guidelines is to provide concise guidance on the planning, performing and interpretation of studies to monitor groups or individuals exposed to genotoxic agents. Most human carcinogens are genotoxic but not all genotoxic agents have been shown to be carcinogenic in humans. Although the main interest in these studies is due to the association of genotoxicity with carcinogenicity, there is also an inherent interest in monitoring human genotoxicity independently of cancer as an endpoint.The most often studied genotoxicity endpoints have been selected for inclusion in this document and they are structural and numerical chromosomal aberrations assessed using cytogenetic methods (classical chromosomal aberration analysis (CA), fluorescence in situ hybridisation (FISH), micronuclei (MN)); DNA damage (adducts, strand breaks, crosslinking, alkali-labile sites) assessed using bio-chemical/electrophoretic assays or sister chromatid exchanges (SCE); protein adducts; and hypoxanthine-guanine phosphoribosyltransferase (HPRT) mutations. The document does not consider germ cells or gene mutation assays other than HPRT or markers of oxidative stress, which have been applied on a more limited scale.  相似文献   

17.
The present in vitro and in vivo experiments were undertaken to clarify the genotoxic potential of the hydroxyanthrachinone aloeemodin which can be found in different plant derived products for therapy of constipation. The results demonstrate that aloeemodin is able to induce mutagenic effects in vitro. Positive results were obtained in the chromosomal aberration assay with CHO cells, as well as in the Salmonella reverse mutation assay (frameshift mutations in strains TA 1537, TA 1538 and TA 98). No mutagenic potential of aloeemodin, however, was observed in the gene mutation assay with mammalian cells in vitro (HPRT assay in V79 cells). Each assay was performed in the presence and absence of an extrinsic metabolic activation system (S9-mix). In in vivo studies (micronucleus assay in bone marrow cells of NMRI mice; chromosome aberration assay in bone marrow cells of Wistar rats; mouse spot test [DBA/2J × NMRI]) no indication of a mutagenic activity of aloeemodin was found. Information about a possible reaction of aloeemodin with DNA was derived from an in vivo UDS assay. Hepatocytes of aloeemodin-treated male Wistar rats did not show DNA damage via repair synthesis. All these data suggest that aloeemodin is able to interact with DNA under certain in vitro conditions. However, in vivo the results that were negative did not indicate a genotoxic potential. Therefore, it may be assumed that a genotoxic risk for man might be unlikely.  相似文献   

18.
Here we examined the role of cellular vitamin C in genotoxicity of carcinogenic chromium(VI) that requires reduction to induce DNA damage. In the presence of ascorbate (Asc), low 0.2–2 μM doses of Cr(VI) caused 10–15 times more chromosomal breakage in primary human bronchial epithelial cells or lung fibroblasts. DNA double-strand breaks (DSB) were preferentially generated in G2 phase as detected by colocalization of γH2AX and 53BP1 foci in cyclin B1-expressing cells. Asc dramatically increased the formation of centromere-negative micronuclei, demonstrating that induced DSB were inefficiently repaired. DSB in G2 cells were caused by aberrant mismatch repair of Cr damage in replicated DNA, as DNA polymerase inhibitor aphidicolin and silencing of MSH2 or MLH1 by shRNA suppressed induction of γH2AX and micronuclei. Cr(VI) was also up to 10 times more mutagenic in cells containing Asc. Increasing Asc concentrations generated progressively more mutations and DSB, revealing the genotoxic potential of otherwise nontoxic Cr(VI) doses. Asc amplified genotoxicity of Cr(VI) by altering the spectrum of DNA damage, as total Cr-DNA binding was unchanged and post-Cr loading of Asc exhibited no effects. Collectively, these studies demonstrated that Asc-dependent metabolism is the main source of genotoxic and mutagenic damage in Cr(VI)-exposed cells.  相似文献   

19.
The alkaline single cell gel electrophoresis (comet) assay was applied to study genotoxic properties of two inhalation anesthetics-halothane and isoflurane-in human peripheral blood lymphocytes (PBL). The cells were exposed in vitro to either halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) or isoflurane (1-chloro-2,2,2-trifluoroethyl difluoromethyl ether) at concentrations 0.1-10 mM in DMSO. The anesthetics-induced DNA strand breaks as well as alkali-labile sites were measured as total comet length (i.e., increase of a DNA migration). Both analysed drugs were capable of increasing DNA migration in a dose-dependent manner. In experiments conducted at two different electrophoretic conditions (0. 56 and 0.78 V/cm), halothane was able to increase DNA migration to a higher extent than isoflurane. The comet assay detects DNA strand breaks induced directly by genotoxic agents as well as DNA degradation due to cell death. For this reason a contribution of toxicity in the observed effects was examined. We tested whether the exposed PBL were able to repair halothane- and isoflurane-induced DNA damage. The treated cells were incubated in a drug-free medium at 37 degrees C for 120 min to allow processing of the induced DNA damage. PBL exposed to isoflurane at 1 mM were able to complete repair within 60 min whereas for halothane a similar result was obtained at a concentration lower by one order of magnitude: the cells exposed to halothane at 1 mM removed the damage within 120 min only partly. We conclude that the increase of DNA migration induced in PBL by isoflurane at 1 mM and by halothane at 0.1 mM was not a result of cell death-associated DNA degradation but was caused by genotoxic action of the drugs. The DNA damage detected after the exposure to halothane at 1 mM was in part a result of DNA fragmentation due to cell death.  相似文献   

20.
The mutagenic and carcinogenic potency of betel-nut components is well established. This study was undertaken to determine the genotoxic potency of an aqueous extract of raw betel nut (AEBN) in relation to the endogenous glutathione (GSH) level in mouse bone marrow cells (BMC) and human peripheral blood lymphocytes (PBLs), and to find out whether arecoline (ARC), an alkaloid of betel nut, could generate reactive oxygen species (ROS) in these cells. It was observed that AEBN has genotoxic properties, which is further enhanced by depletion of endogenous GSH levels. However, the degree of enhancement varies with the type of parameter and cell system studied. The present data indicate that the generation of ROS by ARC could partially contribute to the induction of chromosomal aberrations (CAs), since the frequency of ARC-induced CAs was reduced either by post-treatment with superoxide dismutase (SOD) or in anoxic conditions. However, the induction of sister chromatid exchanges (SCEs) probably involves p53-dependent changes in cell proliferation and allowing some repair of DNA damage. The extent of damage for each parameter was higher when the mice were exposed to AEBN for 30 days than 5 days. Longer exposure showed higher level of p53 expression in mouse BMC, which could block the damaged cells from proliferation and allow the cells to repair the DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号