首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epigenetics refers to heritable changes in gene expression that are independent of alterations in DNA sequence. It is now accepted that disruption of epigenetic mechanisms plays a key role in the pathogenesis of cancer: culminating in altered gene function and malignant cellular transformation. DNA methylation and histone modifications are the most widely studied changes but non-coding RNAs such as miRNAs are also considered part of the epigenetic machinery. The insulin-like growth factor (IGF) axis is composed of two ligands, IGF-I and –II, their receptors and six high affinity IGF binding proteins (IGFBPs). The IGF axis plays a key role in cancer development and progression. As IGFBP genes have consistently been identified among the most common to be aberrantly altered in tumours, this review will focus on epigenetic regulation of IGFBP-3 in cancer for which the majority of evidence has been obtained.  相似文献   

2.
3.
We have previously shown that the insulin-like growth factors (IGFs) stimulate both proliferation and differentiation of skeletal muscle cells in culture, and that these actions in L6A1 muscle cells may be modulated by three secreted IGF binding proteins (IGFBPs), IGFBP-4, -5, and -6. Since we found that the temporal expression pattern of IGFBP-4 and IGFBP-5 differed dramatically during the transition from proliferating myoblasts to differentiated myotubes, we undertook the current study to examine the effects of purified IGFBP-4 and IGFBP-5 on IGF- stimulated actions in L6A1 muscle cells. As has been shown for other cell types, we found that IGFBP-4 had only inhibitory actions, inhibiting IGF-I and IGF-II- stimulated proliferation and differentiation. In contrast, IGFBP-5 exhibited both inhibitory and stimulatory actions. When added in the presence of 30 ng/ml IGF-I, IGFBP-5 (250 ng/ml) inhibited all markers of the early proliferative response: the tyrosine phosphorylation of the cytoplasmic signaling molecules IRS-1 and Shc, the activation of the MAP kinases, ERK1 and 2, the elevation of c-fos mRNA, the early inhibition of the elevation in myogenin mRNA, and the increase in cell number. In contrast, IGFBP-5 stimulated all aspects of the myogenic response to IGF-I: the later rise in myogenin mRNA, the elevation of creatine kinase activity, and the fusion of myoblasts into myotubes. This dual response to IGFBP-5 was greatest when it was added at a molar ratio of IGFBP-5 to IGF-I of 2:1. In contrast, when IGFBP-5 was added in the presence of IGF-II, it inhibited both proliferation and differentiation. Neither IGFBP had any effect when added in the presence of R3 IGF-I, an analog with substantially reduced affinity for IGFBPs. Our results suggest that the role of IGFBP-4 is mainly to sequester excess IGFs, and thus inhibit all actions. IGFBP-5, however, is capable of eliciting a dual response, possibly due to its unique ability to associate with the cell membrane. J. Cell. Physiol. 177:47–57, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
O Ali  P Cohen  K-W Lee 《Hormones et métabolisme》2003,35(11-12):726-733
The Insulin-like Growth Factor (IGF) signaling system plays a central role in cellular growth, differentiation and proliferation. IGFBP-3 is the most abundant IGF binding protein in human serum and has been shown to be a growth inhibitory, apoptosis-inducing molecule, capable of acting via IGF-dependent and IGF-independent mechanisms. Over the last decade, several clinical studies have proposed that individuals with IGFBP-3 levels in the upper range of normal may have a decreased risk for certain common cancers. This includes evidence of a protective effect against breast cancer, prostate cancer, colorectal cancer, and lung cancer. In addition, a series of in vitro studies and animal experiments point towards an important role for IGFBP-3 in the regulation of cell growth and apoptosis. In this brief review, we discuss the biological role of IGFBP-3 and summarize the epidemiological and experimental evidence suggesting a role for IGFBP-3 as an anti-cancer molecule.  相似文献   

5.
6.
This study investigated the effects of cholecystokinin-octapeptide (CCK-8) on pancreatic juice flow and its contents, and on cytosolic calcium (Ca2+) and magnesium (Mg2+) levels in streptozotocin (STZ)-induced diabetic rats compared to healthy age-matched controls. Animals were rendered diabetic by a single injection of STZ (60 mg kg(-1), I.P.). Age-matched control rats obtained an equivalent volume of citrate buffer. Seven weeks later, animals were either anaesthetised (1 g kg(-1) urethane; IP) for the measurement of pancreatic juice flow or humanely killed and the pancreas isolated for the measurements of cytosolic Ca2+ and Mg2+ levels. Non-fasting blood glucose levels in control and diabetic rats were 92.40 +/- 2.42 mg dl(-1) (n = 44) and >500 mg dl(-1) (n = 27), respectively. Resting (basal) pancreatic juice flow in control and diabetic anaesthetised rats was 0.56 +/- 0.05 ul min(-1) (n = 10) and 1.28 +/- 0.16 ul min(-1) (n = 8). CCK-8 infusion resulted in a significant (p < 0.05) increase in pancreatic juice flow in control animals compared to a much larger increase in diabetic rats. In contrast, CCK-8 evoked significant (p < 0.05) increases in protein output and amylase secretion in control rats compared to much reduced responses in diabetic animals. Basal [Ca2+]i in control and diabetic fura-2-loaded acinar cells was 109.40 +/- 15.41 nM (n = 15) and 130.62 +/- 17.66 nM (n = 8), respectively. CCK-8 (10(-8)M) induced a peak response of 436.55 +/- 36.54 nM (n = 15) and 409.31 +/- 34.64 nM (n = 8) in control and diabetic cells, respectively. Basal [Mg2+]i in control and diabetic magfura-2-loaded acinar cells was 0.96 +/- 0.06 nM (n = 18) and 0.86 +/- 0.04 nM (n = 10). In the presence of CCK-8 (10(-8)) [Mg2+]i in control and diabetic cells was 0.80 +/- 0.05 nM (n = 18) and 0.60 +/- 0.02 nM (n = 10), respectively. The results indicate that diabetes-induced pancreatic insufficiency may be associated with derangements in cellular Ca2+ and Mg2+ homeostasis.  相似文献   

7.
Although muscle satellite cells were identified almost 40 years ago, little is known about the induction of their proliferation and differentiation in response to physiological/pathological stimuli or to growth factors/cytokines. In order to investigate the role of the insulin-like growth factor (IGF)/IGF binding protein (IGFBP) system in adult human myoblast differentiation we have developed a primary human skeletal muscle cell model. We show that under low serum media (LSM) differentiating conditions, the cells secrete IGF binding proteins-2, -3, -4 and -5. Intact IGFBP-5 was detected at days 1 and 2 but by day 7 in LSM it was removed by proteolysis. IGFBP-4 levels were also decreased at day 7 in the presence of IGF-I, potentially by proteolysis. In contrast, we observed that IGFBP-3 initially decreased on transfer of cells into LSM but then increased with myotube formation. Treatment with 20 ng/ml tumour necrosis factor-alpha (TNFalpha), which inhibits myoblast differentiation, blocked IGFBP-3 production and secretion whereas 30 ng/ml IGF-I, which stimulates myoblast differentiation, increased IGFBP-3 secretion. The TNFalpha-induced decrease in IGFBP-3 production and inhibition of differentiation could not be rescued by addition of IGF-I. LongR(3)IGF-I, which does not bind to the IGFBPs, had a similar effect on differentiation and IGFBP-3 secretion as IGF-I, both with and without TNFalpha, confirming that increased IGFBP-3 is not purely due to increased stability conferred by binding to IGF-I. Furthermore reduction of IGFBP-3 secretion using antisense oligonucleotides led to an inhibition of differentiation. Taken together these data indicate that IGFBP-3 supports myoblast differentiation.  相似文献   

8.
We report for the first time the complete amino acid sequence for the growth hormone dependent insulin-like growth factor binding protein (IGFBP-3) in the rat. A human IGFBP-3 clone was generated using the polymerase chain reaction (PCR) and used to screen a rat liver cDNA library. cDNA clones of the rat IGFBP-3 were isolated and the full amino acid sequence deduced. The sequence begins with a putative, 26 amino acid signal peptide followed by a 265 amino acid binding protein. The amino acid sequence is over 80% homologous with the equivalent human IGFBP-3 form and shows complete conservation of 18 cysteine residues that are clustered at the amino and carboxy ends of the protein. IGFBP-3 is the binding subunit of the major circulating IGFBP in the rat, and hence the availability of precise structural data and cDNA probes provides an important opportunity for a detailed study of the control of IGFBP-3 synthesis at the level of gene expression.  相似文献   

9.
Insulin-like growth factor binding protein-3 (IGFBP-3) inhibits proliferation and promotes apoptosis in normal and malignant cells. In MCF-10A human mammary epithelial cells, 30 ng/ml human plasma-derived IGFBP-3 inhibited DNA synthesis to 70% of control. This inhibition appeared IGF-independent, since neither an IGF-receptor antibody nor IGFBP-6 inhibited DNA synthesis. Malignant transformation of MCF-10A cells by transfection with Ha-ras oncogene abolished the inhibitory effect of IGFBP-3, concomitant with an increase in IGFBP-3 secretion and cell association of approximately 60 and 300%, respectively. When mitogen-activated protein (MAP) kinase activation was partially inhibited using PD 98059, IGFBP-3 sensitivity in ras-transfected cells was restored, with a significant inhibitory effect at 10 ng/ml IGFBP-3. PD 98059 had no effect on IGFBP-3 secretion or cell association by ras-transfected or parent MCF-10A cells. Hs578T, a tumor-derived breast cancer cell line that expresses activated Ha-ras, similarly has a high level of secreted and cell-associated IGFBP-3. In the absence of PD 98059, DNA synthesis by Hs578T cells was reduced to 70% of control by 1000 ng/ml IGFBP-3. PD 98059 increased sensitivity to IGFBP-3, so that this level of inhibition was achieved with 100 ng/ml IGFBP-3. These results suggest that MAP kinase activation by oncogenic ras expression causes IGFBP-3 resistance, a possible factor in the dysregulation of breast cancer cell growth.  相似文献   

10.
Summary Multiple factors contribute to the growth retardation which is a characteristic feature of uncontrolled diabetes. In this report we have examined the effects of streptozotocin-induced (STZ) diabetes on expression of insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding protein-1 (IGFBP-1) in various tissues. As early as 7 days after STZ administration there was a modest reduction in IGF-I mRNA abundance. The reduction (10–30%) was of similar magnitude in each of the 7 tissues examined; liver, kidney, lung, diaphragm, quadraceps, heart and adipose tissue. However, the reduction achieved statistical significance only in the lung (p < 0.05) and diaphragm (p < 0.01). A further reduction in IGF-I mRNA abundance was seen in many tissues, 32 and 91 days after STZ administration. In contrast to the decrease in IGF-I mRNA, IGFBP-1 mRNA was significantly increased in the liver and kidney of diabetic rats. IGFBP-1 mRNA was detectable at only very low levels in other tissues but was increased in diabetic rats compared non-diabetic rats. In diabetic rats, a highly significant correlation (R = 0.75, p < 0.001) between hepatic IGFBP-1 mRNA and glucose was observed whereas there was no significant correlation between serum glucose and hepatic IGF-I mRNA abundance (R = 0.24, p = NS). Treatment of diabetic rats with insulin resulted in a small, non significant increase in hepatic and renal IGF-I mRNA and a significant decrease in renal IGFBP-1 mRNA abundance. The observations reported here are consistent with the hypothesis that diminished IGF-I expression and inhibition of available IGF-1 by increased levels of IGFBP-1 may explain the impaired growth seen in diabetic animals.  相似文献   

11.
To analyze the utility of insulin-like growth factor binding protein-3 (IGFBP-3) radioimmunoassay for diagnosis of growth hormone deficiency (GHD) we measured IGFBP-3 in sera from normal children, short children and patients with GHD. The sensitivity (true positive ratio) of IGFBP-3 for complete GHD (cGHD) was 93%, while the specificity (true negative ratio) for normal short children (NS) was 88%. In contrast, the sensitivity of IGFBP-3 for partial GHD (pGHD) was only 43%. The poor discrimination between patients with pGHD and NS may be the result of their relatively similar GH level, as compared to cGHD, or due to the limitations of GH stimulation tests. The specificity of IGFBP-3 for NS was excellent in children of all ages: less than 10 years old (87%) and older than 10 (88%). However, sensitivity for GHD was good for children less than 10 years old (84%) but poor for children older than 10 (64%). IGFBP-3 may be less sensitive for diagnosing GHD in older children because IGFBP-3 levels may also increase during puberty due to mechanisms independent of the GH-IGF-I axis.  相似文献   

12.
We have previously demonstrated that IGFBP-5 production by mammary epithelial cells increases dramatically during involution of the mammary gland. To demonstrate a causal relationship between IGFBP-5 and cell death we created transgenic mice expressing IGFBP-5 in the mammary gland using a mammary-specific promoter, beta-lactoglobulin. DNA content in the mammary glands of transgenic mice was decreased as early as day 10 of pregnancy. Histological analysis indicated reduced numbers of alveolar end buds, with decreased ductal branching. Transgenic dams produced IGFBP-5 in their milk at concentrations similar to those achieved at the end of normal lactation. Mammary cell number and milk synthesis were both decreased by approximately 50% during the first 10 days of lactation. BrdU labelling was decreased, whereas DNA ladders were increased in transgenic animals on day 1 of lactation. On day 2 postpartum, the epithelial invasion of the mammary fat pad was clearly impaired in transgenic animals. The concentrations of the pro-apoptotic molecule caspase-3 and of plasmin were both increased in transgenic animals whilst the concentrations of 2 prosurvival molecules Bcl-2 and Bcl-x(L)were both decreased. In order to examine whether IGFBP-5 acts by inhibiting the survival effect of IGF-I we examined IGF receptor phosphorylation and Akt phosphorylation and showed that both were inhibited. We attempted to "rescue" the transgenic phenotype by using growth hormone to increase endogenous IGF-I concentrations or by implanting minipumps delivering an IGF-1 analogue, R(3)-IGF-1, which binds weakly to IGFBP-5. Growth hormone treatment failed to affect mammary development suggesting that increased concentrations of endogenous IGF-1 are insufficient to overcome the high concentrations of IGFBP-5 produced by these transgenic animals. In contrast mammary development (gland weight and DNA content) was normalised by R3-IGF-I although milk production was only partially restored. This is the first demonstration that over-expression of IGFBP-5 can lead to; impaired mammary development, increased expression of the pro-apoptotic molecule caspase-3, increased plasmin generation and decreased expression of pro-survival molecules of the Bcl-2 family. It clearly demonstrates that IGF-I is an important developmental/survival factor for the mammary gland and, furthermore, this cell death programme may be utilised in a wide variety of tissues.  相似文献   

13.
OBJECTIVE: Ovarian hormonal function may be as important contributing factor to hGH-IGF-I-IGFBP-3 axis as age. AIM: To examine plasma hGH, IGF-1 and IGFBP-3 levels in women with premature ovarian failure compared to healthy normal controls and postmenopausal ones. PATIENTS: Group A-15 women with premature ovarian failure (POF) (mean: age 38.9+/-5.2 years, FSH 101.4+/-29.0 IU/l; 17beta-estradiol 22.5+/-14.6 ng/l). Group B consisted of 15 menopausal women (mean: age 54.7+/-2.7 years; FSH 81.9+/-32.1 IU/l; 17beta-estradiol 17.1+/- 8.0 ng/l). Group C - controls - 15 normally menstruating women (mean: age 37.1+/-9.0 years; FSH 6.2+/-1.0 IU/l; 17beta-estradiol 144.8+/-117.1 ng/l). METHODS: Body mass and BMI were measured. Basic fasting plasma hGH, IGF-I, IGFBP-3, insulin, testosterone and LH as well as prolactin (PRL), FSH and estradiol were assessed by RIA kits. Statistical analysis. Shapiro-Wilk test, Mann-Whitney u-test, Spearman rang correlation coefficient, stepwise multiple regression. RESULTS: Mean serum IGF-I level was the lowest (p<0.005) in group B (172.0+/-54.6 microg/l) and the highest in group C (273.6+/-109.0 microg/l). The mean plasma IGF-I level in group A was similar (NS) (208.3+/-66.5 microg/l) to that found in group B and lower (p<0.02) compared with that in group C. The lowest (p<0.005) serum IGFBP-3 level was found in group B (3.1+/-0.7 microg/l) compared to group C (4.4+/-0.3 microg/l). The mean plasma IGFBP-3 level (3.1+/-1.0 microg/l) in group A was lower than in group C (p<0.005) but identical as in group B. No statistically significant differences between groups were observed in mean hGH levels. Women in group A and C were younger (p<0.001) than those in group B. The lowest mean estradiol level was found in groups A and B. The highest was in group C (p<0.001). Mean plasma LH and FSH levels were higher (p<0.001) in groups A and B vs group C. In group C there were links between IGF-I and age (r=-0.60; p=0.014) The IGF-I/age relation disappeared in the groups A and B (rA=-0.26; rB=0.10; NS). The same regards IGFBP-3/ age link (rA=-0.44, NS; rB=0,31;NS). Estradiol level was related to hGH levels in group C (r=-0.54; p<0.05). In none of groups hGH/IGF-1 as well as IGFBP-3/hGH relations were found. Prolactin accounted for 69% of the variance in IGF-I level in the group B (p=0.003) and for 24% in group A (NS). Testosterone accounted for 88% (p=0.004) of the variance in IGF-I level in group B and IGFBP-3 was responsible for 86% (p=0.038) of the variance in IGF-I level in group C. Again IGFBP-3 was responsible for 47% (p=0.023) in group A and for 49% (p=0.04) in group B of the hGH variance. CONCLUSIONS: 17b-estradiol may be as important contributor to insulin-like growth factor-I (IGF-I) plasma level as age in hypoestrogenic, hypogonadotropic women.  相似文献   

14.
15.
The spatial localisation of insulin-like growth-factor-binding protein-2 (IGFBP-2) and its mRNA was investigated during larval and post-larval developmental stages of the gilthead seabream (Sparus aurata) by immunohistochemistry and in situ hybridisation with specific antisera and riboprobes. During larval development, immunoreactivity was found in skin, muscle, gills, pharynx, intestine, liver and olfactory epithelium. After metamorphosis, immunoreactivity was found in the oesophageal epithelium (the strongest reaction) and in red skeletal muscle, heart muscle, the thymus and the epithelium of renal tubules. In the adult, immunostaining with IGFBP-2 antibody was also found in the saccus vasculosus, ovary and testis. IGFBP-2 mRNA was detected by in situ hybridisation mainly in the intestine, skeletal musculature and ovary. These results show that IGFBP-2 protein and mRNA are expressed in a variety of seabream tissues, suggesting that IGFBP-2 regulates the actions of IGFs on these tissues during development and growth.This work was supported by grants from the University of Padua (Progetto di Ateneo, 2001) and by the US–Israel Binational Agricultural Research and Development Fund (BARD, Project IS-2769-96R)  相似文献   

16.
We examined the distribution of insulin-like growth factor binding proteins (IGFBPs) in cultured neonatal mouse calvariae. IGFBP-3 and -4 were predominantly found in the conditioned medium. IGFBP-2 was partitioned between conditioned medium and bone and extracellular matrix (BECM), while intact (31-kDa) IGFBP-5 was most abundant in BECM extracts. After treatment with parathyroid hormone (PTH, 10−8 M) or prostaglandin E2 (PGE2, 10−6 M), immunoreactive IGFBP-5 accumulated in the conditioned medium in a 21-kDa form which did not bind IGF-I on Western ligand blots. PTH and PGE2 did not alter the level of steady-state IGFBP-5 mRNA, nor markedly stimulate IGFBP-5 synthesis in the calvariae, and thus accumulation of 21-kDa IGFBP-5 was largely due to release from BECM. This accumulation of truncated IGFBP-5 in the conditioned medium was not dependent on osteoclastic bone resorption, since it was not blocked by calcitonin or a bisphosphonate which inhibited PTH- and PGE2-stimulated 45Ca-release. The conditioned medium from PTH- or PGE2-treated cultures degraded recombinant human IGFBP-5 into lower molecular weight fragments. Addition of IGF-I at 10−8 M into the culture resulted in accumulation of native 31-kDa IGFBP-5. However, even in the presence of IGF-I, the native IGFBP-5 was degraded and the 21-kDa product accumulated in the culture medium. These results suggested a possible proteolytic mechanism for 21-kDa IGFBP-5 accumulation, responsive to PTH and PGE2. Aprotinin, leupeptin, cystatin, and bestatin did not inhibit the effects of PTH and PGE2 in the cultures. The localization of IGFBP-5 in BECM and its release and proteolysis induced by PTH and PGE2 could play a role in the local regulation of bone metabolism. © 1996 Wiley-Liss, Inc.  相似文献   

17.
In vivo, in the sheep ovary, the expression of insulin-like growth factor binding protein (IGFBP)-2 and particularly IGFBP-5 has been shown to increase dramatically in apoptotic granulosa cells from atretic follicles. The aim of this work was to study the relationship between apoptosis induced by serum starvation in vitro and expression of IGFBP-2 and -5 by ovine granulosa cells. For this purpose, granulosa cells from follicles 1–3 mm in diameter were cultured in the presence of serum for 2 days, then cultured in the presence or absence of serum for 24, 48, or 72 hr. At the end of the culture, cells were counted, cell viability was assessed by studying DNA fragmentation, and IGFBPs expression was studied by quantitative autoradiography, Western-ligand blotting, immunoblotting, and quantitative in situ hybridization. In vitro, IGFBP-2 and particularly IGFBP-5 were the main IGFBPs secreted by ovine granulosa cells. Serum starvation provoked (i) apoptosis of granulosa cells within 48 hr, (ii) a marked decrease in cell density, and (iii) a marked increase in the amount of IGFBP-5 associated with cell membranes and with the walls of culture wells, but no change in culture medium. The increase in the amount of cell- and wall-associated IGFBP-5 after serum starvation was essentially due to the consecutive decrease in cell density rather than to an increase in cell apoptosis. Indeed, irrespective of the presence or absence of serum, the amount of IGFBP-5 associated to cell membranes was inversely correlated to cell density. In contrast, the amount of IGFBP-5 present in culture medium was positively correlated to cell density. Furthermore, expression of IGFBP-5 mRNA was shown to increase with both cell density and cell death. Indeed, the expression of IGFBP-5 mRNA dramatically increased with cell density, irrespective of the presence or absence of serum, but at a similar cell density, expression was higher in serum-free than in serum conditions. Overall, these results indicate that, in vitro, the localization of IGFBP-5 on ovine granulosa cell membranes and in culture medium, respectively, was mainly dependent on cell density, whereas expression of IGFBP-5 mRNA was related to both cell density and cell death. These data suggest that IGFBP-5 is involved in both growth arrest and apoptosis of granulosa cells in the sheep. J. Cell. Physiol. 177:13–25, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
19.
15N NMR relaxation rates of mini-IGFBP-5, an N-terminal insulin-like growth factor binding domain of the insulin-like growth factor binding protein 5 (IGFBP-5), were analysed at three field strengths using the Lipari-Szabo procedure (see below) and reduced spectral density methods. Isotropic and anisotropic Lipari-Szabo models were analysed and an analytical formula for the overall correlation time for anisotropic molecules is presented. Mini-IGFBP-5 was found to be mainly rigid on fast ps time scales except for 11 unstructured flexible residues at the C-terminus. The insulin-like growth factor binding loop in the apo-protein exhibits small amounts of flexibility on fast time scales (ps to ns) but several loop residues show significant exchange broadening. These loop residues display no exchange broadening in the complex of IGF-II/mini-IGFBP-5. The isotropic overall tumbling time in solution at 31 degrees C of mini-IGFBP-5 complexed to IGF-II is tauc = 18.4 +/- 0.2 ns indicating a strong tendency for aggregation.  相似文献   

20.
Neuronal apoptosis is considered to play a significant role in several neuropathological conditions. However, the molecular mechanisms underlying neuronal apoptosis are poorly understood. Insulin-like growth factor (IGF) signalling is considered to be an important regulator of neuronal differentiation, survival and apoptosis. We have examined the expression of two members of the IGF system, insulin-like growth factor binding protein 5 (IGFBP-5) and the type-1 IGF receptor (IGF1R), during apoptosis of rat cerebellar granule cells (CGCs) in vitro. We describe a prominent downregulation of IGFBP-5 mRNA and protein expression. We also show that IGF-I increases IGFBP-5 expression in CGCs and that the downregulation of IGFBP-5 mRNA can be suppressed by inhibiting mRNA synthesis with actinomycin D. The expression of IGF1R mRNA showed a transient upregulation during potassium chloride (KCl) deprivation induced apoptosis, in contrast to the IGF1R protein level, which was downregulated during KCl deprivation. Our results provide insight into the expression of IGF-related genes during neuronal apoptosis, and indicate that they mediate a protective response to the withdrawal of trophic stimulation. It seems that the expression of IGFBP-5 and IGF1R is regulated to maximize the availability of IGF and the activity of IGF-triggered survival signalling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号