首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The isoquinuclidine (2-azabicyclo[2.2.2]octane) ring system may be viewed as a semi-rigid boat form of the piperidine ring and, when properly substituted, a scaffold for rigid analogs of biologically active ethanolamines and propanolamines. It is present in natural products (such as ibogaine and dioscorine) that display interesting pharmacological properties. In this study, we have expanded our continuing efforts to incorporate this ring system in numerous pharmacophores, by designing and synthesizing semirigid analogs of the antimalarial drug chloroquine. The analogs were tested in vitro against Plasmodium falciparum strains and Leishmania donovani promastigote cultures. Compounds 6 and 13 displayed potent antimalarial activity against both chloroquine-susceptible D6 and the -resistant W2 strains of P. falciparum. All analogs also demonstrated significant antileishmanial activity with compounds 6 and 13 again being the most potent. The fact that these compounds are active against both chloroquine-resistant and chloroquine-sensitive strains as well as leishmanial cells makes them promising candidates for drug development.  相似文献   

2.
The control of malaria has been complicated with increasing resistance of malarial parasite against existing antimalarials. Herein, we report the synthesis of a new series of chloroquine-chalcone based hybrids (8-22) and their antimalarial efficacy against both chloroquine-susceptible (3D7) and chloroquine-resistant (K1) strains of Plasmodium falciparum. Most of the compounds showed enhanced antimalarial activity as compared to chloroquine in chloroquine-resistant (K1) strain of Plasmodium falciparum. Furthermore, to unfold the mechanism of action of these synthesized hybrid molecules, we carried out hemin dependent studies, in which three compounds were found to be active.  相似文献   

3.
Ferroquine (FQ, SSR97193) is currently the most advanced organo-metallic drug candidate and about to complete phase II clinical trials as a treatment for uncomplicated malaria. This ferrocene-containing compound is active against both chloroquine-susceptible and chloroquine-resistant Plasmodium falciparum and P. vivax strains and/or isolates. This article focuses on the discovery of FQ, its antimalarial activity, the hypothesis of its mode of action, the current absence of resistance in vitro and recent clinical trials.  相似文献   

4.
Chlorpheniramine, a histamine H1 receptor antagonist, was assayed for in vitro antimalarial activity against multidrug-resistant Plasmodium falciparum K1 strain and chloroquine-resistant P. falciparum T9/94 clone, by measuring the 3H-hypoxanthine incorporation. Chlorphenirame inhibited P. falciparum K1 and T9/94 growth with IC50 values of 136.0+/-40.2 microM and 102.0+/-22.6 microM respectively. A combination of antimalarial drug and chlorpheniramine was tested against resistant P. falciparum in vitro. Isobologram analysis showed that chlorpheniramine exerts marked synergistic action on chloroquine against P. falciparum K1 and T9/94. Chlorpheniramine also potentiated antimalarial action of mefloquine, quinine or pyronaridine against both of the resistant strains of P. falciparum. However, chlorpheniramine antagonism with artesunate was obtained in both P. falciparum K1 and T9/94. The results in this study indicate that antihistaminic drugs may be promising candidates for potentiating antimalarial drug action against drug resistant malarial parasites.  相似文献   

5.
Plasmodium falciparum thioredoxin reductase (PfTrxR: NADPH+Trx(S)2+H+<-->NADP++Trx(SH)2) is a high Mr flavin-dependent TrxR that reduces thioredoxin (Trx) via a CysXXXXCys pair located penultimately to the C-terminal Gly. In this respect, PfTrxR differs significantly from its human counterpart which bears a Cys-Sec redox pair at the same position. PfTrxR is essentially involved in antioxidant defense and redox regulation of the parasite and has been previously validated by knock-out studies as a potential drug target for malaria chemotherapy. Moreover, human TrxR is present in most cancer cells at levels tenfold higher than in normal cells. Here we report the discovery of a series of potent inhibitors of PfTrxR. The three most promising inhibitors, 3(IC50(PfTrxR)=2 microM and IC50(hTrxR)=50 microM), 7(IC50(PfTrxR)=2 microM and IC50(hTrxR)=140 microM), and 11(IC50(PfTrxR)=0.5 microM and IC50(hTrxR)=4 microM) were selective for the parasite enzyme. Detailed mechanistic characterization of the effects of these compounds on the PfTrxR-catalyzed reaction showed clear uncompetitive inhibition with respect to both substrate and cofactor. For the most specific PfTrxR inhibitor 7, an alkylation mechanism study based on a thiol conjugation model was performed. Furthermore, all three compounds were active in the lower micromolar range on the chloroquine-resistant P. falciparum strain K1 in vitro.  相似文献   

6.
The in vitro antimalarial activity of the fungal metabolite gliotoxin (GTX) was evaluated, and its mechanism of action was studied. GTX showed plasmodicidal activity against both Plasmodium falciparum chloroquine-resistant strain K-1 and chloroquine-susceptible strain FCR-3. GTX cytotoxicity was significantly lower against a normal liver cell line (Chang Liver cells). The intracellular reduced glutathione level of parasitized and of normal red blood cells was not affected by GTX treatment. However, GTX decreased the chymotrypsin-like activity of parasite proteasomes in a time-dependent manner. The results of this study indicate that GTX possesses plasmodicidal activity and that this effect is due to inhibition of parasite proteasome activity, suggesting that GTX may constitute a useful antimalarial therapy.  相似文献   

7.
8.
The synthesis and antimalarial properties of twelve new chlorinated 9H-xanthones, carrying a [2-(diethylamino)ethyl]amino group in position 1, are reported. All compounds were found to be active towards the chloroquine-susceptible and chloroquine-resistant strains 3D7 and Dd2, resp., of the protozoa parasite Plasmodium falciparum. Especially one compound, 6-chloro-1-{[2-(diethylamino)ethyl]amino}-9H-xanthen-9-one (1k), was found to exhibit significant in vitro activity (IC50 = 3.9 microM) towards the resistant Dd2 strain.  相似文献   

9.
The in vitro antimalarial activity of sodium selenite (NaSe) was investigated and the mechanism of its action was studied. NaSe had antimalarial activity against both the chloroquine-susceptible strain FCR-3 and chloroquine-resistant strain K-1 of Plasmodium falciparum. The shrunken cytoplasm of the parasite was observed in a smear 12 h after treatment with NaSe. Co-treatment with copper sulfate (CuSO(4)) in culture did not affect the antimalarial activity of NaSe, but NaSe cytotoxicity against the mammalian cell line Alexander was decreased significantly. The intracellular reduced glutathione level of parasitized red blood cells was decreased significantly by treatment with NaSe, and the decrease was consistent with their mortality. Treatment with NaSe had a strong inhibitory effect on plasmodial development, and NaSe cytotoxicity to human cells was decreased by co-treatment with CuSO(4). These results suggest that co-treatment with NaSe and CuSO(4) may be useful as a new antimalarial therapy.  相似文献   

10.
Cyclin-dependent protein kinases (CDKs) are attractive targets for drug discovery and efforts have led to the identification of novel CDK selective inhibitors in the development of treatments for cancers, neurological disorders, and infectious diseases. More recently, they have become the focus of rational drug design programs for the development of new antimalarial agents. CDKs are valid targets as they function as essential regulators of cell growth and differentiation. To date, several CDKs have been characterized from the genome of the malaria-causing protozoan Plasmodium falciparum. Our approach employs experimental and virtual screening methodologies to identify and refine chemical inhibitors of the parasite CDK Pfmrk, a sequence homologue of human CDK7. Chemotypes of Pfmrk inhibitors include the purines, quinolinones, oxindoles, and chalcones, which have sub-micromolar IC50 values against the parasite enzyme, but not the human CDKs. Additionally, we have developed and validated a pharmacophore, based on Pfmrk inhibitors, which contains two hydrogen bond acceptor functions and two hydrophobic sites, including one aromatic ring hydrophobic site. This pharmacophore has been exploited to identify additional compounds that demonstrate significant inhibitory activity against Pfmrk. A molecular model of Pfmrk designed using the crystal structure of human CDK7 highlights key amino acid substitutions in the ATP binding pocket. Molecular modeling and docking of the active site pocket with selective inhibitors has identified possible receptor-ligand interactions that may be responsible for inhibitor specificity. Overall, the unique biochemical characteristics associated with this protein, to include distinctive active site amino acid residues and variable inhibitor profiles, distinguishes the Pfmrk drug screen as a paradigm for CDK inhibitor analysis in the parasite.  相似文献   

11.
The malarial parasite Plasmodium falciparum is known to be sensitive to oxidative stress, and thus the antioxidant enzyme glutathione reductase (GR; NADPH+GSSG+H(+) <==> NADP(+)+2 GSH) has become an attractive drug target for antimalarial drug development. Here, we report the 2.6A resolution crystal structure of P.falciparum GR. The homodimeric flavoenzyme is compared to the related human GR with focus on structural aspects relevant for drug design. The most pronounced differences between the two enzymes concern the shape and electrostatics of a large (450A(3)) cavity at the dimer interface. This cavity binds numerous non-competitive inhibitors and is a target for selective drug design. A 34-residue insertion specific for the GRs of malarial parasites shows no density, implying that it is disordered. The precise location of this insertion along the sequence allows us to explain the deleterious effects of a mutant in this region and suggests new functional studies. To complement the structural comparisons, we report the relative susceptibility of human and plasmodial GRs to a series of tricyclic inhibitors as well as to peptides designed to interfere with protein folding and dimerization. Enzyme-kinetic studies on GRs from chloroquine-resistant and chloroquine-sensitive parasite strains were performed and indicate that the structure reported here represents GR of P.falciparum strains in general and thus is a highly relevant target for drug development.  相似文献   

12.
The mitochondrial electron transport system is necessary for growth and survival of malarial parasites in mammalian host cells. NADH dehydrogenase of respiratory complex I was demonstrated in isolated mitochondrial organelles of the human parasite Plasmodium falciparum and the mouse parasite Plasmodium berghei by using the specific inhibitor rotenone on oxygen consumption and enzyme activity. It was partially purified by two sequential steps of fast protein liquid chromatographic techniques from n-octyl glucoside solubilization of the isolated mitochondria of both parasites. In addition, physical and kinetic properties of the malarial enzymes were compared to the host mouse liver mitochondrial respiratory complex I either as intact or as partially purified forms. The malarial enzyme required both NADH and ubiquinone for maximal catalysis. Furthermore, rotenone and plumbagin (ubiquinone analog) showed strong inhibitory effect against the purified malarial enzymes and had antimalarial activity against in vitro growth of P. falciparum. Some unique properties suggest that the enzyme could be exploited as chemotherapeutic target for drug development, and it may have physiological significance in the mitochondrial metabolism of the parasite.  相似文献   

13.
Sulfadoxine/pyrimethamine (Fansidar) is widely used in Africa for treating chloroquine-resistant falciparum malaria. To clarify how parasite resistance to this combination arises, various lines of Plasmodium falciparum were used to investigate the role of naturally occurring mutations in the target enzyme, dihydropteroate synthetase (DHPS), in the parasite response to sulfadoxine inhibition. An improved drug assay was employed to identify a clear correlation between sulfadoxine-resistance levels and the number of DHPS mutations. Moreover, tight linkage was observed between DHPS mutations and high-level resistance in the 16 progeny of a genetic cross between sulfadoxine-sensitive (HB3) and sulfadoxine-resistant (Dd2) parents. However, we also demonstrate a profound influence of exogenous folate on IC50 values, which, under physiological conditions, may have a major role in determining resistance levels. Importantly, this phenotype does not segregate with dhps genotypes in the cross, but shows complete linkage to the two alleles of the dihydrofolate reductase ( dhfr ) gene inherited from the parental lines. However, in unrelated lines, this folate effect correlates less well with DHFR sequence, indicating that the gene responsible may be closely linked to dhfr , rather than dhfr itself. These results have major implications for the acquisition of Fansidar resistance by malaria parasites.  相似文献   

14.
A series of 19 huprines has been evaluated for their activity against cultured bloodstream forms of Trypanosoma brucei and Plasmodium falciparum. Moreover, cytotoxicity against rat myoblast L6 cells was assessed for selected huprines. All the tested huprines are moderately potent and selective trypanocidal agents, exhibiting IC(50) values against T. brucei in the submicromolar to low micromolar range and selectivity indices for T. brucei over L6 cells of approximately 15, thus constituting interesting trypanocidal lead compounds. Two of these huprines were also found to be active against a chloroquine-resistant strain of P. falciparum, thus emerging as interesting trypanocidal-antiplasmodial dual acting compounds, but they exhibited little selectivity for P. falciparum over L6 cells.  相似文献   

15.
The histones of Plasmodium falciparum represent a potential new target for anti-malarial compounds. A naturally occurring compound, apicidin, has recently been shown to inhibit the in vitro growth of P. falciparum. Apicidin was shown to hyperacetylate histones, suggesting that its mode of action is through histone deacetylase inhibition. We have tested the ability of known histone deacetylase inhibitors, mammalian tumour suppressor compounds, and cytodifferentiating agents to inhibit the in vitro growth of a drug sensitive and resistant strain of P. falciparum. Seven of the tested compounds had microM IC50 values, and trichostatin A, a histone deacetylation inhibitor and cytodifferentiating agent, was active at low nM concentrations. One compound, suberic acid bisdimethylamide, which selectively arrests tumour cells as opposed to normal mammalian cells, had an in vivo cytostatic effect against the acute murine malaria Plasmodium berghei, and one round of treatment with the compound failed to select for resistant mutations. These results suggest a promising role for histone deacetylase inhibitors and cytodifferentiating agents as antimalarial drug candidates.  相似文献   

16.
Plasmodium falciparum is the causative agent of the most serious and fatal malarial infections, and it has developed resistance to commonly employed chemotherapeutics. The de novo pyrimidine biosynthesis enzymes offer potential as targets for drug design, because, unlike the host, the parasite does not have pyrimidine salvage pathways. Dihydroorotate dehydrogenase (DHODH) is a flavin-dependent mitochondrial enzyme that catalyzes the fourth reaction in this essential pathway. Coenzyme Q (CoQ) is utilized as the oxidant. Potent and species-selective inhibitors of malarial DHODH were identified by high-throughput screening of a chemical library, which contained 220,000 drug-like molecules. These novel inhibitors represent a diverse range of chemical scaffolds, including a series of halogenated phenyl benzamide/naphthamides and urea-based compounds containing napthyl or quinolinyl substituents. Inhibitors in these classes with IC(50) values below 600 nm were purified by high pressure liquid chromatography, characterized by mass spectroscopy, and subjected to kinetic analysis against the parasite and human enzymes. The most active compound is a competitive inhibitor of CoQ with an IC(50) against malarial DHODH of 16 nm, and it is 12,500-fold less active against the human enzyme. Site-directed mutagenesis of residues in the CoQ-binding site significantly reduced inhibitor potency. The structural basis for the species selective enzyme inhibition is explained by the variable amino acid sequence in this binding site, making DHODH a particularly strong candidate for the development of new anti-malarial compounds.  相似文献   

17.
Mitochondria of chloroquine-resistant Plasmodium falciparum (K1 strain) were isolated from mature trophozoites by differential centrifugation. The mitochondrial marker enzyme cytochrome c reductase was employed to monitor the steps of mitochondria isolation. Partial purification of DNA polymerase from P. falciparum mitochondria was performed using fast protein liquid chromatography (FPLC). DNA polymerase of P. falciparum mitochondria was characterized as a gamma-like DNA polymerase based on its sensitivity to the inhibitors aphidicolin, N-ethylmaleimide and 9-beta-D-arabinofuranosyladenine-5'-triphosphate. In contrast, the enzyme was found to be strongly resistant to 2',3'-dideoxythymidine-5'-triphosphate (IC(50)>400 microM) and differed in this aspect from the human homologue, possibly indicating structural differences between human and P. falciparum DNA polymerase gamma. In addition, the DNA polymerase of parasite mitochondria was shown to be resistant (IC(50)>1 mM) to the nucleotide analogue (S)-1-[3-hydroxy-2-phosphonylmethoxypropyl]adenine diphosphate (HPMPApp).  相似文献   

18.
Malaria is the most lethal parasite-mediated tropical infectious disease, killing 1-2 million people each year. An emerging drug target is the enzyme Plasmodium falciparum histone deacetylase 1 (PfHDAC1). We report 26 compounds designed to bind the zinc and exterior surface around the entrance to the active site of PfHDAC1, 16 displaying potent in vitro antimalarial activity (IC(50)<100 nM) against P. falciparum. Selected compounds were shown to cause hyperacetylation of P. falciparum histones and be >10-fold more cytotoxic towards P. falciparum than a normal human cell type (NFF). Twenty-two inhibitors feature cinnamic acid derivatives or non-steroidal anti-inflammatory drugs (NSAIDs) as HDAC-binding components. A homology model of PfHDAC1 enzyme gives new insights to interactions likely made by some of these inhibitors. Results support PfHDAC1 as a promising new antimalarial drug target.  相似文献   

19.
Curcumin, a major yellow pigment and active component of turmeric, has been shown to possess anti-inflammatory and anti-cancer activities. Recent studies have indicated that curcumin inhibits chloroquine-sensitive (CQ-S) and chloroquine-resistant (CQ-R) Plasmodium falciparum growth in culture with an IC(50) of approximately 3.25 microM (MIC=13.2 microM) and IC(50) 4.21 microM (MIC=14.4 microM), respectively. In order to expand their potential as anti-malarials a series of novel curcumin derivatives were synthesized and evaluated for their ability to inhibit P. falciparum growth in culture. Several curcumin analogues examined show more effective inhibition of P. falciparum growth than curcumin. The most potent curcumin compounds 3, 6, and 11 were inhibitory for CQ-S P. falciparum at IC(50) of 0.48, 0.87, 0.92 microM and CQ-R P. falciparum at IC(50) of 0.45 microM, 0.89, 0.75 microM, respectively. Pyrazole analogue of curcumin (3) exhibited sevenfold higher anti-malarial potency against CQ-S and ninefold higher anti-malarial potency against CQ-R. Curcumin analogues described here represent a novel class of highly selective P. falciparum inhibitors and promising candidates for the design of novel anti-malarial agents.  相似文献   

20.
Recombinant S-adenosyl-L-homocysteine (SAH) hydrolase of the malaria parasite Plasmodium falciparum was expressed in Escherichia coli, purified to homogeneity and characterized. Comparison of the malaria parasite SAH hydrolase with that derived from the human gene indicated marked differences in kcat values. The values of both forward and reverse reactions of P. falciparum SAH hydrolase are more than 21-fold smaller than those of the human enzyme. Km values of the parasite and human SAH enzymes are 1.2 and 7.8 microM, respectively. On the other hand, IC50 values of neplanocin A, a strong inhibitor of SAH hydrolase and a growth inhibitor of P. falciparum, are 101 nM for the parasite enzyme and 47 nM for human enzyme. P. falciparum SAH hydrolase has been thought to be a target for a chemotherapeutic agent against malaria. This study may make it possible to develop a specific inhibitor for the parasite SAH hydrolase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号