共查询到20条相似文献,搜索用时 0 毫秒
1.
Phase-contrast and scanning electron microscopy showed races of P. synngae pv. glycinea uniformly distributed over and attached to the whole surface of isolated single leaf cells of resistant soybean cultivars, as early as 30 to 180 min after inoculation. On the contrary, attachment in the compatible interaction did not occur within 10—15 h. In a later period, compatibility was characterized by the formation of adherent bacterial clusters. Early attachment of races 1 and 6 to cv. Harosoy and that of race 5 to cv. Flambeau leaf cells, each representing incompatible interaction, could be inhibited by L-rhamnose and D-glucose, respectively. Furthermore, the lack of Mn2+ and Fe2+ and heat-treatment of plant cells also affected the early attachment in incompatible combinations and resulted in cluster formation, suggesting incompatibility rather than compatibility to be the active phenomenon. Pre-inoculation of cells with an incompatible race induced changes that caused compatible bacteria also to distributively attach to plant cell surface indicating that a transfer of information or surface alterations occur upon attachment in incompatible interaction. 相似文献
2.
Exopolysaccharides of the phytopathogen Pseudomonas syringae pv. glycinea. 总被引:7,自引:1,他引:7
下载免费PDF全文

Inhibition of DNA synthesis in Escherichia coli mutants in which the SOS-dependent division inhibitors SfiA and SfiC were unable to operate led to a partial arrest of cell division. This SOS-independent mechanism coupling DNA replication and cell division was characterized with respect to residual division, particle number, and DNA content. Whether DNA replication was blocked in the initiation or the elongation step, numerous normal-sized anucleate cells were produced (not minicells or filaments). Their production was used to evaluate the efficiency of this coupling mechanism, which seems to involve the cell division protein FtsZ (SulB), also known to be the target of the division inhibitors SfiA and SfiC. In the absence of DNA synthesis, the efficiency of coupling was modulated by the cyclic-AMP-cyclic-AMP receptor protein complex, which was required for anucleate cell production. 相似文献
3.
Fifty-eight strains of Pseudomonas syringae pv. glycinea were collected from France, Germany, Hungary, Italy, Poland, The Ukraine and the former Yugoslavia. The bacterial cultures were fluorescent on King's medium B, oxidase negative, produced levan, and induced a hypersensitive reaction (HR) on tobacco leaves within 24h. The race of each strain was determined by inoculating a set of seven differential soybean cultivars: Acme, Chippewa, Flambeau, Harosoy, Lindarin, Merit and Norchief.Conditions of plant cultivation, bacterial inoculation and plant incubation had to be standardized scrupulously to obtain reproducible results. Authentic strains belonging to races 1, 4, 5, and 6 produced the expected reactions on the differentials. However, strains of race 2 and race 4 induced identical responses on the differential cultivars. The differentiating critierion between these two races was the ability of race 2 to produce a brown diffusable pigment on King's medium B. The most prevalent race, occurring in every European country studied, was race 4. This is the most aggressive race of P. glycinea, since it infects all the cultivars of the set of differentials. From 58 strains tested, 42 belonged to race 4, 4 to race 6, and 6 to race 9. For two strains race identification was impossible. The remaining 4 isolates did not fit into the pattern of known races. It is proposed that these strains belong to a new race (no. 10) which is similar to race 5, but can inf, ect the soybean cultivar ‘Lindarin’. On the other hand, race 10 can not infect cv. ‘Chippewa’, in contrast to race 9. 相似文献
4.
5.
Abstract
Over two growing seasons, 273 bacterial strains were isolated from soybean leaves without and with bacterial blight symptoms
caused by Pseudomonas syringae pv. glycinea (Psg). The majority of the isolates from leaves with symptoms were identified as Psg (43%), followed by Erwinia herbicola (21%), and Enterobacter/Erwinia (19%). The isolates from leaves without symptoms included mainly a group of unidentified Gram-negative bacteria (22%), Psg
(21%), and E. herbicola (18%). Psg colonized the soybean leaves prior to saprophytic bacteria, and remained dominant during both seasons on healthy,
as well as infected, leaves. Eighty-two saprophytic isolates were tested in vitro for their antagonistic activities against
Psg, using an agar-diffusion assay. For the in planta assay, Psg and each isolate were simultaneously inoculated into wounds
of pin-pricked leaves of greenhouse-grown soybean plants. Twenty-nine isolates were antagonistic in vitro. Nineteen isolates
were able to suppress the growth of Psg and prevented the formation of leaf spots in planta when mixtures of isolate and pathogen
were inoculated at ratios >1. Only 9 of the 82 isolates inhibited Psg in vitro as well as in planta. Most antagonists detected
belonged to the genera Pseudomonas and the species Erwinia herbicola. The in planta assay should be a reliable predictor of field performance for screening of biological control agents.
Received: 8 April 1996; Accepted: 22 October 1996 相似文献
6.
Flagellin glycosylation island in Pseudomonas syringae pv. glycinea and its role in host specificity
下载免费PDF全文

Takeuchi K Taguchi F Inagaki Y Toyoda K Shiraishi T Ichinose Y 《Journal of bacteriology》2003,185(22):6658-6665
The deduced amino acid sequences of the flagellins of Pseudomonas syringae pv. tabaci and P. syringae pv. glycinea are identical; however, their abilities to induce a hypersensitive reaction are clearly different. The reason for the difference seems to depend on the posttranslational modification of the flagellins. To investigate the role of this posttranslational modification in the interactions between plants and bacterial pathogens, we isolated genes that are potentially involved in the posttranslational modification of flagellin in P. syringae pv. glycinea (glycosylation island); then defective mutants with mutations in these genes were generated. There are three open reading frames in the glycosylation island, designated orf1, orf2, and orf3. orf1 and orf2 encode putative glycosyltransferases, and mutants with defects in these open reading frames, deltaorf1 and deltaorf2, secreted nonglycosylated and slightly glycosylated flagellins, respectively. Inoculation tests performed with these mutants and original nonhost tobacco leaves revealed that deltaorf1 and deltaorf2 could grow on tobacco leaves and caused symptom-like changes. In contrast, these mutants failed to cause symptoms on original host soybean leaves. These data indicate that putative glycosyltransferases encoded in the flagellin glycosylation island are strongly involved in recognition by plants and could be the specific determinants of compatibility between phytopathogenic bacteria and plant species. 相似文献
7.
8.
Summary The E. coli Flac plasmid was transferred from an Erwinia chrysanthemi Hfr8 donor to a multiply-auxotrophic, rifampicin-resistant Pseudomonas syringae pv. glycinea recipient. Transfer occurred at a frequency of approximately 10-5/donor. Stable transconjugants which were able to utilize lactose as the sole carbon source after several transfers would not donate the Flac plasmid in detectable frequency to other pv. glycinea or E. coli recipients. The plasmid DNA was shown to be integrated into the pv. glycinea chromosome (Fig. 1). 相似文献
9.
10.
11.
Sequence domains required for the activity of avirulence genes avrB and avrC from Pseudomonas syringae pv. glycinea. 总被引:4,自引:0,他引:4
下载免费PDF全文

avrB and avrC from Pseudomonas syringae pv. glycinea share significant amino acid homology but interact with different soybean resistance genes to elicit the hypersensitive defense reaction. Recombinant genes constructed between avrB and avrC revealed that the central regions were required for avirulence gene activity but the 5' and 3' termini were interchangeable. Recombinants involving the central regions did not yield any detectable avirulence gene activity, and no new avirulence phenotypes were observed from any of the chimeric genes. These results suggest that the protein products of avrB and avrC possess catalytic properties that are required for the avirulence phenotypes. 相似文献
12.
Pseudomonas syringae pv. glycinea PG4180 causes bacterial blight of soybean and produces the phytotoxin coronatine (COR) in a temperature-dependent manner. COR consists of a polyketide, coronafacic acid (CFA), and an amino acid derivative, coronamic acid, and is produced optimally at 18 degrees C whereas no detectable synthesis occurs at 28 degrees C. We investigated the impact of temperature on PG4180 during compatible and incompatible interactions with soybean and tobacco plants, respectively. After spray inoculation, PG4180 caused typical bacterial blight symptoms on soybean plants when the bacteria were grown at 18 degrees C prior to inoculation but not when derived from cultures grown at 28 degrees C. The disease outcome was quantified by determination of bacterial populations in planta. The temperature effect was not observed when PG4180 was artificially infiltrated into soybean leaves, indicating that the pre-inoculation temperature and phytotoxin synthesis were important for bacterial invasion via natural plant openings. In the incompatible interaction, PG4180 elicited the hypersensitive response (HR) on tobacco plants regardless of the bacterial pre-inoculation temperature. However, the HR was significantly delayed when tobacco plants were treated with cells of the CFA-overproducing derivative, PG4180.N9, which were derived from cultures grown at 18 degrees C, compared with parallels incubated at 28 degrees C. CFA biosynthesis by PG4180.N9 was optimal at 18 degrees C and negligible at 28 degrees C. The impact of CFA synthesis on the HR was studied with different growth media, mutants, and transconjugants of PG4180, indicating that the amount of synthesized CFA but not that of COR influenced the outcome of the HR. Feeding experiments with purified coronafacoyl compounds suggested that the observed delay of the HR was mediated by CFA, shedding further light on CFA's putative role as a molecular mimic of the plant signaling molecule, jasmonic acid. 相似文献
13.
Cloning, Nucleotide Sequence, and Expression in Escherichia coli of Levansucrase Genes from the Plant Pathogens Pseudomonas syringae pv. glycinea and P. syringae pv. phaseolicola
下载免费PDF全文

Ursula Hettwer Frank R. Jaeckel Jens Boch Manfred Meyer Klaus Rudolph Matthias S. Ullrich 《Applied microbiology》1998,64(9):3180-3187
Plant-pathogenic bacteria produce various extracellular polysaccharides (EPSs) which may function as virulence factors in diseases caused by these bacteria. The EPS levan is synthesized by the extracellular enzyme levansucrase in Pseudomonas syringae, Erwinia amylovora, and other bacterial species. The lsc genes encoding levansucrase from P. syringae pv. glycinea PG4180 and P. syringae pv. phaseolicola NCPPB 1321 were cloned, and their nucleotide sequences were determined. Heterologous expression of the lsc gene in Escherichia coli was found in four and two genomic library clones of strains PG4180 and NCPPB 1321, respectively. A 3.0-kb PstI fragment common to all six clones conferred levan synthesis on E. coli when further subcloned. Nucleotide sequence analysis revealed a 1,248-bp open reading frame (ORF) derived from PG4180 and a 1,296-bp ORF derived from NCPPB 1321, which were both designated lsc. Both ORFs showed high homology to the E. amylovora and Zymomonas mobilis lsc genes at the nucleic acid and deduced amino acid sequence levels. Levansucrase was not secreted into the supernatant but was located in the periplasmic fraction of E. coli harboring the lsc gene. Expression of lsc was found to be dependent on the vector-based Plac promoter, indicating that the native promoter of lsc was not functional in E. coli. Insertion of an antibiotic resistance cassette in the lsc gene abolished levan synthesis in E. coli. A PCR screening with primers derived from lsc of P. syringae pv. glycinea PG4180 allowed the detection of this gene in a number of related bacteria. 相似文献
14.
Phytoalexin Accumulation in Arabidopsis thaliana during the Hypersensitive Reaction to Pseudomonas syringae pv syringae 总被引:9,自引:5,他引:9
下载免费PDF全文

Inoculation of leaves of Arabidopsis thaliana (L.) Heynh. with the wheat pathogen, Pseudomonas syringae pv syringae, resulted in the expression of the hypersensitive reaction and in phytoalexin accumulation. No phytoalexin accumulation was detected after infiltration of leaves with a mutant of P. s. syringae deficient in the ability to elicit a hypersensitive reaction; with the crucifer pathogen, Xanthomonas campestris pv campestris; or with 10 millimolar potassium phosphate buffer (pH 6.9). Phytoalexin accumulation was correlated with the restricted in vivo growth of P. s. syringae. A phytoalexin was purified by a combination of reverse phase flash chromatography, thin layer chromatography, followed by reverse phase high performance liquid chromatography. The Arabidopsis phytoalexin was identified as 3-thiazol-2′-yl-indole on the basis of ultraviolet, infrared, mass spectral, 1H-nuclear magnetic resonance, and 13C-nuclear magnetic resonance data. 相似文献
15.
Pectate lyase (PL) is a potent cell wall-degrading enzyme known to play a role in the microbial infection of plants. We re-examined the pectolytic property of seven representative pathovars of Pseudomonas syringae. None of the 10 P. syringae pv. glycinea strains examined exhibited pectolytic activity. However, the PL gene (pel) was detected by Southern hybridization in four out of four P. syringae pv. glycinea strains examined. A P. syringae pv. glycinea pel gene was cloned, sequenced, and predicted to encode a protein sharing 70%-90% identity in amino acid sequence with PLs produced by pectolytic pseudomonads and xanthomonads. A series of amino acid and nucleotide sequence analyses reveal that (i) the predicted P. syringae pv. glycinea PL contains two regions in the amino acid sequence that may affect the formation of a beta-helix structure important for the enzyme activity, and (ii) the P. syringae pv. glycinea pel gene contains a single-base insertion, a double-base insertion, and an 18-bp deletion, which can lead to the synthesis of an inactive PL protein. The function of P. syringae pv. glycinea PL could be restored by removing the unwanted base insertions and by filling in the 18-bp deletions by site-directed mutagenesis. The altered pel sequence was also detected by polymerase chain reaction and nucleotide sequencing in the genomes of other pathovars of P. syringae, including phaseolicola and tagetis. 相似文献
16.
Physical and functional characterization of the gene cluster encoding the polyketide phytotoxin coronatine in Pseudomonas syringae pv. glycinea. 总被引:1,自引:0,他引:1
下载免费PDF全文

Pseudomonas syringae pv. glycinea PG4180 produces the polyketide phytotoxin coronatine. The coronatine synthesis genes in PG4180 were previously shown to reside on a 90-kb plasmid designated p4180A. In the present study, clones containing a 34-kb region of p4180A were saturated with Tn5, and 71 unique mutations were recombined into p4180A by marker exchange. The effect of each mutation on coronatine synthesis was determined by analyzing the organic acids produced by the mutants by reverse-phase high-performance liquid chromatography. The organic acids of selected mutants were derivatized to their methyl esters and analyzed by gas chromatography and gas chromatography-mass spectrometry. Mutations in a 20.5-kb region of p4180A completely blocked the synthesis of coronafacic acid and coronatine. Mutations within a 4.4-kb region of p4180A prevented the formation of coronatine but allowed for production of coronafacic acid, coronafacoylvaline, coronafacoylisoleucine, and coronafacoylalloisoleucine. The phenotypes of selected mutants were further confirmed in feeding experiments in which coronafacic acid or coronamic acid was added to the culture media. The results of this study allow us to speculate on the likely sequence of steps in the later stages of coronatine biosynthesis. 相似文献
17.
18.
Contribution of the Regulatory Gene lemA to Field Fitness of Pseudomonas syringae pv. syringae
下载免费PDF全文

S. S. Hirano E. M. Ostertag S. A. Savage L. S. Baker D. K. Willis C. D. Upper 《Applied microbiology》1997,63(11):4304-4312
In Pseudomonas syringae pv. syringae, lemA is required for brown spot lesion formation on snap bean and for production of syringomycin and extracellular proteases (E. M. Hrabak and D. K. Willis, J. Bacteriol. 174: 3011-3022, 1992; E. M. Hrabak and D. K. Willis, Mol. Plant-Microbe Interact. 6:368-375, 1993; D. K. Willis, E. M. Hrabak, J. J. Rich, T. M. Barta, S. E. Lindow, and N. J. Panopoulos, Mol. Plant-Microbe Interact. 3:149-156, 1990). The lemA mutant NPS3136 (lemA1::Tn5) was previously found to be indistinguishable from its pathogenic parent B728a in its ability to grow when infiltrated into bean leaves of plants maintained under controlled environmental conditions (Willis et al., Mol. Plant-Microbe Interact. 3:149-156, 1990). We compared population sizes of NPS3136 and B728aN (a Nal(supr) clone of wild-type B728a) in two field experiments to determine the effect of inactivation of lemA on the fitness of P. syringae pv. syringae. In one experiment, the bacterial strains were spray inoculated onto the foliage of 25-day-old bean plants. In the other, seeds were inoculated at the time of planting. In both experiments, the strains were inoculated individually and coinoculated in a 1:1 ratio. NPS3136 and B728aN achieved similar large population sizes on germinating seeds. However, in association with leaves, population sizes of NPS3136 were diminished relative to those of B728aN in both experiments. Thus, lemA contributed significantly to the fitness of P. syringae pv. syringae in association with bean leaves but not on germinating seeds under field conditions. When NPS3136 was coinoculated with B728aN, the mutant behaved as it did when inoculated alone. However, population sizes of B728aN in the coinoculation treatment were much lower than those when it was inoculated alone. Inactivation of the lemA gene appeared to have rendered the mutant suppressive to B728aN. 相似文献
19.
Copper as a signal for alginate synthesis in Pseudomonas syringae pv. syringae. 总被引:1,自引:0,他引:1
下载免费PDF全文

S P Kidambi G W Sundin D A Palmer A M Chakrabarty C L Bender 《Applied microbiology》1995,61(6):2172-2179
Plant-associated pseudomonads are commonly exposed to copper bactericides, which are applied to reduce the disease incidence caused by these bacteria. Consequently, many of these bacteria have acquired resistance or tolerance to copper salts. We recently conducted a survey of 37 copper-resistant (Cur) Pseudomonas spp., including P. cepacia, P. fluorescens, P. syringae, and P. viridiflava, and found that a subset of the P. syringae strains showed a dramatic increase in exopolysaccharide (EPS) production on mannitol-glutamate medium containing CuSO4 at 250 micrograms/ml. A modified carbazole assay indicated that the EPS produced on copper-amended media contained high levels of uronic acids, suggesting that the EPS was primarily alginic acid. Uronic acids extracted from selected strains were further confirmed to be alginate by demonstrating their sensitivity to alginate lyase and by descending paper chromatography following acid hydrolysis. Subinhibitory levels of arsenate, cobalt, lithium, rubidium, molybdenum, and mercury did not induce EPS production, indicating that alginate biosynthesis is not induced in P. syringae cells exposed to these heavy metals. A 200-kb plasmid designated pPSR12 conferred a stably mucoid phenotype to several P. syringae recipients and also increased their resistance to cobalt and arsenate. A cosmid clone constructed from pPSR12 which conferred a stably mucoid phenotype to several P. syringae strains but not to Pseudomonas aeruginosa was obtained. Results obtained in this study indicate that some of the signals and regulatory genes for alginate production in P. syringae differ from those described for alginate production in P. aeruginosa. 相似文献
20.
A gene from Pseudomonas syringae pv. glycinea with homology to avirulence gene D from P. s. pv. tomato but devoid of the avirulence phenotype 总被引:5,自引:0,他引:5
D Y Kobayashi S J Tamaki D J Trollinger S Gold N T Keen 《Molecular plant-microbe interactions : MPMI》1990,3(2):103-111
A gene was cloned from Pseudomonas syringae pv. glycinea that hybridized to avirulence gene D (avrD), previously cloned from P. s. pv. tomato. Unlike avrD, the hypersensitive response (HR) was not elicited when the P. s. pv. glycinea gene was reintroduced into P. s. pv. glycinea race 4 on a broad host range plasmid and the bacteria were inoculated into soybean leaves. DNA sequence data disclosed that the P. s. pv. glycinea homologue of avrD encoded a protein containing 86% identical amino acids to avrD, with substitutions distributed throughout the protein. Two ORFs immediately downstream from the avrD homologue were more similar in P. s. pv. tomato and P. s. pv. glycinea, with 98 and 99% identical amino acids. Expression of the wildtype P. s. pv. glycinea gene and recombinant genes constructed between the P. s. pv. tomato avrD gene and its P. s. pv. glycinea homologue in both Escherichia coli and P. s. pv. glycinea indicated that the P. s. pv. glycinea gene product was formed less efficiently or was less stable than was the P. s. pv. tomato protein encoded by avrD. The data indicated that the P. s. pv. glycinea homologue represents a recessive allele of the P. s. pv. tomato avrD gene which has been modified by mutation such that it does not lead to an avirulence phenotype on the normal host plant, soybean. 相似文献