首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural organization and protein composition of lens fiber junctions isolated from adult bovine and calf lenses were studied using combined electron microscopy, immunolocalization with monoclonal and polyclonal anti-MIP and anti-MP70 (two putative gap junction-forming proteins), and freeze-fracture and label-fracture methods. The major intrinsic protein of lens plasma membranes (MIP) was localized in single membranes and in an extensive network of junctions having flat and undulating surface topologies. In wavy junctions, polyclonal and monoclonal anti-MIPs labeled only the cytoplasmic surface of the convex membrane of the junction. Label-fracture experiments demonstrated that the convex membrane contained MIP arranged in tetragonal arrays 6-7 nm in unit cell dimension. The apposing concave membrane of the junction displayed fracture faces without intramembrane particles or pits. Therefore, wavy junctions are asymmetric structures composed of MIP crystals abutted against particle-free membranes. In thin junctions, anti-MIP labeled the cytoplasmic surfaces of both apposing membranes with varying degrees of asymmetry. In thin junctions, MIP was found organized in both small clusters and single membranes. These small clusters also abut against particle-free apposing membranes, probably in a staggered or checkerboard pattern. Thus, the structure of thin and wavy junctions differed only in the extent of crystallization of MIP, a property that can explain why this protein can produce two different antibody-labeling patterns. A conclusion of this study is that wavy and thin junctions do not contain coaxially aligned channels, and, in these junctions, MIP is unlikely to form gap junction-like channels. We suggest MIP may behave as an intercellular adhesion protein which can also act as a volume-regulating channel to collapse the lens extracellular space. Junctions constructed of MP70 have a wider overall thickness (18-20 nm) and are abundant in the cortical regions of the lens. A monoclonal antibody raised against this protein labeled these thicker junctions on the cytoplasmic surfaces of both apposing membranes. Thick junctions also contained isolated clusters of MIP inside the plaques of MP70. The role of thick junctions in lens physiology remains to be determined.  相似文献   

2.
本文报道晶状体纤维细胞间间隙连接的形态结构。我们利用冰冻断裂技术,在不同部位的球-和-凹连结的头部以及在纤维细胞和纤维细胞之间都观察到间隙连接的存在。通过极其丰富的上述连接,可实现细胞间代谢物和离子的传递。作者认为:对正常晶状体纤维细胞之间的间隙连接的深入了解,将会为晶状体发病机制的研究提供新的线索。  相似文献   

3.
Thin section electron microscopy reveals two different types of membrane interactions between the fiber cells of bovine lens. Monoclonal antibodies against lens membrane protein MP70 (Kistler et al., 1985, J. Cell Biol., 101:28-35) bound exclusively to the 16-17-nm intercellular junctions. MP70 localization was most dramatic in the lens outer cortex and strongly reduced deeper in the lens. In contrast, the 12-nm double membrane structures and single membranes were consistently unlabeled. In freeze-fracture replicas with adherent cortical fiber membranes, MP70 was immunolocalized in the junctional plaques which closely resemble the gap junctions in other tissues. MP70 is thus likely to be associated with intercellular communication in the lens.  相似文献   

4.
Square arrays and their role in ridge formation in human lens fibers   总被引:4,自引:0,他引:4  
Square arrays in human lens fibers were studied with freeze-fracture and thin-section TEM. In superficial fibers a number of patches of square array particles in the P face and pits in the E face are found in the smooth membrane. In the deeper cortex and the nucleus, fiber cells have undulating membranes and many ridges. Numerous patches of the particles (P face) are distributed in the concave regions, and the pits (E face) in the convex areas of the bumpy membrane. In most ridges, patches of the particles occur at regular intervals in the "valley" portion, while the pits are on the "crest" portion of ridges. Also, continuous square arrays having the same "valley" location as the regularly arranged patches are found in areas with extensive ridge patterns. The overlapping of the outer portions of two adjacent square arrays is found on the sides between the "crest" and the "valley" of the ridges. Structurally, square arrays are located in a nonjunctional part of the membrane; in an orthogonal crystalline arrangement; and with a particle size of about 6 nm and center-center spacing about 6.4 nm. They are structurally different from gap junctions found in the lens fibers. Thin-section studies reveal two types of cellular contacts: thin pentalamellar structures (about 12-13 nm in overall thickness) associated with the ridge patterns are believed to be square arrays; thick heptalamellar structures (about 16-17 nm in overall thickness) with a narrow gap in between the two central laminae are believed to be gap junctions. This study strongly suggests that square arrays are specifically involved in ridge formation in human lens fibers.  相似文献   

5.
Gap junction dynamics: reversible effects of hydrogen ions   总被引:9,自引:8,他引:1       下载免费PDF全文
Reversible crystallization of intramembrane particle packings is induced in gap junctions isolated from calf lens fibers by exposure to 3 x 10(-7) M or higher [H+] (pH 6.5 or lower). The changes from disordered to crystalline particle packings induced by low pH are similar to those produced in junctions of intact cells by uncoupling treatments, indicating that H+, like divalent cations, could be an uncoupling agent. The freeze-fracture appearance of both control and low pH-treated gap junctions is not altered by glutaraldehyde fixation and cryoprotective treatment, as suggested by experiments in which gap junctions of both intact cells and isolated fractions are freeze- fractured after rapid freezing to liquid N2 temperature according to Heuser et al. (13). In junctions exposed to low pH, the particles most often form orthogonal and rhombic arrays, frequently fused with each other. A number of structural characteristics of these arrays suggest that the particles of lens fiber gap junctions may be shaped as tetrameres.  相似文献   

6.
Gap junctions from rat liver and fiber junctions from bovine lens have similar septilaminar profiles when examined by thin-section electron microscopy and differ only slightly with respect to the packing of intramembrane particles in freeze-fracture images. These similarities have often led to lens fiber junctions being referred to as gap junctions. Junctions from both sources were isolated as enriched subcellular fractions and their major polypeptide components compared biochemically and immunochemically. The major liver gap junction polypeptide has an apparent molecular weight of 27,000, while a 25,000-dalton polypeptide is the major component of lens fiber junctions. The two polypeptides are not homologous when compared by partial peptide mapping in SDS. In addition, there is not detectable antigenic similarity between the two polypeptides by immunochemical criteria using antibodies to the 25,000-dalton lens fiber junction polypeptide. Thus, in spite of the ultrastructural similarities, the gap junction and the lens fiber junction are comprised of distinctly different polypeptides, suggesting that the lens fiber junction contains a unique gene product and potentially different physiological properties.  相似文献   

7.
Molecular portrait of lens gap junction protein MP70   总被引:3,自引:0,他引:3  
A 70-kDa membrane protein (MP70) is a component of the lens fiber gap junctions. Its membrane topology and its N-terminal sequence are similar to those of the connexin family of proteins. Some features of MP70 containing fiber gap junctions are, however, distinct from gap junctions in other mammalian tissues: (i) Lens connexons form crystalline arrays only after cleavage of junctional proteins in vitro. These hexagonal arrays have a periodicity of 13.6 nm which is significantly larger than the 8- 9-nm spacing of liver and heart gap junctions. (ii) Lens fiber gap junctions dissociate in low concentrations of nonionic detergent and this provides an avenue to purify MP70 directly from a membrane mixture. Isolated MP70 in the form of 17 S structures has an appearance consistent with connexon pairs. (iii) The C-terminal half of MP70 is cleaved in situ by a lens endogenous calcium-dependent protease. The processed from MP38 remains in the membrane and is abundant in the central region of the lens. A testable hypothesis for MP70 function is presented.  相似文献   

8.
《The Journal of cell biology》1994,126(4):1047-1058
Gap junctions contain numerous channels that are clustered in apposed membrane patches of adjacent cells. These cell-to-cell channels are formed by pairing of two hemichannels or connexons, and are also referred to as connexon pairs. We have investigated various detergents for their ability to separately solubilize hemichannels or connexon pairs from isolated ovine lens fiber membranes. The solubilized preparations were reconstituted with lipids with the aim to reassemble native-type gap junctions and to provide a model system for the characterization of the molecular interactions involved in this process. While small gap junction structures were obtained under a variety of conditions, large native-type gap junctions were assembled using a novel two-step procedure: in the first step, hemichannels that had been solubilized with octylpolyoxyethylene formed connexon pairs by dialysis against n-decyl-beta-D-maltopyranoside. In the second step, connexon pairs were reconstituted with phosphatidylcholines by dialysis against buffer containing Mg2+. This way, double-layered gap junctions with diameter < or = 300 nm were obtained. Up to several hundred channels were packed in a noncrystalline arrangement, giving these reconstituted gap junctions an appearance that was indistinguishable from that of the gap junctions in the lens fiber membranes.  相似文献   

9.
Summary We report a comparative study of gap junctions in lens epithelia of frog, rabbit, rat and human, using a double mounting method for freeze-fracture electron microscopy. The gap junctions on the narrow sides of hexagonal cortical fiber cells of various species were also studied with the same technique. Gap junctions were commonly present between epithelial cells of the entire undifferentiated epithelium, between fiber cells on both wide and narrow sides, and between epithelial cells and fiber cells. Structural diversity of gap junctions, based on connexon arrangements, was evident in lens epithelia among the four species studied. Gap junctions with random arrays of connexons were found predominantly in frog lens epithelium, while the crystalline and striated configurations were mainly observed in the epithelia of human and rat, and of rabbit, respectively. On the other hand, there was no structural variation of gap junctions observed on either wide or narrow sides of lens fiber cells from any species studied. Only the random-type gap junction was found. However, the distribution of gap junctions was unique on the narrow sides. There was a single row of junctional plaques along the middle of the narrow sides, whereas the wide sides showed an uneven distribution pattern. The gap junctions between epithelial cells and fiber cells had a random packing of connexons.  相似文献   

10.
《The Journal of cell biology》1983,97(5):1491-1499
The in situ distribution of the 26-kdalton Main Intrinsic Polypeptide (MIP or MP 26), a putative gap junction protein in ocular lens fibers, was defined at the electron microscope level using indirect immunoferritin labeling of ultrathin frozen sections of rat lens. MIP was found distributed throughout the plasma membrane of the lens fiber cell, with no apparent distinction between junctional and nonjunctional membrane. MIP was not detectable in the basal or lateral plasma membrane of the lens epithelial cell, including the interepithelial cell gap junctions; nor was MIP detectable in the plasma membrane or gap junctions of the hepatocyte. Previous reports have indicated that the protein composition of the lens fiber cell junction differs from that of the hepatocyte gap junction. The evidence presented here suggests that the composition of the fiber cell junction and plasma membrane is also immunocytochemically distinct from that of its progenitor, the lens epithelial cell.  相似文献   

11.
During the 3-h developmental stage 14 in the chick, intercellular transfer of iontophoresed fluorescent dyes becomes less sensitive to the lowering of intracellular pH by either CO2 or acetate ions. Up to developmental state 14, dye transfer between lens cells is reversibly blocked by exposure to 50% CO2. Beyond stage 14, dye transfer between these cells is no longer reversibly blocked by elevated pCO2. Electronic coupling is present throughout lens development and is not reversibly blocked by high pCO2 at any stage. The gap junctions joining the lens cells show morphological changes at developmental stage 14. Up to stage 14, all gap junctions observed between chick lens cells have connexon assemblies that appear condensed or crystalline following routine freeze-fracture microscopy. Beyond stage 14, chick lens cells express gap junctions with both the condensed assemblies and the dispersed assemblies characteristic of adult lens gap-junction structure.  相似文献   

12.
Urea-washed membranes from embryonic chick lenses (15 days old) and from the cortical and nuclear regions of adult chicken lenses (1 year) have been prepared by repeated centrifugation through discontinuous density gradients. The protein components of the isolated membranes have been examined by electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate and urea. Proteins with molecular weights of 75 000, 56 000, 54 000, 48 000, 34 000, 32 000, 25 000, and 22 000 were present in all the membrane preparations, although their proportions changed during development. One additional protein, molecular weight 70 000, was seen only in the embryonic lens membranes. The greatest developmental change was the increase in 25 000 molecular weight protein from 12% in the embryonic lens to about 45% in the adult lens. Since it has been suggested that this protein is associated with gap junctions, its increase during development may reflect a corresponding increase in the number of gap junctions in the lens.The 50 000 molecular weight protein of embryonic lens membranes and membranes of adult nuclear lens fibers consisted at least partly of δ-crystallin, since δ-crystallin peptides could be identified in tryptic pepetide maps of the isolated protein after in vitro radioiodination. Peptide maps of the 50 000 molecular weight protein of cortical lens fiber membranes contained no identifiable δ-crystallin peptides, although it is possible that modified δ-crystallin peptides may be present. The level of cytoplasmic contamination of the membrane fraction was estimated by preparing lens membranes in the presence of added δ-[35S]crystallin. The results indicated that cytoplasmic contamination contributes significantly to the presence of δ-crystallin in lens membrane preparations.  相似文献   

13.
Urea-washed membranes from embryonic chick lenses (15 days old) and from the cortical and nuclear regions of adult chicken lenses (1 year) have been prepared by repeated centrifugation through discontinuous density gradients. The protein components of the isolated membranes have been examined by electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate and urea. Proteins with molecular weights of 75 000, 56 000, 54 000, 48 000, 34 000, 32 000, 25 000, and 22 000 were present in all the membrane preparations, although their proportions changed during development. One additional protein, molecular weight 70 000, was seen only in the embryonic lens membranes. The greatest developmental change was the increase in 25 000 molecular weight protein from 12% in the embryonic lens to about 45% in the adult lens. Since it has been suggested that this protein is associated with gap junctions, its increase during development may reflect a corresponding increase in the number of gap junctions in the lens. The 50 000 molecular weight protein of embryonic lens membranes and membranes of adult nuclear lens fibers consisted at least partly of delta-crystallin, since delta-crystallin peptides could be identified in tryptic peptide maps of the isolated protein after in vitro radioiodination. Peptide maps of the 50 000 molecular weight protein of cortical lens fiber membranes contained no identifiable delta-crystallin peptides, although it is possible that modified delta-crystallin peptides may be present. The level of cytoplasmic contamination of the membrane fraction was estimated by preparing lens membranes in the presence of added delta-[35S]crystallin. The results indicated that cytoplasmic contamination contributes significantly to the presence of delta-crystallin in lens membrane preparations.  相似文献   

14.
We have modified a method for isolating gap-junctional membrane from mouse hearts [Kensler & Goodenough (1980) J. Cell Biol. 86, 755-764] to isolate gap junctions of comparable purity from rabbit hearts more rapidly, with better yield, and without resort to non-ionic detergents. Purification was monitored by electron microscopy of thin-sectioned membrane pellets and by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Gap junctions were obtained as vesicles whose mean surface area approximated that of junctions in intact myocardial cells. About 10-20% of the vesicles were ferritin-impermeable. Approx. 125 micrograms of membrane protein was obtained per 8 g of rabbit heart. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of purified gap junctions showed five major protein bands of mol.wts. 46 000, 44 000, 33 000, 30 000 and 28 500 that co-purified with the junctions. This protein composition was nearly identical with that published for gap junctions of mouse hearts, and differed markedly from the protein composition of gap junctions from non-excitable cells (lens and liver). The constancy of junctional protein composition between hearts of two different species and its non-identity with that from liver and lens suggest that, although gap-junctional structure in mammalian tissues seems to be remarkably similar by electron-microscopic techniques, junctional-channel protein composition actually varies from tissue to tissue and may be adapted to the permeability requirements of the tissue.  相似文献   

15.
In thin sections and in freeze-fracture replicas small and sparse gap junctions appear to be developed on the longitudinal plasma membrane of Protopterus cardiac cells near a macula or fascia adhaerens. By thin-section electron microscopy, they had septalaminar profiles with a length between 0.042 and 0.260 micron. In freeze-fracture images they appear on the P-fracture face as maculate particle aggregations with complementary pits on the E-fracture face. Particles with a central intercellular channel could be observed. The average center-to-center distance between neighbouring particles or pits is 10.05 +/- 1.87 nm (N = 2429). The diameter of the junctional maculae in replicas lies between 0.037 and 0.229 nm. The particle packing density increases in larger maculate aggregations, while particle-free areas emerge which could be related to the degradation or reformation of gap junctions Atypical configurations of gap junctions observed in the myocardium of lower vertebrates are rarely encountered in this primitive vertebrate.  相似文献   

16.
Fine-structural features of ovarian decidual cells and their mode of secretion were examined by means of freeze-fracture microscopy. Unique cortical peduncular processes contained secretory vesicles within the expanded peduncle tip, the membrane-leaflets of which exhibited a particle-poor E face adjacent to the vesicle lumen and a P face containing a greater particle number. Exocytosis from attached peduncles involved release of vesicular profiles 40-55 nm in diameter; small particles 8.5-11.5 nm in diameter were also observed at degranulation sites. In fractures revealing the E face of the plasmalemma, cytoplasmic portals at the bases of peduncular stalks were distinguishable from endocytic vesicles. The frequent occurrence of reflexive gap junctions associated with peduncles was shown by freeze-fracture. However, there appeared to be no consistent spatial relationship between gap junctions, secretory peduncles, or sites of exocytosis. Freeze-fracture analysis of the topography of reflexive gap junctional profiles revealed that such gap junctions share basic similarities with intercellular gap jum particle-free aisles. The finding in the present study of reflexive gap junctions occurring between peduncles and the cell soma, as well as between peduncles, suggests that the original definitiof the same cell should be broadened to include any gap junctional specialization formed between portions of the plasma membrane of one cell.  相似文献   

17.
Little is known about the lipid environment of lens fiber junctions, the plasma membrane structure proposed to be responsible for passage of low molecular weight metabolites between adjacent lens fiber cells. Plasma membranes of the ocular lens are especially rich in fiber junctions. The resistance of junctional domains to disruption by detergent or alkali treatment provides the opportunity to isolate a lens plasma membrane fraction enriched in fiber junctions. When examined by electron microscopy, the fiber junction fraction prepared from bovine lenses was enriched with junctional structures by about twofold when compared to total plasma membrane. We compared the protein, phospholipid, and cholesterol concentration of total plasma membrane with fiber junctional membrane from rat and cow lens and from aged normal cataractous human lenses. The principal finding was that junctional membrane contained 20-40% more total lipid than that of the total plasma membrane. This was due to a proportionate increase in the relative content (mg/mg protein) of both phospholipid and cholesterol. Exclusive of one exception (nucleus of bovine lens), the cholesterol/phospholipid molar ratios of the two fractions were similar. In the bovine nucleus, the cholesterol/phospholipid molar ratio was substantially higher in the fiber junctional-enriched membrane fraction than in the total plasma membrane, suggesting a special association of cholesterol with bovine nuclear fiber junctions. The relative lipid compositions of the plasma membrane and fiber junction-enriched fractions from human normal and cataractous lenses were similar, suggesting that human senile cataractogenesis involves changes in the lens plasma membrane more subtle than would be reflected by gross changes in the membrane lipid composition.  相似文献   

18.
Aquaporin-0 (AQP0), previously known as major intrinsic protein (MIP), is the only water pore protein expressed in lens fiber cells. AQP0 is highly specific to lens fiber cells and constitutes the most abundant intrinsic membrane protein in these cells. The protein is initially expressed as a full-length protein in young fiber cells in the lens cortex, but becomes increasingly cleaved in the lens core region. Reconstitution of AQP0 isolated from the core of sheep lenses containing a proportion of truncated protein, produced double-layered two-dimensional (2D) crystals, which displayed the same dimensions as the thin 11 nm lens fiber cell junctions, which are prominent in the lens core. In contrast reconstitution of full-length AQP0 isolated from the lens cortex reproducibly yielded single-layered 2D crystals. We present electron diffraction patterns and projection maps of both crystal types. We show that cleavage of the intracellular C terminus enhances the adhesive properties of the extracellular surface of AQP0, indicating a conformational change in the molecule. This change of function of AQP0 from a water pore in the cortex to an adhesion molecule in the lens core constitutes another manifestation of the gene sharing concept originally proposed on the basis of the dual function of crystallins.  相似文献   

19.
Gap junctions isolated from rat liver were partially solubilized with a mixture of digitonin and octyl glucoside. After supplementation with lecithin and cholesterol, the octyl glucoside was removed from the soluble fraction by dialysis. The membranes of the reconstituted vesicles, observed in freeze-fracture, contained particles ranging from 7 to 12 nm diameter, more or less aggregated depending on the protein-to-lipid ratio. At every protein concentration, the arrangement of particles in contact areas between adjacent membranes closely resembles the organization of intact gap junctions. We conclude that the mixture of digitonin and octyl glucoside is able to solubilize the proteins of the liver gap junctions while preserving their property of restoring a gap junction-like structure.  相似文献   

20.
Summary The hepatopancreas of the crayfish, Procambarus clarkii, contains an unusual abundance of gap junctions, suggesting that this tissue might provide an ideal source from which to isolate the arthropod-type of gap junction. A membrane fraction obtained by subcellular fractionation of this organ contained smooth septate junctions, zonulae adhaerentes, gap junctions and pentalaminar membrane structures (pseudo-gap junctions) as determined by electron microscopy. A further enrichment of plasma membranes and gap junctions was achieved by the use of linear sucrose gradients and extraction with 5 mM NaOH. The enrichment of gap junctions correlated with the enrichment of a 31 Kd protein band on polyacrylamide gels. Extraction with 20 mM NaOH or 0.5% (w/v) Sarkosyl NL97 resulted in the disruption and/or solubilization of gap junctions. Negative staining revealed a uniform population of 9.6 nm diameter subunits within the gap junctions with an apparent sixfold symmetry. Using antisera to the major gap junctional protein of rat liver (32 Kd) and to the lens membrane protein (MP 26), we failed to detect any homologous antigenic components in the arthropod material by immunoblotting-enriched gap junction fractions or by immunofluorescence on tissue sections. The enrichment of another membrane structure (pseudo-gap junctions), closely resembling a gap junction, correlated with the enrichment of two protein bands, 17 and 16Kd, on polyacrylamide gels. These structures appeared to have originated from intracellular myelin-like figures in phagolysosomal structures. They could be distinguished from gap junctions on the basis of their thickness, detergent-alkali insolubility, and lack of association with other plasma membrane structures, such as the septate junction. Pseudo-gap junctions may be related to a class of pentalaminar contacts among membranes involved in intracellular fusion in many eukaryotic cell types. We conclude that pseudo-gap junctions and gap junctions are different cellular structures, and that gap junctions from this arthropod tissue are uniquely different from mammalian gap junctions of rat liver in their detergentalkali solubility, equilibrium density on sucrose gradients, and protein content (antigenic properties).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号