首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transformation experiments showed that spontaneous deletions which result in loss of streptomycin resistance and an increase in conjugal transfer efficiency are present at a frequency of about 10(-4) in plasmid molecules of R6K. Similar deletions were thus readily selected by conjugal transfer of R6K, and their appearance was dependent upon recA+ activity in either donor or recipient host. The deoxyribonucleic acid segment deleted in four mutants examined was concluded to extend from the same terminus of the transposon, TnA, in the same direction, but to different extents, and to retain the TnA region intact. Insertions of a duplicate TnA element were found in R6K plasmids isolated from strains selected for increased ampicillin resistance, which were unstable in recA+ strains. In four plasmids examined after transfer to a recA host, an inverted repeat of the preexisting TnA element was shown to have been inserted at a similar location and was in two instances associated with deletions which extended from the same direction as those described above. The deletions are ascribed to the result of recA+-dependent recombination between direct repeats of TnA.  相似文献   

2.
To isolate strains with new recA mutations that differentially affect RecA protein functions, we mutagenized in vitro the recA gene carried by plasmid mini-F and then introduced the mini-F-recA plasmid into a delta recA host that was lysogenic for prophage phi 80 and carried a lac duplication. By scoring prophage induction and recombination of the lac duplication, we isolated new recA mutations. A strain carrying mutation recA1734 (Arg-243 changed to Leu) was found to be deficient in phi 80 induction but proficient in recombination. The mutation rendered the host not mutable by UV, even in a lexA(Def) background. Yet, the recA1734 host became mutable upon introduction of a plasmid encoding UmuD*, the active carboxyl-terminal fragment of UmuD. Although the recA1734 mutation permits cleavage of lambda and LexA repressors, it renders the host deficient in the cleavage of phi 80 repressor and UmuD protein. Another strain carrying mutation recA1730 (Ser-117 changed to Phe) was found to be proficient in phi 80 induction but deficient in recombination. The recombination defect conferred by the mutation was partly alleviated in a cell devoid of LexA repressor, suggesting that, when amplified, RecA1730 protein is active in recombination. Since LexA protein was poorly cleaved in the recA1730 strain while phage lambda was induced, we conclude that RecA1730 protein cannot specifically mediate LexA protein cleavage. Our results show that the recA1734 and recA1730 mutations differentially affect cleavage of various substrates. The recA1730 mutation prevented UV mutagenesis, even upon introduction into the host of a plasmid encoding UmuD* and was dominant over recA+. With respect to other RecA functions, recA1730 was recessive to recA+. This demonstrates that RecA protein has an additional role in mutagenesis beside mediating the cleavage of LexA and UmuD proteins.  相似文献   

3.
Adaptive mutation to Lac(+) in Escherichia coli strain FC40 depends on recombination functions and is enhanced by the expression of conjugal functions. To test the hypothesis that the conjugal function that is important for adaptive mutation is the production of a single-strand nick at the conjugal origin, we supplied an exogenous nicking enzyme, the gene II protein (gIIp) of bacteriophage f1, and placed its target sequence near the lac allele. When both gIIp and its target site were present, adaptive mutation was stimulated three- to fourfold. Like normal adaptive mutations, gIIp-induced mutations were recA(+) and ruvC(+) dependent and were mainly single-base deletions in runs of iterated bases. In addition, gIIp with its target site could substitute for conjugal functions in adaptive mutation. These results support the hypothesis that nicking at the conjugal origin initiates the recombination that produces adaptive mutations in this strain of E. coli, and they suggest that nicking may be the only conjugal function required for adaptive mutation.  相似文献   

4.
Summary We further characterize a novel plasmid function preventing SOS induction called Psi (Plasmid SOS Inhibition). We show that Psi function is expressed by psiB, a gene located at coordinate 54.9 of plasmid R6-5 and near oriT, the origin of conjugal transfer. Deletions and amber mutations of the psiB gene permitted us to demonstrate that PsiB polypeptide (apparent molecular weight, 12 kDa) is responsible for Psi function. PsiB protein prevents recA730-promoted mutagenesis and intra-chromosomal recombination but not recombination following conjugation. Overproduction of PsiB protein sensitizes the host cell to UV irradiation. We propose that PsiB polypeptide has an anti-SOS action by inhibiting activation of RecA protein, thus preventing the occurrence of LexA-controlled functions.  相似文献   

5.
Construction of an Agrobacterium tumefaciens C58 recA mutant.   总被引:13,自引:9,他引:4       下载免费PDF全文
Clones encoding the recA gene of Agrobacterium tumefaciens C58 were isolated from a cosmid bank by complementation of an Escherichia coli recA mutation. Subcloning and mutagenesis with the lacZ fusion transposon Tn3HoHo1 located the Agrobacterium recA gene to a 1.3-kilobase segment of DNA. beta-Galactosidase expression from the fusions established the direction in which the gene was transcribed. The gene restored homologous recombination as well as DNA repair functions in E. coli recA mutants. Similar complementation of DNA repair functions was observed in the UV-induced Rec- Agrobacterium mutant, LBA4301. The Agrobacterium recA gene was disrupted by insertion of a cassette encoding resistance to erythromycin, and the mutated gene was marker exchanged into the chromosome of strain NT-1. The resulting strain, called UIA143, was sensitive to UV irradiation and methanesulfonic acid methyl ester and unable to carry out homologous recombination functions. The mutation was stable and had no effect on other genetic properties of the Agrobacterium strain, including transformability and proficiency as a conjugal donor or recipient. Furthermore, strain UIA143 became tumorigenic upon introduction of a Ti plasmid, indicating that tumor induction is independent of recA functions. Sequence homology was detected between the recA genes of strain C58 and E. coli as well as with DNA isolated from agrobacteria representing the three major biochemically differentiated biovars of this genus. In some cases, biovar-specific restriction fragment length polymorphisms were apparent at the recA locus.  相似文献   

6.
The genetic and biochemical properties of an endonuclease mediated by the mutagenesis-enhancing plasmid pKM101 have been investigated. Taking advantage of the observation that this endonuclease, unlike host-coded DNases, is active in the presence of EDTA, we have developed an assay with nondenaturing acrylamide gels containing DNA. We have localized the plasmid DNA sufficient for nuclease expression to a 0.8-kilobase sequence that is near regions of DNA necessary for conjugal transfer, and we have determined that this gene is transcribed clockwise on the pKM101 map. The pKM101 gene mediating this activity codes for a 16,000-dalton protein, which is the same molecular mass as the nuclease monomer, leading us to conclude that this gene codes for the nuclease itself rather than for an activator of some host-coded enzyme. Cellular fractionation experiments have shown that the enzyme is localized in the periplasm. We have not been able to demonstrate any physiological role for the enzyme, but we have ruled out a direct involvement of the nuclease in any of the following known plasmid-associated phenotypes: (i) mutagenesis enhancement, (ii) conjugal transfer, (iii) entry exclusion, (iv) fertility inhibition of coresident P-group plasmids, (v) killing of Klebsiella pneumoniae used as conjugal recipients, and (vi) plasmid curing induced by treatment of cells with fluorodeoxyuridine. In addition, we have shown that the enzyme does not restrict bacteriophage or affect the ability of the host to utilize DNA as a source of thymine. Finally, we have shown that 11 of the 26 other plasmids tested also elaborated EDTA-resistant DNases.  相似文献   

7.
P J Abbott 《Mutation research》1985,145(1-2):25-34
A plasmid containing the STR operon has been modified in vitro (i) by irradiation with UV light, (ii) by reaction with ethyl methanesulphonate (EMS), (iii) by reaction with N-acetoxy-2-acetylaminofluorene (AcO-AAF), (iv) by reaction with (+/-)trans-benzo[a]pyrene-7, 8-dihydrodiol-9,10-epoxide (BPDE), and (v) by heating at 70 degrees C to produce apurinic sites. Suitably modified plasmid DNA was then used to transform both repair-proficient and repair-deficient strains of Escherichia coli, and the mutation frequency in the plasmid-encoded rspL+ gene measured. The influence of host mutations in the uvrB+, recA+, umuC+ and lexA+, genes on the mutation frequency have been investigated. Transformation into a uvrB strain significantly decreased survival and increased the level of mutations observed for UV- and AcO-AAF-modified plasmid DNA, while only a small increase in mutation frequency was seen with EMS-modified DNA and no increase in mutation frequency with plasmid DNA containing apurinic sites. Mutagenesis in UV- and BPDE-modified DNA (and probably also DNA containing apurinic sites) was totally dependent on he recA+ gene product, while EMS and AcO-AAF induced mutagenesis was only partially independent on the recA+ gene. Transformation of UV- or BPDE-modified DNA into a umuC or lexA strain, on the other hand, showed no change in mutation frequency from that observed with wild-type strain. Pre-irradiation of the wild-type host with UV light before transformation led to a significant increase in mutation frequency for UV- and BPDE-modified plasmid DNA. These results are discussed in terms of mutational or recombinational pathways which may be available to act on modified plasmid DNA, and suggest that the majority of the mutational events measured in this system are due to recombination between homologous regions on the plasmid and chromosomal DNA.  相似文献   

8.
9.
The determinants for two bacteriophage resistance mechanisms, AbiE and AbiF, are separated by approximately 3,300 nucleotides on the lactococcal plasmid pNP40 (P. Garvey, G.F. Fitzgerald, and C. Hill, Appl. Environ. Microbiol. 61:4321-4328, 1995). DNA sequence analysis of the intervening region led to the identification of two open reading frames (ORFs) which are transcribed in the opposite direction to the Abi determinants. One of these ORFs encodes a recA homolog (designated recALP). This is the first report of a recA-like determinant located to a plasmid. The second ORF (orfU) shares homology with the umuC gene of the SOS response. Analysis of a number of lactococcal strains confirmed the presence of recALP-like sequences in at least two other lactococcal strains. The proximity of the recA and umuC homologs suggested a possible role in the phase resistance encoded by the Abi determinants. However, no evidence was obtained to demonstrate a function for either ORF in the expression of either AbiE or AbiF. Nor could the recALP gene restore resistance to mitomycin in a recA-deficient lactococcal strain, VEL1122. Interestingly, it was shown that the chromosomally encoded recA is necessary for complete expression of the AbiF phenotype, confirming a role for RecA in this abortive infection system.  相似文献   

10.
Escherichia coli plasmids containing the rpsL+ gene (Strs phenotype) as the target for mutation were treated in vitro with N-methyl-N-nitrosourea. Following fixation of mutations in E. coli MM294A cells (recA+ Strs), an unselected population of mutant and wild-type plasmids was isolated and transferred into a second host, E. coli 6451 (recA Strr). Strains carrying plasmid-encoded forward mutations were then selected as Strr isolates, while rpsL+ plasmids conferred the dominant Strs phenotype in the second host. Mutation induction and reduced survival of N-methyl-N-nitrosourea-treated plasmids were shown to be dose dependent. Because this system permitted analysis and manipulation of the levels of certain methylated bases produced in vitro by N-methyl-N-nitrosourea, it afforded the opportunity to assess directly the relative roles of these bases and of SOS functions in mutagenesis. The methylated plasmid DNA gave a mutation frequency of 6 X 10(-5) (a 40-fold increase over background) in physiologically normal cells. When the same methylated plasmid was repaired in vitro by using purified O6-methylguanine DNA methyltransferase (to correct O6-methylguanine and O4-methylthymine), no mutations were detected above background levels. In contrast, when the methylated plasmid DNA was introduced into host cells induced by UV light for the SOS functions, rpsL mutagenesis was enhanced eightfold over the level seen without SOS induction. This enhancement of mutagenesis by SOS was unaffected by prior treatment of the DNA with O6-methylguanine DNA methyltransferase. These results demonstrate a predominant mutagenic role for alkylation lesions other than O6-methylguanine or O4-methylthymine when SOS functions are induced. The mutation spectrum of N-methyl-N-nitrosourea under conditions of induced SOS functions revealed a majority of mutagenic events at A . T base pairs.  相似文献   

11.
Plasmid recombination, like other homologous recombination in Escherichia coli, requires RecA protein in most conditions. We have found that the plasmid recombination defect in a recA mutant can be efficiently suppressed by the beta protein of bacteriophage lambda. beta protein is required for homologous recombination of lambda chromosomes during lytic phage growth in a recA host and is known to have a strand-annealing activity resembling that of RecA protein. The bioluminescence recombination assay was used for genetic analysis of beta-protein-mediated plasmid recombination. Efficient suppression of the recA mutation by beta protein required the absence of the E. coli nucleases exonuclease I and RecBCD nuclease. These nucleases inhibit a RecA-mediated plasmid recombination pathway that is more efficient than the pathway functioning in wild-type cells. Like RecA-mediated plasmid recombination in RecBCD- ExoI- cells, beta-protein-mediated plasmid recombination depended on concurrent DNA replication and on the activity of the recQ gene. However, unlike RecA-mediated plasmid recombination, beta-protein-mediated recombination in RecBCD- ExoI- cells was independent of recF and recJ activities. We propose that inactivation of exonuclease I and RecBCD nuclease stabilizes a recombination intermediate that is involved in RecA- and beta-protein-catalyzed homologous pairing reactions. We suggest that the intermediate may be linear plasmid DNA with a protruding 3' end, since these nucleases are known to interfere with the synthesis of such linear forms. The different recF and recJ requirements for beta-protein-dependent and RecA-dependent recombinations imply that the mechanisms of formation or processing of the putative intermediate differ in the two cases.  相似文献   

12.
A previously described regulatory mutation which abolishes expression of the extracellular nuclease of Serratia marcescens is shown to be a mutation of the Serratia recA gene. The defect in nuclease expression could be restored by introducing a plasmid carrying the recA gene of Escherichia coli. The DNA sequence of the Serratia gene is very similar to that of the E. coli gene. The putative LexA-binding site of the Serratia recA gene is almost identical to that of E. coli, along with the promoter. A similar LexA-binding site can also be found upstream of the nuclease gene. As expected from this finding, we show that nuclease expression can be induced by SOS-inducing agents such as mitomycin C. Although inducible in S. marcescens, the nuclease was expressed only at the uninduced levels in E. coli and could not be induced by mitomycin C. The extracellular chitinase and lipase were similarly affected by the mutations altering nuclease expression and were also induced by mitomycin C.  相似文献   

13.
14.
The tif-1 mutation in the Escherichia coli recA gene is known to cause induction of the various "SOS" functions at high temperature, including massive synthesis of the recA protein, lethal filamentation, elevated mutagenesis, and, in lambda lysogens, induction of prophage. It is shown here that the deoxyribonucleic acid initiation mutation dnaB252 suppresses all these manifestations of tif expression. Induction of lambda by ultraviolet irradiation, however, is not affected by the dnaB252 mutation. No similar suppression of tif is observed with other dnaB mutations affecting deoxyribonucleic acid elongation or with other deoxyribonucleic acid initiation mutations at the dnaA and dnaC loci. The fact that an alteration of the dnaB protein specifically suppresses tif-mediated SOS induction implies a role of the replication apparatus in this process, as has been suggested for ultraviolet induction. The induction of lambda is known to proceed via repressor cleavage, presumably promoted by an activated (protease) form of the recA protein. Since lambda induction is normal after ultraviolet irradiation of the tif-1 dnaB252(lambda) strain, tif-mediated induction in this strain may be blocked in a tif-specific step leading to activation of the recA (tif) protein. It is possible that the recA (tif) mutant protein may be directly involved in the replication complex in processes leading to this activation.  相似文献   

15.
The structural stability of plasmid pGP1, which encodes a fusion between the penicillinase gene (penP) of Bacillus licheniformis and the Escherichia coli lacZ gene, was investigated in Bacillus subtilis strains expressing mutated subunits of the ATP-dependent nuclease, AddAB, and strains lacking the major recombination enzyme, RecA. Strains carrying a mutation in the ATP-binding site of the AddB subunit exhibited high levels of plasmid instability, whereas a comparable mutation in the A subunit did not affect plasmid stability. Using an alternative plasmid system, pGP100, we were able to demonstrate that the differences in stability reflected differences in initial recombination frequencies. Based on a comparison of endpoint sequences observed in the various hosts, we speculate that at least two different mechanisms underlie the deletion events involved, the first (type I) occurring between nonrepeated sequences, and the second (type II) occurring between short direct repeats (DRs). The latter event was independent of single-strand replication intermediates and the mode of replication and possibly requires the introduction of double-strand breaks (DSBs) between the repeats. In the absence of functional AddAB complex, or the AddB subunit, DSBs are likely to be processed via a recA-independent mechanism, resulting in intramolecular recombination between the DRs. In wild-type cells, such DSBs are supposed to be either repaired by a mechanism involving AddAB-dependent recombination or degraded by the AddAB-associated exonuclease activity. Plasmid stability assays in a recA mutant showed that (i) the level of deletion formation was considerably higher in this host and (ii) that deletions between short DRs occurred at higher frequencies than those described previously for the parental strain. We propose that in wild-type cells, the recA gene product is involved in recombinational repair of DSBs.  相似文献   

16.
17.
groE genes affect SOS repair in Escherichia coli.   总被引:7,自引:5,他引:2       下载免费PDF全文
Repair of UV-irradiated bacteriophage in Escherichia coli by Weigle reactivation requires functional recA+ and umuD+C+ genes. When the cells were UV irradiated, the groE heat shock gene products, GroES and GroEL, were needed for at least 50% of the Weigle reactivation of the single-stranded DNA phage S13. Because of repression of the umuDC and recA genes, Weigle reactivation is normally blocked by the lexA3(Ind-) mutation (which creates a noncleavable LexA protein), but it was restored by a combination of a high-copy-number umuD+C+ plasmid and a UV dose that increases groE expression. Maximal reactivation was achieved by elevated amounts of the Umu proteins, which was accomplished in part by UV-induced expression of the groE genes. By increasing the number of copies of the umuD+C+ genes, up to 50% of the normal amount of reactivation of S13 was achieved in an unirradiated recA+ host.  相似文献   

18.
The complete conjugal transfer gene region of the IncW plasmid R388 has been cloned in multicopy vector plasmids and mapped to a contiguous 14.9-kilobase segment by insertion mutagenesis. The fertility of the cloned region could still be inhibited by a coresident IncP plasmid. The transfer region has been dissected into two regions, one involved in pilus synthesis and assembly (PILW), and the other involved in conjugal DNA metabolism (MOBW). They have been separately cloned. PILW also contains the genes involved in entry exclusion. MOBW contains oriT and the gene products required for efficient mobilization by PILW. MOBW plasmids could also be mobilized efficiently by PILN, the specific pilus of the IncN plasmid pCU1, but not by PILP, the specific pilus of the IncP plasmid RP1.  相似文献   

19.
为消除链霉菌11371内源性质粒对pIJ702的限制,以提高pIJ702转化率,确定11371基因工程宿主菌。采用种内接合转移的方法对链霉菌11371衍生菌U3和P2、P5、P7进行内源性质粒的消除。获得接合转移子U3-P7-6,具有转化外源质粒的能力,转化率为17~20个/100个菌,为链霉菌11371转化体系构建、克隆基因结构、功能鉴定和基因定位等研究提供生物材料。  相似文献   

20.
Using pBR322- and pUC-derived plasmid vectors, a homologous (Escherichia coli native esterase) and three heterologous proteins (human interleukin-2, human interleukin-6, and Zymomonas levansucrase) were synthesized in E. coli IC2015(recA::lacZ) and GY4786 (sfiA::lacZ) strains. Via time-course measurement of beta-galactosidase activity in each recombinant culture, the SOS induction was estimated in detail and the results were systematically compared. In recombinant E. coli, the SOS response did not happen either with the recombinant insert-negative plasmid backbone alone or the expression vectors containing the homologous gene. Irrespective of gene expression level and toxic activity of synthesized foreign proteins, the SOS response was induced only when the heterologous genes were expressed using a particular plasmid vector, indicating strong dependence on the recombinant gene clone and the selection of a plasmid vector system. It is suggested that in recombinant E. coli the SOS response (i.e., activation of recA expression and initial sfiA expression) may be related neither to metabolic burden nor toxic cellular event(s) by synthesized heterologous protein, but may be provoked by foreign gene-specific interaction between a foreign gene and a plasmid vector. Unlike in E. coli XL1-blue(recA(-)) strains used, all expression vectors encoding each of the three heterologous proteins were multimerized in E. coli IC2015 strains in the course of cultivation, whereas the expression vectors containing the homologous gene never formed the plasmid multimers. The extent of multimerization was also dependent on a foreign gene insert in the expression vector. As a dominant effect of the SOS induction, recombinant plasmid vectors used for heterologous protein expression appear to significantly form various multimers in the recA(+) E. coli host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号