首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interactions of the tributyl, triethyl and trimethyllead compounds with energized mitochondria have been investigated in this paper. It has been shown that the (alkyl)(3)Pb-Cl compounds induce swelling in mitochondria suspended in a sucrose medium. The phenomenon is more marked the higher the lipophilicity and occurs in the following order: (Bu)(3)Pb>(Et)(3)Pb>(Me)(3)Pb. As swelling is inhibited by cyclosporine, this suggests that the swelling is due to the opening of a trans-membrane pore (MTP pore) in the mitochondria. As this pore can be responsible for the inhibition of the ATP synthesis, and, consequently for cell death, the opening of the pore could be one of the reasons for the toxicity of the (alkyl)(3)Pb-X compounds.  相似文献   

2.
the toxic effects of CH3HgCL on mitochondria of mammalian organs including human and rat liver were examined. [203Hg]CH3HGCl was bound mainly to mitochondrial proteins. The binding was not effected by the energy state of mitochondria. The state 3 respiration, oxidative phosphorylation and 32Pi-ATP exchange reaction were inhibited by 10 to 50 nmol of CH3HgCl per mg of mitochondrial protein, while NADH-and succinate-dehydrogenase and ATPase were more resistant to it The difference spectrum of the treated mitochondria indicated that the point of inhibition was located after flavin and before cytochrome b. Mitochondrial swelling was induced by CH3HgCl, in accordance with previous morphological observations in vivo. The swelling, stimulation of ATPase and energy-dependent H+ extrusion cauded by CH3HgCl were equally dependent on K+. Under these conditions, uptake of K+ by mitochondria was increased and the membrane potential was dissipated. Unlike the case with other organomercuric compounds, transport of phosphate was not inhibited by CH3HgCl. When tested on liposomes, CH3HgCl itself was not lipid-soluble, as some organomercuric compounds are, and was not an uncoupler or a K+-carrier. It was concluded that protein bound CH3HgS-induced K+ uptake into mitochondria and the resulting loss of membrane potential was the major cause of uncoupling, though at higher concentrations, the electron transport system was also inhibited.  相似文献   

3.
The mechanism of the palmitate-induced opening of the mitochondrial Ca2+-dependent cyclosporin A (CsA)-insensitive pore was studied, as well as the influence on this process of well-known modulators of the CsA-sensitive Ca2+-dependent pore. Palmitic acid, which can bind Ca2+ with high affinity, induced the cyclosporin A-insensitive swelling of mitochondria, whereas palmitoleic and 2-bromopalmitic acids, which have no such affinity for Ca2+, failed to induce the pore opening. The palmitate-induced Ca2+-dependent swelling of mitochondria was not affected by a well-known inhibitor of the CsA-sensitive pore (ADP) and an activator of this pore (inorganic phosphate, P(i)). However, this swelling was inhibited by physiological concentrations of ATP ([I]50 = 1.3 mM), but 100 microM ATP increased by 30% the rate of mitochondria swelling if Ca2+ had been added earlier. The effects of ATP (inhibition and activation) manifested themselves from different sides of the inner mitochondrial membrane. Mg2+ inhibited the palmitate-induced Ca2+-dependent swelling of mitochondria with [I]50 = 0.8 mM. It is concluded that palmitic acid induces the opening of the CsA-insensitive pore due to its ability for complexing with Ca2+. A possible mechanism of the pore formation and the influence of some modulators on this process are discussed.  相似文献   

4.
Increase of Ca2+ concentration in the cytosol of thymocytes to 400-600 nM causes slow accumulation of Ca2+ in mitochondria. Release of Ca2+ from mitochondria into the cytosol is induced by an uncoupler (FCCP) or by a dithiol cross-linking agent (phenylarsine oxide) and is inhibited by cyclosporin A--a specific inhibitor of the permeability transition pore in the inner mitochondrial membrane. In the presence of oxidizing agents (tert-butyl hydroperoxide and diamide), sub-optimal concentrations of uncoupler induce rapid cyclosporin-sensitive release of Ca2+. 6-Ketocholestanol, a recoupler under these conditions, causes redistribution of Ca2+ from the cytosol into mitochondria. These data indicate that partial uncoupling under conditions of oxidative stress causes opening of the permeability transition pore in a fraction of the mitochondria in intact lymphocytes. This mechanism mediates rapid release of Ca2+ from mitochondria into the cytosol.  相似文献   

5.
Heat shock suppresses the permeability transition in rat liver mitochondria   总被引:8,自引:0,他引:8  
Heat shock proteins inhibit apoptotic and necrotic cell death in various cell types. However, the specific mechanism underlying protection by heat shock proteins remains unclear. To test the hypothesis that heat shock proteins inhibit cell death by blocking opening of mitochondrial permeability transition (MPT) pores, mitochondria from heat-preconditioned rat livers were isolated by differential centrifugation. Heat shock inhibited MPT pore opening induced by 50 microm CaCl(2) plus 5 microm HgCl(2) or 1 microm mastoparan and by 200 microm CaCl(2) alone. Half-maximal swelling was delayed 15 min or more after heat shock compared with control. Heat shock also increased the threshold of unregulated (Ca(2+)-independent and cyclosporin A-insensitive) MPT pore opening induced by higher doses of HgCl(2) and mastoparan. Heat shock treatment decreased mitochondrial reactive oxygen species formation by 27% but did not change mitochondrial respiration, membrane potential, Ca(2+) uptake, or total glutathione in mitochondrial and cytosolic extracts of liver. Western blot analysis showed that mitochondrial Hsp25 increased, whereas Hsp10, Hsp60, Hsp70, Hsp75, cyclophilin D, and voltage-dependent anion channel did not change after heat shock. These results indicate that heat shock causes resistance to opening of MPT pores, which may contribute to heat shock protection against cellular injury.  相似文献   

6.
Imaging the permeability pore transition in single mitochondria.   总被引:11,自引:0,他引:11       下载免费PDF全文
In mitochondria the opening of a large proteinaceous pore, the "mitochondrial permeability transition pore" (MTP), is known to occur under conditions of oxidative stress and matrix calcium overload. MTP opening and the resulting cellular energy deprivation have been implicated in processes such as hypoxic cell damage, apoptosis, and neuronal excitotoxicity. Membrane potential (delta psi(m)) in single isolated heart mitochondria was measured by confocal microscopy with a voltage-sensitive fluorescent dye. Measurements in mitochondrial populations revealed a gradual loss of delta psi(m) due to the light-induced generation of free radicals. In contrast, the depolarization in individual mitochondria was fast, sometimes causing marked oscillations of delta psi(m). Rapid depolarizations were accompanied by an increased permeability of the inner mitochondrial membrane to matrix-entrapped calcein (approximately 620 Da), indicating the opening of a large membrane pore. The MTP inhibitor cyclosporin A significantly stabilized delta psi(m) in single mitochondria, thereby slowing the voltage decay in averaged recordings. We conclude that the spontaneous depolarizations were caused by repeated stochastic openings and closings of the transition pore. The data demonstrate a much more dynamic regulation of membrane permeability at the level of a single organelle than predicted from ensemble behavior of mitochondrial populations.  相似文献   

7.
We recently described that there is a feedback amplification of cytochrome c release from mitochondria by caspases. Here we investigated how caspases impact on mitochondria to induce cytochrome c release and found that recombinant caspase-3 induced opening of permeability transition pore and reduction of membrane potential in vitro. These events were inhibited by Bcl-xL, cyclosporin A and z-VAD.fmk. Moreover, caspase-3 stimulated the rate of mitochondrial state 4 respiration, superoxide production and NAD(P)H oxidation in a Bcl-xL- and cyclosporin A-inhibitable manner. These results suggest that caspase-3 induces cytochrome c release by inducing permeability transition pore opening which is associated with changes in mitochondrial respiration and redox potential.  相似文献   

8.
Long-chain 3-hydroxylated fatty acids (LCHFA) accumulate in long-chain 3-hydroxy-acyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies. Affected patients usually present severe neonatal symptoms involving cardiac and hepatic functions, although long-term neurological abnormalities are also commonly observed. Since the underlying mechanisms of brain damage are practically unknown and have not been properly investigated, we studied the effects of LCHFA on important parameters of mitochondrial homeostasis in isolated mitochondria from cerebral cortex of developing rats. 3-Hydroxytetradecanoic acid (3 HTA) reduced mitochondrial membrane potential, NAD(P)H levels, Ca2 + retention capacity and ATP content, besides inducing swelling, cytochrome c release and H2O2 production in Ca2 +-loaded mitochondrial preparations. We also found that cyclosporine A plus ADP, as well as ruthenium red, a Ca2 + uptake blocker, prevented these effects, suggesting the involvement of the mitochondrial permeability transition pore (mPTP) and an important role for Ca2 +, respectively. 3-Hydroxydodecanoic and 3-hydroxypalmitic acids, that also accumulate in LCHAD and MTP deficiencies, similarly induced mitochondrial swelling and decreased ATP content, but to a variable degree pending on the size of their carbon chain. It is proposed that mPTP opening induced by LCHFA disrupts brain bioenergetics and may contribute at least partly to explain the neurologic dysfunction observed in patients affected by LCHAD and MTP deficiencies.  相似文献   

9.
It is shown that 2-10 microM Zn2+ induces swelling of rat liver mitochondria incubated in a buffered sucrose medium either with valinomycin or with FCCP, Ca2+, ionophore A23187, oligomycin, and nigericin. This swelling was associated with the release of GSH from mitochondria. Both processes were sensitive to known inhibitors of the mitochondrial permeability transition (MPT), cyclosporin A, and Mg2+. Mitochondrial swelling induced by Zn2+ was also inhibited by rotenone, antymycin A, N-ethylmaleimide, butylhydroxytoluene, and spermine, whereas it was stimulated by tert-butyl hydroperoxide, diamide, and monobromobimane. It did not require the addition of phosphate. The same sensitivity to pH of the mitochondrial swelling induced by Zn2+ and by phenylarsine oxide suggests the same site of the interaction, namely, thiol groups. The ability of Zn2+ to induce mitochondrial swelling gradually decreased along with its increasing concentration above 10 microM. It is concluded that micromolar Zn2+ induces the MPT presumably by the interaction with cysteinyl residues. This process is independent of the mitochondrial membrane potential.  相似文献   

10.
Bnip3 is a pro-apoptotic BH3-only protein which is associated with mitochondrial dysfunction and cell death. Bnip3 is also a potent inducer of autophagy in many cells. In this study, we have investigated the mechanism by which Bnip3 induces autophagy in adult cardiac myocytes. Overexpression of Bnip3 induced extensive autophagy in adult cardiac myocytes. Fluorescent microscopy studies and ultrastructural analysis revealed selective degradation of mitochondria by autophagy in myocytes overexpressing Bnip3. Oxidative stress and increased levels of intracellular Ca2+ have been reported by others to induce autophagy, but Bnip3-induced autophagy was not abolished by antioxidant treatment or the Ca2+ chelator BAPTA-AM. We also investigated the role of the mitochondrial permeability transition pore (mPTP) in Bnip3-induced autophagy. Although the mPTP has previously been implicated in the induction of autophagy and selective removal of damaged mitochondria by autophagosomes, mitochondria sequestered by autophagosomes in Bnip3-treated cardiac myocytes had not undergone permeability transition and treatment with the mPTP inhibitor cyclosporine A did not inhibit mitochondrial autophagy in cardiac myocytes. Moreover, cyclophilin D (cypD) is an essential component of the mPTP and Bnip3 induced autophagy to the same extent in embryonic fibroblasts isolated from wild-type and cypD-deficient mice. These results support a model where Bnip3 induces selective removal of the mitochondria in cardiac myocytes and that Bnip3 triggers induction of autophagy independent of Ca2+, ROS generation and mPTP opening.Key words: Bnip3, autophagy, cardiac myocytes, mitochondria, permeability transition pore, cyclophilin D  相似文献   

11.
We have studied the effects of GD3 ganglioside on mitochondrial function in isolated mitochondria and intact cells. In isolated mitochondria, GD3 ganglioside induces complex changes of respiration that depend on the substrate being oxidized. However, these effects are secondary to opening of the cyclosporin A-sensitive permeability transition pore and to the ensuing swelling and cytochrome c depletion rather than to an interaction with the respiratory chain complexes. By using a novel in situ assay based on the fluorescence changes of mitochondrially entrapped calcein (Petronilli, V., Miotto, G., Canton, M., Colonna, R., Bernardi, P., and Di Lisa, F. (1999) Biophys. J. 76, 725-734), we unequivocally show that GD3 ganglioside also induces the mitochondrial permeability transition in intact cells and that this event precedes apoptosis. The mitochondrial effects of GD3 ganglioside are selective, in that they cannot be mimicked by either GD1a or GM3 gangliosides, and they are fully sensitive to cyclosporin A, which inhibits both the mitochondrial permeability transition in situ and the onset of apoptosis induced by GD3 ganglioside. These results provide compelling evidence that opening of the permeability transition pore is causally related to apoptosis.  相似文献   

12.
The mitochondrial transition pore (MTP) is implicated as a mediator of cell injury and death in many situations. The MTP opens in response to stimuli including reactive oxygen species and inhibition of the electron transport chain. Sporadic Parkinson’s disease (PD) is characterized by oxidative stress and specifically involves a defect in complex I of the electron transport chain. To explore the possible involvement of the MTP in PD models, we tested the effects of the complex I inhibitor and apoptosis-inducing toxin N-methyl-4-phenylpyridinium (MPP+) on cyclosporin A (CsA)-sensitive mitochondrial swelling and release of cytochrome c. In the presence of Ca2+ and Pi, MPP+ induced a permeability transition in both liver and brain mitochondria. MPP+ also caused release of cytochrome c from liver mitochondria. Rotenone, a classic non-competitive complex I inhibitor, completely inhibited MPP+-induced swelling and release of cytochrome c. The MPP+-induced permeability transition was synergistic with nitric oxide and the adenine nucleotide translocator inhibitor atractyloside, and additive with phenyl arsine oxide cross-linking of dithiol residues. MPP+-induced pore opening and cytochrome c release were blocked by CsA, the Ca2+ uniporter inhibitor ruthenium red, the hydrophobic disulfide reagent N-ethylmaleimide, butacaine, and the free radical scavenging enzymes catalase and superoxide dismutase. MPP+ neurotoxicity may derive from not only its inhibition of complex I and consequent ATP depletion, but also from its ability to open the MTP and to release mitochondrial factors including Ca2+ and cytochrome c known to be involved in apoptosis.  相似文献   

13.
Relationships among the multiple events that precede the mitochondrial membrane permeability transition (MPT) are not yet clearly understood. A combination of newly developed instrumental and computational approaches to this problem is described. The instrumental innovation is a high-resolution digital apparatus for the simultaneous, real-time measurement of four mitochondrial parameters as indicators of the respiration rate, membrane potential, calcium ion transport, and mitochondrial swelling. A computational approach is introduced that tracks the fraction of mitochondria that has undergone pore opening. This approach allows multiple comparisons on a single time scale. The validity of the computational approach for studying complex mitochondrial phenomena was evaluated with mitochondria undergoing an MPT induced by Ca2+, phenylarsine oxide or alamethicin. Selective ion leaks were observed that precede the permeability transition and that are inducer specific. These results illustrate the occurrence of inducer-specific sequential changes associated with the induction of the permeability transition. Analysis of the temporal relationship among the multiple mitochondrial parameters of isolated mitochondria should provide insights into the mechanisms underlying these responses.  相似文献   

14.
Relationships among the multiple events that precede the mitochondrial membrane permeability transition (MPT) are not yet clearly understood. A combination of newly developed instrumental and computational approaches to this problem is described. The instrumental innovation is a high-resolution digital apparatus for the simultaneous, real-time measurement of four mitochondrial parameters as indicators of the respiration rate, membrane potential, calcium ion transport, and mitochondrial swelling. A computational approach is introduced that tracks the fraction of mitochondria that has undergone pore opening. This approach allows multiple comparisons on a single time scale. The validity of the computational approach for studying complex mitochondrial phenomena was evaluated with mitochondria undergoing an MPT induced by Ca(2+), phenylarsine oxide or alamethicin. Selective ion leaks were observed that precede the permeability transition and that are inducer specific. These results illustrate the occurrence of inducer-specific sequential changes associated with the induction of the permeability transition. Analysis of the temporal relationship among the multiple mitochondrial parameters of isolated mitochondria should provide insights into the mechanisms underlying these responses.  相似文献   

15.
Oxidative damage of mammalian mitochondria induced by Ca2+ and prooxidants is mediated by the attack of mitochondria-generated reactive oxygen species on membrane protein thiols promoting oxidation and cross-linkage that leads to the opening of the mitochondrial permeability transition pore (Castilho et al., 1995). In this study, we present evidence that deenergized potato tuber (Solanum tuberosum) mitochondria, which do not possess a Ca2+ uniport, undergo inner membrane permeabilization when treated with Ca2+ (>0.2 mM), as indicated by mitochondrial swelling. Similar to rat liver mitochondria, this permeabilization is enhanced by diamide, a thiol oxidant that creates a condition of oxidative stress by oxidizing pyridine nucleotides. This is inhibited by the antioxidants catalase and dithiothreitol. Potato mitochondrial membrane permeabilization is not inhibited by ADP, cyclosporin A, and ruthenium red, and is partially inhibited by Mg2+ and acidic pH, well known inhibitors of the mammalian mitochondrial permeability transition. The lack of inhibition of potato mitochondrial permeabilization by cyclosporin A is in contrast to the inhibition of the peptidylprolyl cis–trans isomerase activity, that is related to the cyclosporin A-binding protein cyclophilin. Interestingly, the monofunctional thiol reagent mersalyl induces an extensive cyclosporin A-insensitive potato mitochondrial swelling, even in the presence of lower Ca2+ concentrations (>0.01 mM). In conclusion, we have identified a cyclosporin A-insensitive permeability transition pore in isolated potato mitochondria that is induced by reactive oxygen species.  相似文献   

16.
The mechanisms involved in the induction of cyclosporine A sensitive mitochondrial swelling by oxidative stress were investigated in isolated guinea pig liver mitochondria. The aim of our study was to investigate, if swelling is inevitably associated with the oxidation of pyridine nucleotides, and if the oxidized pyridine nucleotides have to be hydrolysed for the induction of mitochondrial swelling. Quantitative measurement of oxidized pyridine nucleotides was performed with HPLC. Mitochondrial swelling was recorded by monitoring the decrease in light scattering of the mitochondrial suspension. Reduction and oxidation of pyridine nucleotides were followed by monitoring the changes of the autofluorescence signal of reduced pyridine nucleotides. Qualitative measurement of mitochondrial membrane potential was performed with the fluorescence indicator rhodamine 123. Neither t-butyl hydroperoxide nor the dissipation of the mitochondrial inner membrane potential with FCCP (carbonyl cyanide-p-trifluoromethoxyphenyl hydrazone) induced the opening of the membrane permeability transition pore, unless an extensive oxidation of mitochondrial pyridine nucleotides took place. Mitochondrial swelling induced by our experimental conditions was always sensitive to cyclosporine A and accompanied by a cyclosporine A sensitive release of inner mitochondrial pyridine nucleotides without pyridine nucleotide hydrolysis. Not the cycling of calcium across the mitochondrial inner membrane but the accumulation of calcium inside the mitochondria was a prerequisite for mitochondrial swelling. The mitochondrial membrane permeability transition is neither caused nor accompanied by the hydrolysis of mitochondrial pyridine nucleotides.  相似文献   

17.
The effects of tamoxifen (TAM) were studied on the mitochondrial permeability transition (MPT) induced by the prooxidant tert-butyl hydroperoxide (t-BuOOH) or the thiol cross-linker phenylarsine oxide (PhAsO), in the presence of Ca2+, in order to clarify the mechanisms involved in the MPT inhibition by this drug. The combination of Ca2+ with t-BuOOH or PhAsO induces mitochondrial swelling and depolarization of membrane potential (deltapsi). These events are inhibited by cyclosporine A (CyA), suggesting the inhibition of the MPT. The pre-incubation of mitochondria with TAM also prevents those events and induces a time-dependent reversal of deltapsi depolarization following MPT induction, similarly to CyA. Moreover, TAM inhibits the Ca2+ release and the oxidation of NAD(P)H and protein thiol (-SH) groups promoted by t-BuOOH plus Ca2+. On the other hand, the MPT induced by PhAsO plus Ca2+ does not induce -SH groups oxidation, supporting the notion that MPT induction by this compound is not mediated by the oxidation of specific membrane proteins groups. However, TAM also inhibits the PhAsO induced MPT, suggesting that this drug may inhibit this phenomenon by inhibiting PhAsO binding to -SH vicinal groups, implicated in the MPT induction. These data indicate that the MPT inhibition by TAM may be related to its antioxidant capacity in preventing the oxidation of NAD(P)H and -SH groups or by blocking these groups, since the oxidation of these groups increases the sensitivity of mitochondria to the MPT induction. Additionally, they suggest an MPT-independent pathway for TAM-induced apoptosis and a potential ER-independent mechanism for the effectiveness of this drug in the cancer therapy and prevention.  相似文献   

18.
When mammalian mitochondria are exposed to high calcium and phosphate, a massive swelling, uncoupling of respiration, and release of cytochrome c occur. These changes are mediated by opening of the mitochondrial permeability transition pore (MPTP). Activation of the MPTP in vivo in response to hypoxic and oxidative stress leads to necrotic and apoptotic cell death. Considering that embryos of the brine shrimp Artemia franciscana tolerate anoxia for years, we investigated the MPTP in this crustacean to reveal whether pore opening occurs. Minimum molecular constituents of the regulated MPTP in mammals are believed to be the voltage-dependent anion channel, the adenine nucleotide translocators, and cyclophilin D. Western blot analysis revealed that mitochondria from A. franciscana possess all three required components. When measured with a calcium-sensitive fluorescent probe, rat liver mitochondria are shown to release matrix calcium after addition of >/=100 microM extramitochondrial calcium (MPTP opening), whereas brine shrimp mitochondria continue to take up extramitochondrial calcium and do not release internal stores even up to 1.0 mM exogenously added calcium (no MPTP opening). Furthermore, no swelling of A. franciscana mitochondria in response to added calcium was observed, and no release of cytochrome c could be detected. HgCl(2)-dependent swelling and cytochrome c release were readily confirmed, which is consistent with the presence of an "unregulated pore." Although the absence of a regulated MPTP in A. franciscana mitochondria could contribute to the extreme hypoxia tolerance in this species, we speculate that absence of the regulated MPTP may be a general feature of invertebrates.  相似文献   

19.
《Autophagy》2013,9(7):855-862
Bnip3 is a pro-apoptotic BH3-only protein which is associated with mitochondrial dysfunction and cell death. Bnip3 is also a potent inducer of autophagy in many cells. In this study, we have investigated the mechanism by which Bnip3 induces autophagy in adult cardiac myocytes. Overexpression of Bnip3 induced extensive autophagy in adult cardiac myocytes. Fluorescent microscopy studies and ultrastructural analysis revealed selective degradation of mitochondria by autophagy in myocytes overexpressing Bnip3. Oxidative stress and increased levels of intracellular Ca2+ have been reported by others to induce autophagy, but Bnip3-induced autophagy was not abolished by antioxidant treatment or the Ca2+ chelator BAPTA-AM. We also investigated the role of the mitochondrial permeability transition pore (mPTP) in Bnip3-induced autophagy. Although the mPTP has previously been implicated in the induction of autophagy and selective removal of damaged mitochondria by autophagosomes, mitochondria sequestered by autophagosomes in Bnip3-treated cardiac myocytes had not undergone permeability transition, and treatment with the mPTP inhibitor cyclosporine A did not inhibit mitochondrial autophagy in cardiac myocytes. Moreover, cyclophilin D (cypD) is an essential component of the mPTP and Bnip3 induced autophagy to the same extent in embryonic fibroblasts isolated from wild-type and cypD-deficient mice. These results support a model where Bnip3 induces selective removal of the mitochondria in cardiac myocytes, and that Bnip3 triggers induction of autophagy independent of Ca2+, ROS generation, and mPTP opening.  相似文献   

20.
Recent studies have suggested that aluminium (Al) induces programmed cell death (PCD) in plants. To investigate possible mechanisms, fluorescence techniques were used to monitor the behaviour of mitochondria in vivo, as well as the activation of caspase-3-like activity during protoplast PCD induced by Al. A quick burst of mitochondrial reactive oxygen species (ROS) was detected in Al-treated protoplasts. The mitochondrial swelling and mitochondrial transmembrane potential (MTP) loss occurred prior to cell death. Pre-incubation with ascorbic acid (AsA, antioxidant molecule) retarded mitochondrial swelling and MTP loss. The real-time detection of caspase-3-like activation was achieved by measuring the degree of fluorescence resonance energy transfer (FRET). At 30 min after exposure to Al, caspase-3-like protease activation, indicated by the decrease in the FRET ratio, occurred, taking about 1 h to reach completion in single living protoplasts. The mitochondrial permeability transition pore (MPTP) inhibitor, cyclosporine (CsA) gave significant protection against MTP loss and subsequent caspase-3-like activation. Our data also showed that Al-induced mitochondrial ROS possibly originated from complex I and III damage in the respiratory chain through the interaction between Al and iron-sulphur (Fe-S) protein. Alternative oxidase (AOX), the unique respiratory terminal oxidase in plants, was demonstrated to play protective roles in Al-induced protoplast death. Our results showed that mitochondrial swelling and MTP loss, as well as the generation of mitochondrial ROS play important roles in Al-induced caspase-3-like activation and PCD, which provided new insight into the signalling cascades that modulate Al phytotoxicity mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号