首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Low-density lipoprotein (LDL)-cholesteryl ester (CE) selective uptake has been demonstrated in nonhepatic cells overexpressing the scavenger receptor class B type I (SR-BI). The role of hepatic SR-BI toward LDL, the main carrier of plasma CE in humans, remains unclear. The aim of this study was to determine if SR-BI, expressed at its normal level, is implicated in LDL-CE selective uptake in human HepG2 hepatoma cells and mouse hepatic cells, to quantify its contribution and to determine if LDL-CE selective uptake is likely to occur in the presence of human HDL. First, antibody blocking experiments were conducted on normal HepG2 cells. SR-BI/BII antiserum inhibited (125)I-LDL and (125)I-HDL(3) binding (10 microg of protein/mL) by 45% (p < 0.05) and CE selective uptake by more than 85% (p < 0.01) for both ligands. Second, HepG2 cells were stably transfected with a eukaryotic vector expressing a 400-bp human SR-BI antisense cDNA fragment. Clone 17 (C17) has a 70% (p < 0.01) reduction in SR-BI expression. In this clone, (3)H-CE-LDL and (3)H-CE-HDL(3) association (10 microg of protein/mL) was 54 +/- 6% and 45 +/- 7% of control values, respectively, while (125)I-LDL and (125)I-HDL(3) protein association was 71 +/- 3% and 58 +/- 5% of controls, resulting in 46% and 55% (p < 0.01) decreases in LDL- and HDL(3)-CE selective uptake. Normalizing CE selective uptake for SR-BI expression reveals that SR-BI is responsible for 68% and 74% of LDL- and HDL(3)-CE selective uptake, respectively. Thus, both approaches show that, in HepG2 cells, SR-BI is responsible for 68-85% of CE selective uptake. Other pathways for selective uptake in HepG2 cells do not require CD36, as shown by anti-CD36 antibody blocking experiments, or class A scavenger receptors, as shown by the lack of competition by poly(inosinic acid). However, CD36 is a functional oxidized LDL receptor on HepG2 cells, as shown by antibody blocking experiments. Similar results for CE selective uptake were obtained with primary cultures of hepatic cells from normal (+/+), heterozygous (-/+), and homozygous (-/-) SR-BI knockout mice. Flow cytometry experiments show that SR-BI accounts for 75% of DiI-LDL uptake, the LDL receptor for 14%, and other pathways for 11%. CE selective uptake from LDL and HDL(3) is likely to occur in the liver, since unlabeled HDL (total and apoE-free HDL(3)) and LDL, when added in physiological proportions, only partially competed for LDL- and HDL(3)-CE selective uptake. In this setting, human hepatic SR-BI may be a crucial molecule in the turnover of both LDL- and HDL(3)-cholesterol.  相似文献   

2.
The molecular mechanisms of cholesterol absorption in the intestine are poorly understood. With the goal of defining candidate genes involved in these processes a fluorescence-activated cell sorter-based, retroviral-mediated expression cloning strategy has been devised. SCH354909, a fluorescent derivative of ezetimibe, a compound which blocks intestinal cholesterol absorption but whose mechanism of action is unknown, was synthesized and shown to block intestinal cholesterol absorption in rats. Pools of cDNAs prepared from rat intestinal cells enriched in enterocytes were introduced into BW5147 cells and screened for SCH354909 binding. Several independent clones were isolated and all found to encode the scavenger receptor class B, type I (SR-BI), a protein suggested by others to play a role in cholesterol absorption. SCH354909 bound to Chinese hamster ovary (CHO) cells expressing SR-BI in specific and saturable fashion and with high affinity (K(d) approximately 18 nM). Overexpression of SR-BI in CHO cells resulted in increased cholesterol uptake that was blocked by micromolar concentrations of ezetimibe. Analysis of rat intestinal sections by in situ hybridization demonstrated that SR-BI expression was restricted to enterocytes. Cholesterol absorption was determined in SR-B1 knockout mice using both an acute, 2-h, assay and a more chronic fecal dual isotope ratio method. The level of intestinal cholesterol uptake and absorption was similar to that seen in wild-type mice. When assayed in the SR-B1 knockout mice, the dose of ezetimibe required to inhibit hepatic cholesterol accumulation induced by a cholesterol-containing 'western' diet was similar to wild-type mice. Thus, the binding of ezetimibe to cells expressing SR-B1 and the functional blockade of SR-B1-mediated cholesterol absorption in vitro suggest that SR-B1 plays a role in intestinal cholesterol metabolism and the inhibitory activity of ezetimibe. In contrast studies with SR-B1 knockout mice suggest that SR-B1 is not essential for intestinal cholesterol absorption or the activity of ezetimibe.  相似文献   

3.
The liver is the major site of cholesterol synthesis and metabolism, and the only substantive route for eliminating blood cholesterol. Scavenger receptor class B, type I (SR-BI) has been reported to be responsible for mediating the selective uptake of high-density lipoprotein cholesteryl esters (HDL-CE) in liver parenchymal cells (PC). We analysed the expression of SR-BI in isolated rat liver cells, and found the receptor to be highly expressed in liver PC at both the mRNA and protein levels. We also found SR-BI to be expressed in liver endothelial cells (LEC) and Kupffer cells (KC). SR-BI has not previously been reported to be present in LEC. CD36 mRNA was expressed in all three liver cell types. Since caveolin-1 appears to colocalize with SR-BI and CD36 in caveolae of several cell lines, the distribution and expression of caveolin-1 in the liver cells were investigated. Caveolin-1 was not detected in PC but was found in both LEC and KC. This led to the suggestion that caveolin-1 may be more important in the efflux of cholesterol than in the selective uptake of cholesterol in the liver.  相似文献   

4.
The cellular biology of scavenger receptor class B type I   总被引:10,自引:0,他引:10  
The HDL receptor scavenger receptor class B type I plays an important role in meditating the uptake of HDL-derived cholesterol and cholesteryl ester in the liver and steroidogenic tissues. However, the mechanism by which scavenger receptor class B type I mediates selective cholesterol uptake is unclear. In hepatocytes scavenger receptor class B type I mediates the transcytosis of cholesterol into bile, appears to be expressed on both basolateral and apical membranes, and directly interacts with a PDZ domain containing protein that may modulate the activity of scavenger receptor class B type I. This suggests the involvement of scavenger receptor class B type I in higher order complexes in polarized cells. Scavenger receptor class B type I expression has been shown to alter plasma membrane cholesterol distribution and induce the formation of novel membrane structures, suggesting multiple roles for scavenger receptor class B type I in the cell. A close examination of scavenger receptor class B type I function in polarized cells may yield new insights into the mechanism of scavenger receptor class B type I-mediated HDL selective uptake and the effects of scavenger receptor class B type I on cellular cholesterol homeostasis.  相似文献   

5.
The selective uptake of high density lipoprotein (HDL) cholesteryl ester (CE) by the scavenger receptor class B type I (SR-BI) is well documented. However, the effect of altered HDL composition, such as occurs in hyperlipidemia, on this important process is not known. This study investigated the impact of variable CE and triglyceride (TG) content on selective uptake. CE selective uptake by Y1 and HepG2 cells was strongly affected by modification of either the CE or TG content of HDL. Importantly, TG, like CE, was selectively taken up by a dose-dependent, saturable process in these cells. As shown by ACTH up-regulation and receptor overexpression experiments, SR-BI mediated the selective uptake of both CE and TG. With in vitro modified HDLs of varying CE and TG composition, the selective uptake of CE and TG was dependent on the abundance of each lipid within the HDL particle. Furthermore, total selective uptake (CE + TG) remained constant, indicating that these lipids competed for cellular uptake. These data support a novel mechanism whereby SR-BI binds HDL and mediates the incorporation of a nonspecific portion of the HDL lipid core. In this way, TG directly affects the ability of HDL to donate CE to cells. Processes that raise the TG/CE ratio of HDL will impair the delivery of CE to cells via this receptor and may compromise the efficiency of sterol balancing pathways such as reverse cholesterol transport.  相似文献   

6.
Sterol regulation of scavenger receptor class B type I in macrophages   总被引:3,自引:0,他引:3  
Scavenger receptor class B type I (SR-BI) is expressed in macrophages, but its role in sterol trafficking in these cells remains controversial. We examined the effect of sterol loading on SR-BI expression in human monocytes/macrophages, mouse peritoneal macrophages, and a cultured mouse macrophage cell line (J774 cells). Sterol loading using either acetylated LDL or 25-hydroxycholesterol resulted in a time- and concentration-dependent decrease in SR-BI protein and mRNA levels. Treatment of lipid-loaded J774 cells with cyclodextrin or HDL to promote cellular sterol efflux was associated with an increase in SR-BI expression. Studies were performed to determine if the sterol-associated downregulation of SR-BI in macrophages was mediated by either sterol regulatory element binding proteins (SREBPs) or the liver X receptor (LXR). Expression of constitutively active SREBPs failed to alter the expression of a luciferase reporter placed downstream of a 2556 bp 5' flanking sequence from the mouse SR-BI gene. Reduction in SR-BI expression was also seen in sterol-loaded peritoneal macrophages from mice expressing no LXRalpha and LXRbeta. We conclude that SR-BI levels in macrophages are responsive to changes in intracellular sterol content and that these sterol-associated changes are not mediated by LXR and are unlikely to be mediated by an SREBP pathway.  相似文献   

7.
8.
9.
10.
11.
12.
The Class B type I scavenger receptor I (SR-BI) is a physiologically relevant high density lipoprotein (HDL) receptor that can mediate selective cholesteryl ester (CE) uptake by cells. Direct interaction of apolipoprotein E (apoE) with this receptor has never been demonstrated, and its implication in CE uptake is still controversial. By using a human adrenal cell line (NCI-H295R), we have addressed the role of apoE in binding to SR-BI and in selective CE uptake from lipoproteins to cells. This cell line does not secrete apoE and SR-BI is its major HDL-binding protein. We can now provide evidence that 1) free apoE is a ligand for SR-BI, 2) apoE associated to lipids or in lipoproteins does not modulate binding or CE-selective uptake by the SR-BI pathway, and 3) the direct interaction of free apoE to SR-BI leads to an increase in CE uptake from lipoproteins of both low and high densities. We propose that this direct interaction could modify SR-BI structure in cell membranes and potentiate CE uptake.  相似文献   

13.
This study investigates the relationship between the high density lipoprotein (HDL) receptor (scavenger receptors, SR-BI and SR-BII), selective lipoprotein-cholesteryl ester uptake, and testosterone production in Leydig cells of control, hypocholesterolemic and gonadotrophic hormone (hCG) treated rats. Leydig cells from mature control rats show poor efficiency in incorporation of labeled HDL-cholesteryl esters into testosterone, poor selective uptake of lipoprotein lipids overall, and a dramatic reduction of circulating levels of lipoproteins has no apparent effect on testosterone production or expression of intracellular enzymes synthesizing cholesterol. Leydig cells from control rats show minimal levels of SR-BI and SR-BII. However, similarly aged rats treated with hCG for several days undergo changes consistent with hormone-desensitization. Despite the resulting low levels of testosterone production, SR-BI levels are dramatically increased, Leydig cells now efficiently internalize HDL-supplied cholesteryl esters by the selective cholesterol uptake process, and various other cholesterol-sensitive genes of the cells are up-regulated. Only SR-BII expression remains negligible and unchanged throughout this period. It is of interest that Leydig cell SR-BI of hCG-treated rats is localized in surface microvilli, but is present also in an elaborate and complex channel system within the cytoplasm of the cells. In summary, Leydig cells differ from other rat steroidogenic cells in not depending on exogenous lipoprotein-cholesterol during periods of normal steroid hormone production. However, trophic hormone desensitization is accompanied by increased Leydig cell SR-BI expression and increased selective HDL-cholesteryl ester uptake, presumably in preparation for renewed testosterone production.  相似文献   

14.
Scavenger receptor class B, type I (SR-BI) shows a variety of effects on cellular cholesterol metabolism, including increased selective uptake of high density lipoprotein (HDL) cholesteryl ester, stimulation of free cholesterol (FC) efflux from cells to HDL and phospholipid vesicles, and changes in the distribution of plasma membrane FC as evidenced by increased susceptibility to exogenous cholesterol oxidase. Previous studies showed that these multiple effects require the extracellular domain of SR-BI, but not the transmembrane and cytoplasmic domains. To test whether 1) the extracellular domain of SR-BI mediates multiple activities by virtue of discrete functional subdomains, or 2) the multiple activities are, in fact, secondary to and driven by changes in cholesterol flux, the extracellular domain of SR-BI was subjected to insertional mutagenesis by strategically placing an epitope tag into nine sites. These experiments identified four classes of mutants with disruptions at different levels of function. Class 4 mutants showed a clear separation of function between HDL binding, HDL cholesteryl ester uptake, and HDL-dependent FC efflux on one hand and FC efflux to small unilamellar vesicles and an increased cholesterol oxidase-sensitive pool of membrane FC on the other. Selective disruption of the latter two functions provides evidence for multiple functional subdomains in the extracellular receptor domain. Furthermore, these findings uncover a difference in the SR-BI-mediated efflux pathways for FC transfer to HDL acceptors versus phospholipid vesicles. The loss of the cholesterol oxidase-sensitive FC pool and FC efflux to small unilamellar vesicle acceptors in Class 4 mutants suggests that these activities may be mechanistically related.  相似文献   

15.
The scavenger receptor class B type I (SR-BI), which mediates selective cellular cholesterol uptake from high-density lipoproteins (HDLs), plays a key role in reverse cholesterol transport. The orphan nuclear receptor liver receptor homolog 1 (LRH-1) and SR-BI are co-expressed in liver and ovary, suggesting that LRH-1 might control the expression of SR-BI in these tissues. LRH-1 induces human and mouse SR-BI promoter activity by binding to an LRH-1 response element in the promoter. Retroviral expression of LRH-1 robustly induces SR-BI, an effect associated with histone H3 acetylation on the SR-BI promoter. The decrease in SR-BI mRNA levels in livers of LRH-1(+/-) animals provides in vivo evidence that LRH-1 regulates SR-BI expression. Our data demonstrate that SR-BI is an LRH-1 target gene and underscore the pivotal role of LRH-1 in reverse cholesterol transport.  相似文献   

16.
We discovered that the hepatitis C virus (HCV) envelope glycoprotein E2 binds to human hepatoma cell lines independently of the previously proposed HCV receptor CD81. Comparative binding studies using recombinant E2 from the most prevalent 1a and 1b genotypes revealed that E2 recognition by hepatoma cells is independent from the viral isolate, while E2-CD81 interaction is isolate specific. Binding of soluble E2 to human hepatoma cells was impaired by deletion of the hypervariable region 1 (HVR1), but the wild-type phenotype was recovered by introducing a compensatory mutation reported previously to rescue infectivity of an HVR1-deleted HCV infectious clone. We have identified the receptor responsible for E2 binding to human hepatic cells as the human scavenger receptor class B type I (SR-BI). E2-SR-BI interaction is very selective since neither mouse SR-BI nor the closely related human scavenger receptor CD36, were able to bind E2. Finally, E2 recognition by SR-BI was competed out in an isolate-specific manner both on the hepatoma cell line and on the human SR-BI-transfected cell line by an anti-HVR1 monoclonal antibody.  相似文献   

17.
The mammalian target of rapamycin (mTOR) inhibiting drug rapamycin (Sirolimus) has severe side effects in patients including hyperlipidemia, an established risk factor for atherosclerosis. Recently, it was shown that rapamycin decreases hepatic LDL receptor (LDL-R) expression, which likely contributes to hypercholesterolemia. Scavenger receptor, class B, type I (SR-BI) is the major HDL receptor and consequently regulating HDL-cholesterol levels and the athero-protective effects of HDL. By using the mTOR inhibitor rapamycin, we show that SR-BI is down-regulated in human umbilical vein endothelial cells (HUVECs). This reduction of SR-BI protein as well as mRNA levels by about 50% did not alter HDL particle uptake or HDL-derived lipid transfer. However, rapamycin reduced HDL-induced activation of eNOS and stimulation of endothelial cell migration. The effects on cell migration could be counteracted by SR-BI overexpression, indicating that decreased SR-BI expression is in part responsible for the rapamycin-induced effects. We demonstrate that inhibition of mTOR leads to endothelial cell dysfunction and decreased SR-BI expression, which may contribute to atherogenesis during rapamycin treatment.  相似文献   

18.
Modified forms of LDL, including oxidized low density lipoprotein (OxLDL), contribute to macrophage lipid accumulation in the vessel wall. Despite the pathophysiological importance of uptake pathways for OxLDL, the molecular details of OxLDL endocytosis by macrophages are not well understood. Studies in vitro demonstrate that the class B scavenger receptor CD36 mediates macrophage uptake and degradation of OxLDL. Although the closely related scavenger receptor class B type I (SR-BI) binds OxLDL with high affinity, evidence that SR-BI plays a role in OxLDL metabolism is lacking. In this study, we directly compared OxLDL uptake and degradation by CD36 and SR-BI. Our results indicate that although CD36 and SR-BI internalize OxLDL, SR-BI mediates significantly less OxLDL degradation. Endocytosis of OxLDL by both SR-BI and CD36 is independent of caveolae, microtubules, and actin cytoskeleton. However, OxLDL uptake by CD36, but not SR-BI, is dependent on dynamin. The analysis of chimeric SR-BI/CD36 receptors shows that the CD36 C-terminal cytoplasmic tail is necessary and sufficient for dynamin-dependent OxLDL internalization by class B scavenger receptors. These findings indicate that different mechanisms are involved in OxLDL uptake by SR-BI and CD36, which may segregate these two structurally homologous receptors at the cell surface, leading to differences in intracellular trafficking and degradation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号