首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A congenital cataract present in guinea pigs provided a unique opportunity to study a hereditary lens diseases at the molecular level. ζ-crystallin, one of the most abundant guinea pig lens proteins, was found to be altered in the lens of cataractous animals. Several ζ-crystallin cDNA clones were isolated from a cataractous lens library and found to contain a 102-bp deletion towards the 3′ end of the coding region. The deletion does not interfere with the reading frame but results in a protein 34 amino acids shorter. Sequence analysis of a normal genomic ζ-crystallin clone revealed that the missing 102-bp fragment corresponds to an entire exon (exon 7). PCR analysis of the genomic DNA isolated from cataractous animals showed that exon 7, though missing from the mRNA, is intact in the cataractous genome. Further sequence analysis of the α-crystallin gene disclosed a dinucleotide delection of the universal AG at the acceptor splice-site of intron 6 of the mutant gene. The presence of this mutation results in the skipping of exon 7 during the mRNA processing which in turn results in the altered ζ-crystallin protein. This if the first time a genomic mutation in an enzyme/crytallin gene has been directly linked to a congenital cataract.  相似文献   

2.
3.
A congenital cataract present in guinea pigs provided a unique opportunity to study a hereditary lens disease at the molecular level. zeta-Crystallin, one of the most abundant guinea pig lens proteins, was found to be altered in the lens of cataractous animals. Several zeta-crystallin cDNA clones were isolated from a cataractous lens library and found to contain a 102-bp deletion towards the 3' end of the coding region. This deletion does not interfere with the reading frame but results in a protein 34 amino acids shorter. Sequence analysis of a normal genomic zeta-crystallin clone revealed that the missing 102-bp fragment corresponds to an entire exon (exon 7). PCR analysis of the genomic DNA isolated from cataractous animals showed that exon 7, though missing from the mRNA, is intact in the cataractous genome. Further sequence analysis of the zeta-crystallin gene disclosed a dinucleotide deletion of the universal AG at the acceptor splice-site of intron 6 of the mutant gene. The presence of this mutation results in the skipping of exon 7 during the mRNA processing which in turn results in the altered zeta-crystallin protein. This is the first time a genomic mutation in an enzyme/crystallin gene has been directly linked to a congenital cataract.  相似文献   

4.
5.
Our previous studies have demonstrated that lens epithelial damage by excessive nitric oxide causes an elevation in lens opacification in UPL rats, and it has been reported that interferon-gamma production in lens epithelial cells is involved in cataract development. In this study, we investigated the involvement of interleukin (IL)-18, which leads to interferon-gamma, in UPL rat lenses. The opacification of UPL rat lenses starts at 39 days of age. The gene expression levels causing IL-18 activation (IL-18, IL-18 receptor and caspase-1) are increased at 32 days of age, and the expression of mature IL-18 protein in the UPL rat lenses also increases with ageing. On the other hand, the interferon-gamma levels in UPL rat lenses are increased, and the increase in interferon-gamma levels in UPL rat lenses reaches a maximum at 39 days of age. Mature IL-18 expression and interferon-gamma production are achieved prior to the onset of lens opacification. In conclusion, the expression levels of IL-18 in the lenses of UPL rats are increased with aging. In addition, interferon-gamma levels in the lenses of UPL rats are also increased. It is possible that interferon-gamma generated by the activated IL-18 may induce cataract development in UPL rats.  相似文献   

6.
The myo-inositol uptake system was studied in lenses of normal and hereditary cataract mouse. The normal mouse was able to accumulate myo-inositol continuously from medium and keep it in a high concentration. The specific myo-inositol uptake was dependent on temperature and it decreased in Ca2+-free medium. In contrast, specific uptake of myo-inositol reached a plateau after 15 min in the cataract mouse lens although initial incorporation was more rapid than that in normal mouse lens. This uptake system was not affected by temperature or Ca2+ in the medium. The rate of myo-inositol efflux into the medium was more rapid in the cataract lens than that of the normal lens. It was shown that the low level of myo-inositol in the lens of hereditary cataract mouse was due to the defect of myo-inositol transport system and the enhanced efflux rate. These results suggest a dysfunction of the lens membrane.  相似文献   

7.
8.
9.
We present a novel hypothesis for the molecular mechanism of autosomal dominant cataract linked to two mutations in the alphaA-crystallin gene of the ocular lens. AlphaA-crystallin is a molecular chaperone that plays a critical role in the suppression of protein aggregation and hence in the long term maintenance of lens optical properties. Using a steady state binding assay in which the chaperone-substrate complex is directly detected, we demonstrate that the mutations result in a substantial increase in the level of binding to non-native states of the model substrate T4 lysozyme. The structural basis of the enhanced binding is investigated through equivalent substitutions in the homologous heat shock protein 27. The mutations shift the oligomeric equilibrium toward a dissociated multimeric form previously shown to be the binding-competent state. In the context of a recent thermodynamic model of chaperone function that proposes the coupling of small heat shock protein activation to the substrate folding equilibrium (Shashidharamurthy, R., Koteiche, H. A., Dong, J., and McHaourab, H. S. (2005) J. Biol. Chem. 280, 5281-5289), the enhanced binding by the alphaA-crystallin mutants is predicted to shift the substrate folding equilibrium toward non-native intermediates, i.e. the mutants promote substrate unfolding. Given the high concentration of alphaA-crystallin in the lens, the molecular basis of pathogenesis implied by our results is a gain of function that leads to the binding of undamaged proteins and subsequent precipitation of the saturated alpha-crystallin complexes in the developing lens of affected individuals.  相似文献   

10.
11.
12.
13.
Albright hereditary osteodystrophy (AHO) is characterized by short stature, brachydactyly, and often heterotopic ossifications that are typically subcutaneous. Subcutaneous ossifications (SCO) cause considerable morbidity in AHO with no effective treatment. AHO is caused by heterozygous inactivating mutations in those GNAS exons encoding the α-subunit of the stimulatory G protein (Gα(s)). When inherited maternally, these mutations are associated with obesity, cognitive impairment, and resistance to certain hormones that mediate their actions through G protein-coupled receptors, a condition termed pseudohypoparathyroidism type 1a (PHP1a). When inherited paternally, GNAS mutations cause only AHO but not hormonal resistance, termed pseudopseudohypoparathyroidism (PPHP). Mice with targeted disruption of exon 1 of Gnas (Gnas(E1-/+)) replicate human PHP1a or PPHP phenotypically and hormonally. However, SCO have not yet been reported in Gnas(E1+/-) mice, at least not those that had been analyzed by us up to 3 months of age. Here we now show that Gnas(E1-/+) animals develop SCO over time. The ossified lesions increase in number and size and are uniformly detected in adult mice by one year of age. They are located in both the dermis, often in perifollicular areas, and the subcutis. These lesions are particularly prominent in skin prone to injury or pressure. The SCO comprise mature bone with evidence of mineral deposition and bone marrow elements. Superficial localization was confirmed by radiographic and computerized tomographic imaging. In situ hybridization of SCO lesions were positive for both osteonectin and osteopontin. Notably, the ossifications were much more extensive in males than females. Because Gnas(E1-/+) mice develop SCO features that are similar to those observed in AHO patients, these animals provide a model system suitable for investigating pathogenic mechanisms involved in SCO formation and for developing novel therapeutics for heterotopic bone formation. Moreover, these mice provide a model with which to investigate the regulatory mechanisms of bone formation.  相似文献   

14.
15.
We found a female cataractous DDD/1-nu/+ mouse and established a hairy mutant strain (DDD/1-Cti/Cti) with 100% incidence of cataract from it by repeating sibmating. Genetic studies demonstrated that a single autosomal semidominant gene controls cataractogenesis. This gene was named Cti. In homozygotes, DDD/1-Cti/Cti, the lenses began to opacify at 14 days of fetal life and were recognized clinically as cataract at 13-14 days of age when the eyes first open. The opacification became more and more intense with age and looked like mature cataract at 28-42 days of age. However, clarification of the opacified lenses commenced at the periphery after 56 days of age and expanded to the inside with time, and only an opaque spot was left at the center at 140 days of age. In heterozygotes, DDD/1-Cti/+, the lenses were recognizable as cataract after 28 days and became like mature cataract around 35 days of age. The opacity began to be lightened at 42 days and the lenses appeared normal at 56 days of age. Both lenses and eyeballs developed in similar courses in DDD/1(-)+/+, -Cti/+ and -Cti/Cti, although slightly retarded in the last. Microphthalmia was not accompanied even in DDD/1-Cti/Cti. The lens water content remained higher during the time when intense lens opacity continued in DDD/1-Cti/Cti and -Cti/+. Background genes appeared to affect the expression of Cti. DDD/1-Cti(-)+ mice may provide a model for researches into clarification of opaque lenses. A discussion concerning the possible allelism of Cti and Cts with Lop was made based on their phenotypic characteristics.  相似文献   

16.
Increased taurine excretion in hereditary hyperprolinemia of the mouse   总被引:1,自引:0,他引:1  
The concentration of taurine in fresh urine samples of hyperprolinemic PRO/Re mice taken daily for five days was about 18.0 μmoles per ml urine compared to 3.2 for CBA/J mice. The concentration of taurine in plasma of PRO/Re mice was not elevated compared to CBA/J or C57BL/6J mice. When CBA/J mice are treated with proline the concentration of taurine in the urine increased.  相似文献   

17.
18.
Several physico-chemical parameters of lenses were investigated in IOR/Hab mice with hereditary cataract aged 4, 6, 8 weeks, i.e. at the stage preceding the development of cataract. The level of restored glutathione in the IOR/Hab lenses /2.0 mM/ was the lowest as compared to other lines but almost the same as in CBA/J /2.3 mM/. In the process of studying protein fluorescence quenching in cortex homogenates by nitrate anions a significant increase of the quenching constant was discovered in IOR/Hab mice: 10.4 M-1 in four-week animals and up to 32.3 M-1 in eight-week animals. The data obtained suggest that a progressing growth of the quenching constant in line IOR/Hab lenses is related to a decreased density of the protein negative charge resulted from their decreased phosphorylation.  相似文献   

19.
Kang M  Cho JW  Kim JK  Kim E  Kim JY  Cho KH  Song CW  Yoon SK 《BMB reports》2008,41(9):651-656
A mouse with cataract, Kec, was generated from N-ethyl-N-nitrosourea (ENU) mutagenesis. Cataract in the Kec mouse was observable at about 5 weeks after birth and this gradually progressed to become completely opaque by 12 weeks. Dissection microscopy revealed that vacuoles with a radial or irregular shape were located primarily in the cortex of the posterior and equatorial regions of the lens. At the late stage, the lens structure was distorted, but not ruptured. This cataract phenotype was inherited in an autosomal recessive manner. We performed a genetic linkage analysis using 133 mutant and 67 normal mice produced by mating Kec mutant (BALB/c) and F1 (C57BL/6 x Kec) mice. The Kec locus was mapped to the 3 cM region encompassed by D14Mit34 and D14Mit69. In addition we excluded coding sequences of 9 genes including Rcbtb2, P2ry5, Itm2b, Med4, Nudt15, Esd, Lcp1, Slc25a30, and 2810032E02Rik as the candidate gene that causes cataract in the Kec mouse.  相似文献   

20.
During the mouse ENU mutagenesis screen, mice were tested for the occurrence of dominant cataracts. One particular mutant was discovered as a progressive opacity (Po). Heterozygotes show opacification of a superficial layer of the fetal nucleus, which progresses and finally forms a nuclear opacity. Since the homozygotes have already developed the total cataract at eye opening, the mode of inheritance is semidominant. Linkage analysis was performed using a set of genome-wide microsatellite markers. The mutation was mapped to chromosome 11 distal of the marker D11Mit242 (9.3 +/- 4.4 cM) and proximal to D11Mit36 (2.3 +/- 2.3 cM). This position makes the betaA3/A1-crystallin encoding gene Cryba1 an excellent candidate gene. Mouse Cryba1 was amplified from lens mRNA. Sequence analysis revealed a mutation of a T to an A at the second base of exon 6, leading to an exchange of Trp by Arg. Computer analysis predicts that the fourth Greek key motif of the affected betaA3/A1-crystallin will not be formed. Moreover, the mutation leads also to an additional splicing signal, to the skipping of the first 3 bp of exon 6, and finally to the deletion of the Trp residue. Both types of mRNA are present in the homozygous mutant lenses. The mutation will be referred to as Cryba1(po1). This particular mouse mutation provides an excellent animal model for a human congenital zonular cataract with suture opacities, which is caused by a mutation in the homologous gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号