首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Two new series of cannabinoids were prepared and their affinities for the CB1 and CB2 receptors were determined. These series are the (2'R)- and (2'S)-1-methoxy- and 1-deoxy-3-(2'-methylalkyl)-delta8-tetrahydrocannabinols, with alkyl side chains of three to seven carbon atoms. These compounds were prepared by a route that employed the enantioselective synthesis of the resorcinol precursors to the cannabinoid ring system. All of these compounds have greater affinity for the CB2 receptor than the CB1 receptor and four of them, (2'R)-1-methoxy-3-(2'-methylbutyl)-delta8-THC (JWH-359), (2'S)-1-deoxy-3-(2'-methylbutyl)-delta8-THC (JWH-352), (2'S)-1-deoxy-3-(2'-methylpentyl)-delta8-THC (JWH-255), and (2'R)-1-deoxy-3-(2'-methylpentyl)-delta8-THC (JWH-255), have good affinity (K(i) = 13-47 nM) for the CB2 receptor and little affinity (K(i) = 1493 to >10,000 nM) for the CB1 receptor. In the 1-deoxy-3-(2'-methylalkyl)-delta8-THC series, the 2'S-methyl compounds in general have greater affinity for the CB2 receptor than the corresponding 2'R isomers.  相似文献   

2.
Behavioral comparisons of the stereoisomers of tetrahydrocannabinols   总被引:1,自引:0,他引:1  
The potencies of (?)-trans9-THC, (+)-trans9-THC, (+)-cis9-THC, (?)-trans8-THC and (+)-trans8-THC were compared in several different species. (?)-trans9-THC was 100 times more potent than (+)-trans9-THC in depressing schedule-controlled responding in monkeys. The (+)-trans isomers were less effective than their corresponding (?)-trans isomers in the dog static-ataxia test, but potency ratios could not be determined due to a lack of dose-responsiveness of the (+)-trans isomers. However, it appeared that their potency differed by at least ten fold. The potency of (+)-cis9-THC in the dog static-ataxia test was comparable to that of (+)-trans9-THC. The hypothermia in mice produced by the (?) isomers of trans9-THC and trans8-THC were 9.1 and 30.4 times greater than that produced by their respective (+)-isomers. Also, the potency ratio of the (+)- and (?)-trans9-THC was 5.6 as measured by depression of spontaneous activity in mice. The magnitude of the potency ratios of the THC stereo-isomers is dependent upon the species and the pharmacological test used.  相似文献   

3.
Novel analogs of (-)-delta8-tetrahydrocannabinol (delta8-THC) in which the conformation of the side chain was restricted by incorporating the first one or two carbons into a six membered ring fused with the aromatic phenolic A ring were synthesized. The affinities of the novel ligands for CB1 and CB2 indicated that the "southbound" chain conformer retained the highest affinity for both receptors.  相似文献   

4.
The synthesis and pharmacology of 15 1-deoxy-delta8-THC analogues, several of which have high affinity for the CB2 receptor, are described. The deoxy cannabinoids include 1-deoxy-11-hydroxy-delta8-THC (5), 1-deoxy-delta8-THC (6), 1-deoxy-3-butyl-delta8-THC (7), 1-deoxy-3-hexyl-delta8-THC (8) and a series of 3-(1',1'-dimethylalkyl)-1-deoxy-delta8-THC analogues (2, n = 0-4, 6, 7, where n = the number of carbon atoms in the side chain-2). Three derivatives (17-19) of deoxynabilone (16) were also prepared. The affinities of each compound for the CB1 and CB2 receptors were determined employing previously described procedures. Five of the 3-(1',1'-dimethylalkyl)-1-deoxy-delta8-THC analogues (2, n = 1-5) have high affinity (Ki = < 20 nM) for the CB2 receptor. Four of them (2, n = 1-4) also have little affinity for the CB1 receptor (Ki = > 295 nM). 3-(1',1'-Dimethylbutyl)-1-deoxy-delta8-THC (2, n = 2) has very high affinity for the CB2 receptor (Ki = 3.4 +/- 1.0 nM) and little affinity for the CB1 receptor (Ki = 677 +/- 132 nM).  相似文献   

5.
P J Little  B R Martin 《Life sciences》1991,48(12):1133-1141
The effects of delta 9-THC and other cannabinoids on cAMP levels in synaptosomes from mouse brains were investigated in order to determine whether cannabinoids produced their behavioral effects through alterations in adenylate cyclase. delta 9-THC (0.01-10 microM) did not significantly alter basal cAMP levels, whereas delta 9-THC and other cannabinoids were able to alter forskolin-stimulated cAMP levels in synaptosomes. In general, three kinds of responses were observed. Some cannabinoids displayed a modest, concentration-dependent decrease in cAMP levels, producing significant inhibition between 1-10 microM. Other cannabinoids, including delta 9-THC and delta 8-THC, appeared to produce a biphasic effect in that inhibition of cAMP was observed only at a single concentration. Finally, some analogs were unable to significantly alter forskolin-stimulated cAMP. There was not a clear relationship between the ability of the cannabinoids to alter cAMP levels in synaptosomes and the behavioral effects observed in mice. However, it was demonstrated that the analogs which are the most potent in producing cannabimimetic effects in mice were the analogs which inhibited cAMP in a concentration-dependent manner. While cannabinoids were able to alter cAMP levels in synaptosomes, the ability to alter cAMP levels does not appear to be absolutely necessary for the production of cannabinoid effects in mice.  相似文献   

6.
Stereospecificity has been reported for a number of actions of the cannabinoids in a variety of systems. In the present report, we have shown that this effect can also be demonstrated when human lung fibroblasts in monolayer culture are stimulated by cannabinoids to produce prostaglandin E2 (PGE2). Three enantiomeric pairs of cannabinoids, (+) and (-)-delta 1-tetrahydrocannabinol (THC), (+) and (-)-delta 6-THC and (+) and (-)-delta 6-dimethylheptyl (DMH) THC were tested. In each case the (-) isomer was significantly more potent in agreement with the findings of others using different systems. Interestingly, very little stereospecificity was found in fibroblasts when the release of arachidonic acid, the precursor of PGE2, was monitored. This suggests that cannabinoids may act at several sites within the cell some of which show comparatively greater stereoselectivity for these agonists.  相似文献   

7.
The effects of (-)-delta 8-tetrahydrocannabinol (delta 8-THC) and its biologically inactive O-methyl ether analog on model phospholipid membranes were studied using a combination of differential scanning calorimetry (DSC), small angle X-ray diffraction and solid state 2H-NMR. The focus of this work is on the amphipathic interactions of cannabinoids with membranes and the role of the free phenolic hydroxyl group which is the only structural difference between these two cannabinoids. Identically prepared aqueous multilamellar dispersions of phosphatidylcholines in the absence and presence of cannabinoids were used. The DSC thermograms and X-ray diffraction patterns of these preparations allowed us to detect the strikingly different manners in which these two cannabinoids affect the thermotropic properties and the thickness of the bilayer. In order study the effects of the cannabinoids on different regions of the bilayer, we used solid state 2H-NMR with four sets of model membranes from dipalmitoylphosphatidylcholine deuterated in different sites, viz., the choline trimethylammonium head group, or one of the following three groups in the acyl chains; the 2'-methylene, 7'-methylene, 16'-methyl groups. Analysis of quadrupolar splittings indicated that delta 8-THC resides near the bilayer interface and the inactive analog sinks deeper towards the hydrophobic region. The temperature dependence of the solid state 2H-NMR spectra showed that, during the bilayer phase transition, the disordering of the choline head groups is a separate event from the melting of the acyl chains, and that amphipathic interactions between delta 8-THC and the membrane separate these two events further apart in temperature. The inactive analog lacks the ability to induce such a perturbation.  相似文献   

8.
The compounds reported in this study are Delta(8)-THC analogues in which the C3 five-carbon linear side chain of Delta(8)-THC was replaced with aryl and 1',1'-cycloalkyl substituents. Of the compounds described here analogues 2d (CB(1), K(i)=11.7 nM. CB(2), K(i)=9.39 nM) and 2f (CB(1), K(i)=8.26 nM. CB(2), K(i)=3.86 nM) exhibited enhanced binding affinities for CB(1) and CB(2), exceeding that of Delta(8)-THC. Efficient procedures for the synthesis of these novel cannabinoid analogues are described.  相似文献   

9.
The chloroplast coupling factor 1 complex (CF1) contains an epsilon-subunit which inhibits the CF1 ATPase activity. Chloroform treatment of Chlamydomonas reinhardtii thylakoid membranes solubilizes only forms of the enzyme which apparently lack the delta-subunit. Four interrelated observations are described in this paper. (1) The dithiothreitol- (DTT) induced ATPase activation of CF1(-delta) and the DTT-induced formation of a physically resolvable CF1(-delta,epsilon) from the CF1(-delta) precursor are compared. The similar time-courses of these two phenomena suggest that the dissociation of the epsilon-subunit is an obligatory process in the DTT-induced ATPase activation of soluble CF1. (2) The reversible dissociation of the epsilon-subunit of the CF1 is demonstrated by the exchange of subunits between distinguishable oligomers. 35S-labelled chloroplast coupling factor 1 lacking the delta and epsilon subunits [CF1(-delta,epsilon)] was added to a solution of non-radioactive coupling factor 1 lacking only the delta subunit [CF1(-delta)]. After separation of the two enzyme forms, via high resolution anion-exchange chromatography, radioactivity was detected in the chromatographic fractions containing CF1(-delta). (3) epsilon-deficient CF1 can be resolved from DTT pretreated epsilon-containing CF1 for several days after the removal of DTT. On the other hand, brief incubation of the DTT pretreated epsilon-containing CF1 with low concentrations of o-iodosobenzoate results in chromatographs containing only the peak of epsilon-containing CF1. A simple explanation for this phenomenon is that reduction of CF1 with DTT increases the apparent dissociation constant for the epsilon-subunit to an estimated 3.5 x 10(-8) M (+/- 1.0 x 10(-8) M) from a value of less than or equal to 5 x 10(-11) M for the oxidized enzyme. (4) ATPase activity data show that oxidation of the epsilon-deficient enzyme does not completely inhibit its manifest activity, but oxidation of DTT pre-treated CF1 which contains the epsilon-subunit completely inhibits manifest activity. A simple model is proposed for the influence of the oxidation state of the soluble enzyme on the distribution of ATPase-inactive and ATPase-active subunit configurations.  相似文献   

10.
C O Haavik  H F Hardman 《Life sciences》1973,13(12):1771-1778
The hypothermic activity of Δ9-tetrahydrocannabinol (Δ9-THC), a metabolite, 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-Δ9-THC) and 11-hydroxy-Δ8-tetrahydrocannabinol (11-OH-Δ8-THC) has been determined in male mice maintained at an ambient temperature of 20 ± 1°C. The mean body temperature of mice that received 2, 4, 16 or 32 mg/kg, i. v., of a tetrahydrocannabinol was significantly lower than that of vehicle treated mice (p <0.05) within 2 minutes after drug administration. Dose-response relationships show the intrinsic activity of Δ9-THC to be significantly greater than that of 11-OH-Δ9-THC or 11-OH-Δ8-THC in this system (p <0.05). The data indicate that the hypothermic activity of Δ9-THC cannot be explained entirely by metabolism to 11-OH-Δ9-THC.  相似文献   

11.
Cannabimimetic drugs have been shown to inhibit adenylate cyclase activity in N18TG2 neuroblastoma cells. This investigation examines the possible role of opioid receptors in the cannabimimetic response. Opioid receptors of the delta subtype were found on N18TG2 membranes using [3H]D-Ala2-D-Leu5-enkephalin. No mu or kappa receptors were detected using selective ligands for these sites. The delta binding affinity and capacity were unaltered by cannabimimetic drugs. To test if cannabimimetic drugs may modulate opioid effector mechanisms, cyclic AMP metabolism was determined in intact cells and in membranes. N18TG2 adenylate cyclase was inhibited by the cannabimimetic drugs delta 9-tetrahydrocannabinol and desacetyllevonantradol, and by the opioid agents morphine, etorphine, and D-Ala2-Met5-enkephalinamide. The opioid inhibition was reversed by naloxone and naltrexone; however, the cannabimimetic response was unaffected. Both cannabimimetic and opioid drugs decreased cyclic AMP accumulation in intact cells, but opioid antagonists blocked the response only to the latter. Thus, cannabimimetic effects are observed even though opioid receptors are blocked by antagonist drugs. The interaction between desacetyllevonantradol and etorphine was neither synergistic nor additive at maximal concentrations, suggesting that these two drugs operate via the same effector mechanism. Other neuronal cell lines having an opioid response were also examined. The cannabimimetic inhibition of cyclic AMP accumulation in NG108-15 neuroblastoma X glioma cells was not as great as the response in N18TG2. N4TG1 neuroblastoma cells did not respond to cannabimimetic drugs under any conditions tested. Thus, the cannabimimetic inhibition of adenylate cyclase is not universally observed, and the efficacy of the cannabimimetic response does not correlate with the efficacy of the opioid response.  相似文献   

12.
In previous study the major psychoactive ingredient of marihuana (delta 1-THC) has been shown to inhibit ovarian prostaglandin synthesis when administered to normally cycling rats in the early afternoon of proestrus. These results suggested a direct suppressive effect of the drug on the ovary. The purpose of this study was to evaluate the effect of delta 1-THC on steroidogenesis in granulosa cells (GC) in vitro. Incubation of GC with delta 1-THC (10-50 microM) effectively inhibited LH-stimulatable progestin production. This suppressive effect was not abolished by washing the cells after 24 h of culture in the presence of delta 1-THC, indicating the irreversible nature of the blocking effect of delta 1-THC. By contrast, estradiol production following incubation of GC with testosterone (1 microgram/ml) was not inhibited by similar concentrations of delta 1-THC, thus suggesting that delta 1-THC does not inhibit aromatase activity in GC. In addition, delta 1-THC was shown to inhibit cAMP production as well as 125I-hCG binding capacity to GC. Administration of 8-Br-cAMP did not abolish the delta 1-THC-induced block, suggesting that the drug probably acts distal to the cAMP site of action.  相似文献   

13.
Cannabinoids are a class of compound found in marijuana which have been known for their therapeutic and psychoactive properties for at least 4000 years. Isolation of the active principle in marijuana, 9-THC, provided the lead structure in the development of highly potent congeners which were used to probe for the mechanism of marijuana action. Cannabinoids were shown to bind to selective binding sites in brain tissue thereby regulating second messenger formation. Such studies led to the cloning of three cannabinoid receptor subtypes, CB1, CB2, and CB1A all of which belong to the superfamily of G protein-coupled plasma membrane receptors. Analogous to the discovery of endogenous opiates, isolation of cannabinoid receptors provided the appropriate tool to isolate an endogenous cannabimimetic eicosanoid, anandamide, from porcine brain. Recent studies indicate that anandamide is a member of a family of fatty acid ethanolamides that may represent a novel class of lipid neurotransmitters. This review discusses recent progress in cannabinoid research with a focus on the receptors for 9-THC, their coupling to second messenger responses, and the endogenous lipid cannabimimetic, anandamide.  相似文献   

14.
In this study, tetrahydrocannabinols (THCs) were mainly oxidized at the 11-position and allylic sites at the 7alpha-position for Delta(8)-THC and the 8beta-position for Delta(9)-THC by human hepatic microsomes. Cannabinol (CBN) was also mainly metabolized to 11-hydroxy-CBN and 8-hydroxy-CBN by the microsomes. The 11-hydroxylation of three cannabinoids by the microsomes was markedly inhibited by sulfaphenazole, a selective inhibitor of CYP2C enzymes, while the hydroxylations at the 7alpha-(Delta(8)-THC), 8beta-(Delta(9)-THC) and 8-positions (CBN) of the corresponding cannabinoids were highly inhibited by ketoconazole, a selective inhibitor of CYP3A enzymes. Human CYP2C9-Arg expressed in the microsomes of human B lymphoblastoid cells efficiently catalyzed the 11-hydroxylation of Delta(8)-THC (7.60 nmol/min/nmol CYP), Delta(9)-THC (19.2 nmol/min/nmol CYP) and CBN (6.62 nmol/min/nmol CYP). Human CYP3A4 expressed in the cells catalyzed the 7alpha-(5.34 nmol/min/nmol CYP) and 7beta-hydroxylation (1.39 nmol/min/nmol CYP) of Delta(8)-THC, the 8beta-hydroxylation (6.10 nmol/min/nmol CYP) and 9alpha,10alpha-epoxidation (1.71 nmol/min/nmol CYP) of Delta(9)-THC, and the 8-hydroxylation of CBN (1.45 nmol/min/nmol CYP). These results indicate that CYP2C9 and CYP3A4 are major enzymes involved in the 11-hydroxylation and the 8-(or the 7-) hydroxylation, respectively, of the cannabinoids by human hepatic microsomes. In addition, CYP3A4 is a major enzyme responsible for the 7alpha- and 7beta-hydroxylation of Delta(8)-THC, and the 9alpha,10alpha-epoxidation of Delta(9)-THC.  相似文献   

15.
Neutron diffraction measurements have been utilized to study the effects of delta 9-tetrahydrocannabinol (delta 9-THC) and delta 8-tetrahydrocannabinol (delta 8-THC) incorporated in phospholipid membranes of dipalmitoylphosphatidylcholine (DPPC). Low-angle diffraction indicated that these cannabinoids induce increases in interlamellar spacing similar to those produced by cholesterol. Wide-angle diffraction indicated significant differences in how the intralamellar structure is affected by the inclusion of either cannabinoids or cholesterol. Similar weight percentages of cholesterol and cannabinoids in membranes yielded different thermal analysis profiles but the profiles for membranes with either delta 8 or delta 9-THC were similar. Since the neutron diffraction results for inclusions of delta 8 and delta 9-THC were also similar, this suggests that the difference in psychoactivity of delta 8 and delta 9-THC is probably due to interactions with membrane proteins rather than with phospholipids.  相似文献   

16.
Anticonvulsant doses of Δ9-tetrahydrocannabinol (Δ9-THC) markedly lower body temperature in mice at an ambient temperature of 22°C, but there is little such effect at 30°C. The anticonvulsant properties of Δ9-THC are as follows: The drug abolishes hind-limb extension in a maximal electroshock (MES) test, elevates both the MES (extensor) and 6-Hz-electroshock thresholds, exerts no effect on the 60-Hz-electroshock threshold, and enhances minimal seizures caused by pentylenetetrazol. All anticonvulsant properties studied, with the exception of the 60-Hz-electroshock threshold, were unaffected by the hypothermia resulting at 22°C. Additional experiments with Δ9-THC indicated that chronic treatment results in the development of tolerance, as determined by the MES test with rats. The four principal naturally occurring cannabinoids, Δ9-THC, Δ8-THC, cannabinol and cannabidiol, display anticonvulsant activity, as does the major, primary metabolite of Δ9-THC, 11-hydroxy-Δ9-THC. Of all agents investigated in mice, the synthetic cannabinoids, dimethylheptylpyran and its isomers, are the most potent anticonvulsants. The results of a study of the relative motor toxicity and anticonvulsant activity of the cannabinoids demonstrate that these properties are at least partially separable among the various agents.  相似文献   

17.
This study investigated the direct effects of tetrahydrocannabinols (THC) on progesterone release by cultured rat luteal cells, as a function of dose and time. During a 24-h incubation, the level of progesterone in the culture medium was decreased by 35% and 60% in the presence of 1 microM 11-OH-delta 9-THC and 8 beta-OH-delta 9-THC, respectively, when compared with control cultures. Dose-response analysis revealed that 8 beta-OH-delta 9-THC inhibited progesterone levels at 0.1 microM but not at lower concentrations. The action of 8 beta-OH-delta 9-THC was rapid in onset and a significant effect could be observed as early as 2 h following the addition of the cannabinoid. While luteinizing hormone (LH, 1 microgram/ml) significantly enhanced progesterone release in the culture medium over the respective control levels, this action of LH was dramatically suppressed by the concomitant presence of 8 beta-OH-delta 9-THC at 2, 4 and 24 h in separate experiments. Moreover, the increase in the level of progesterone in the culture medium induced by 8-bromo-cyclic AMP was also attenuated by the concomitant presence of 8 beta-OH-delta 9-THC in the cultures. These results further substantiate a direct action of cannabinoids on the steroidogenic function of the corpus luteum, and that it involves at least some step(s) distal to the LH-sensitive adenylate cyclase system.  相似文献   

18.
The purpose of this study was to investigate the effect of cyclodextrins (CDs) on aqueous solubility, stability, and in vitro corneal permeability of delta-8-tetrahydrocannabinol (Δ8-THC). Phase solubility of Δ8-THC was studied in the presence of 2-hydroxypropyl-β-cyclodextrin (HPβCD), randomly methylated-β-cyclodextrin (RMβCD) and sulfobutyl ether-β-cyclodextrin sodium salt (SβCD). Stability of Δ8-THC in 5% w/v aqueous CD solutions, as a function of pH, was studied following standard protocols. In vitro corneal permeation of Δ8-THC (with and without CDs) across excised rabbit cornea was also determined. Phase-solubility profile of Δ8-THC in the presence of both HPβCD and RMβCD was of the AP type, whereas, with SβCD an AL type was apparent. Aqueous solubility of Δ8-THC increased to 1.65, 2.4, and 0.64 mg/mL in the presence of 25% w/v HPβCD, RMβCD, and SβCD, respectively. Significant degradation of Δ8-THC was not observed within the study period at the pH values studied, except for at pH 1.2. Transcorneal permeation of Δ8-THC was dramatically improved in the presence of CDs. The results demonstrate that CDs significantly increase aqueous solubility, stability, and transcorneal permeation of Δ8-THC. Thus, topical ophthalmic formulations containing Δ8-THC and modified beta CDs may show markedly improved ocular bioavailability.  相似文献   

19.
The endogenous cannabinoid anandamide produces cannabimimetic effects similar to those produced by delta9-tetrahydrocannabinol (delta9-THC), but has a much shorter duration of action due to its rapid metabolism to arachidonic acid and polar metabolites via action of fatty acid amide hydrolase (FAAH). Our earlier observations that anandamide's effects persisted after brain levels of anandamide itself had substantially dropped prompted us to examine the influence of the irreversible amidase inhibitor, phenylmethyl sulfonyl fluoride (PMSF), on the brain levels and pharmacological effects of anandamide. As shown previously, pretreatment with PMSF resulted in a leftward shift of the anandamide dose effect curves for antinociception and hypothermia in male mice. Brain and plasma levels of anandamide, arachidonic acid and polar metabolites peaked at 1 min after i.v. injection with 3H-anandamide and remained high at 5 min post-injection, with levels falling sharply thereafter. Pretreatment with PMSF (30 mg/kg, i.p.) prior to an injection of 1 or 10 mg/kg 3H-anandamide resulted 5 min later in enhanced brain levels of anandamide compared to those obtained with 3H-anandamide plus vehicle injection. Levels of arachidonic acid and polar metabolites in brain were not significantly increased. The clear correspondence between brain levels of anandamide following pretreatment with PMSF and pharmacological activity suggests that this parent compound is responsible for the antinociception and hypothermia that occurred 5 min after injection. These results further suggest that metabolite contribution to anandamide's effects, if any, would occur primarily at later times.  相似文献   

20.
Neurotensin (NT) is a gut peptide that plays an important role in gastrointestinal (GI) secretion, motility, and growth as well as the proliferation of NT receptor positive cancers. Secretion of NT is regulated by phorbol ester-sensitive protein kinase C (PKC) isoforms-alpha and -delta and may involve protein kinase D (PKD). The purpose of our present study was: (i) to define the role of PKD in NT release from BON endocrine cells and (ii) to delineate the upstream signaling mechanisms mediating this effect. Here, we demonstrate that small interfering RNA (siRNA) targeted against PKD dramatically inhibited both basal and PMA-stimulated NT secretion; NT release is significantly increased by overexpression of PKD. PKC-alpha and -delta siRNA attenuated PKD activity, whereas overexpression of PKC-alpha and -delta enhanced PKD activity. Rho kinase (ROK) siRNA significantly inhibited NT secretion, whereas overexpression of ROKalpha effectively increased NT release. Rho protein inhibitor C3 dramatically inhibited both NT secretion and PKD activity. In conclusion, our results demonstrate that PKD activation plays a central role in NT peptide secretion; upstream regulators of PKD include PKC-alpha and -delta and Rho/ROK. Importantly, our results identify novel signaling pathways, which culminate in gut peptide release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号