首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure and function of the embryonic velum of two closely related species of Crepidula with different modes of development are examined. The velum of C. dilatata, a direct developer whose embryos feed on nurse eggs, does not differ substantially from the velum of C. fecunda, a species with planktotrophic larvae. Although velar ciliation develops earlier in embryos of C. dilatata, embryos of both species were able to feed on small particles, using the opposed-band ciliary mechanism. However, the embryos of C. dilatata lose this ability as they grow. The embryos of C. dilatata were not able to swim, whereas those of C. fecunda swam consistently in vials of seawater. This difference in swimming ability is probably due to differences in velum-body size allometry between the two species.  相似文献   

2.
Abstract Despite considerable theoretical and empirical work on the population genetic effects of mode of development in benthic marine invertebrates, it is unclear what factors generate and maintain interspecific variation in mode of development and few studies have examined such variation in a phylogenetic context. Here I combine data on mode of development with a molecular phylogeny of 72 calyptraeid species to test the following hypotheses about the evolution of mode of development: (1) Is the loss of feeding larvae irreversible? (2) Is there a phylogenetic effect on the evolution of mode of development? (3) Do embryos of direct‐developing species lose the structures necessary for larval feeding and swimming and, if so, is the degree of embryonic modification correlated with the genetic distance between species? The results of these analyses suggest that mode of development evolves rapidly and with little phylogenetic inertia. There are three cases of the possible regain of feeding larvae, in all cases from direct development with nurse eggs. It appears that species with planktotrophic, lecithotrophic, or direct development with nurse eggs all have equal evolutionary potential and retain the possibility of subsequent evolution of a different mode of development. However, species with direct development from large yolky eggs appear to be subject to phylogenetic constraints and may not be able to subsequently evolve a different mode of development. Finally, species that have more recently evolved direct development have less highly modified embryos than older direct‐developing species. Since species with nurse eggs generally have fewer embryonic modifications than those from large yolky eggs, this embryological difference may be the underlying cause of the difference in evolutionary potential.  相似文献   

3.
4.
Larvae of two species of sea urchins (Strongylocentrotus droebachiensis and S. purpuratus) differ in initial form and in the rate of development. To determine whether these differences are attributable to the large interspecific difference in egg size, we experimentally reduced egg size by isolating blastomeres from embryos. The rate of development of feeding larvae derived from isolated blastomeres was quantified using a novel morphometric method. If the differences early in the life histories of these two species are due strictly to differences in egg size, then experimental reduction of the size of S. droebachiensis eggs should yield an initial larval form and rate of development similar to that of S. purpuratus. Our experimental manipulations of egg size produced three clear results: 1) smaller eggs yielded larvae that were smaller and had simpler body forms, 2) smaller eggs resulted in slower development through the early feeding larval stages, and 3) effects of egg size were restricted to early larval stages. Larvae from experimentally reduced eggs of the larger species had rates of development similar to those of the smaller species. Thus, cytoplasmic volumes of the eggs, not genetic differences expressed during development, account for differences in larval form and the rate of form change. This is the first definitive demonstration of the causal relationship between egg size (parental investment per offspring) and life-history characteristics in marine benthic invertebrates. Because larval form influences feeding capability, the epigenetic effects of egg size on larval form are likely to have important functional consequences. Adaptive evolution of egg size may be constrained by the developmental relationships between egg size and larval form: evolutionary changes in egg size alone can result in concerted changes in larval form and function; likewise evolutionary changes in larval form and function can be achieved through changes in egg size. These findings may have broader implications for other taxa in which larval morphology and, consequently, performance may be influenced by changes in egg size.  相似文献   

5.
Plasticity in hatching potentially adjusts risks of benthic and planktonic development for benthic marine invertebrates. The proportionate effect of hatching plasticity on duration of larval swimming is greatest for animals that can potentially brood or encapsulate offspring until hatching near metamorphic competence. As an example, early hatching of the nudibranch mollusk Phestilla sibogae is stimulated by scattering of encapsulated offspring, as by a predator feeding on the gelatinous egg ribbon. When egg ribbons are undisturbed, hatching is at or near metamorphic competence. Disturbance of an unguarded benthic egg mass can insert 4 or more days of obligate larval dispersal into the life history. As another example, the spionid annelid Boccardia proboscidea broods capsules, each with both cannibalistic and developmentally arrested planktivorous siblings plus nurse eggs. Early hatching produces mainly planktivorous larvae with a planktonic duration of 15 days. Late hatching produces mainly adelphophages who have eaten their planktivorous siblings and metamorphose with little or no period of swimming. Mothers actively hatch their offspring by tearing the capsules, and appeared to time hatching in response to their environment and not to the stage of development of their offspring. Higher temperature increased the variance of brooding time. Females appeared to hatch capsules at an earlier developmental stage at lower temperatures. Species that release gametes or zygotes directly into the plankton have less scope for plasticity in stage at hatching. Their embryos develop singly with little protection and hatch at early stages, often as blastulae or gastrulae. Time of hatching cannot be greatly advanced, and sensory capabilities of blastulae may be limited.  相似文献   

6.
The damselfishes are one of the dominant coral reef fish lineages. Their ecological diversification has involved repeated transitions between pelagic feeding using fast bites and benthic feeding using forceful bites. A highly‐integrative approach that combined gene expression assays, shape analyses, and high‐speed video analyses was used to examine the development of trophic morphology in embryonic, larval, juvenile, and adult damselfishes. The anatomical characters that distinguish pelagic‐feeding and benthic‐feeding species do not appear until after larval development. Neither patterns of embryonic jaw morphogenesis, larval skull shapes nor larval bite mechanics significantly distinguished damselfishes from different adult trophic guilds. Analyses of skull shape and feeding performance identified two important transitions in the trophic development of a single species (the orange clownfish; Amphiprion percula): (a) a pronounced transformation in feeding mechanics during metamorphosis; and (b) more protracted cranial remodeling over the course of juvenile development. The results of this study indicate that changes in postlarval morphogenesis have played an important role in damselfish evolution. This is likely to be true for other fish lineages, particularly if they consist of marine species, the majority of which have planktonic larvae with different functional requirements for feeding in comparison to their adult forms.  相似文献   

7.
Among echinoderms, nonfeeding larvae usually are simplified in body shape, have uniform ciliation, and have lost the larval gut. A few species have nonfeeding larvae that express some remnant features of feeding larvae like ciliated bands and larval skeleton or larval arms, but typically their larval mouth never opens and their gut does not function. Still other species have retained the feeding larval form, a functional gut, and can feed, but they do not require food to metamorphose. The present note describes the development of a tropical holothurian, Holothuria mexicana, which hatches as a gastrula that is already generating coelomic structures. A translucent auricularia forms with a mouth that opens but becomes reduced soon thereafter. In form and ciliation this auricularia resembles a feeding larva, but it does not respond to food. A doliolaria forms on day 4 and the pentactula on day 6 post‐fertilization. Further study of this larva and that of its closely related congener, Holothuria floridana, is warranted.  相似文献   

8.
SUMMARY The origin of marine invertebrate larvae has been an area of controversy in developmental evolution for over a century. Here, we address the question of whether a pelagic "larval" or benthic "adult" morphology originated first in metazoan lineages by testing the hypothesis that particular gene co-option patterns will be associated with the origin of feeding, indirect developing larval forms. Empirical evidence bearing on this hypothesis is derivable from gene expression studies of the sea urchin larval gut of two closely related but differently developing congenerics, Heliocidaris tuberculata (feeding indirect-developing larva) and H. erythrogramma (nonfeeding direct developer), given two subsidiary hypotheses. (1) If larval gut gene expression in H. tuberculata was co-opted from an ancestral adult expression pattern, then the gut expression pattern will remain in adult H. erythrogramma despite its direct development. (2) Genes expressed in the larval gut of H. tuberculata will not have a coordinated expression pattern in H. erythrogramma larvae due to loss of a functional gut. Five structural genes expressed in the invaginating archenteron of H. tuberculata during gastrulation exhibit substantially different expression patterns in H. erythrogramma with only one remaining endoderm specific. Expression of these genes in the adult of H. erythrogramma and larval gut of H. tuberculata , but not in H. erythrogramma larval endoderm, supports the hypothesis that they first played roles in the formation of adult structures and were subsequently recruited into larval ontogeny during the origin and evolution of feeding planktotrophic deuterostome larvae.  相似文献   

9.
Evolution of echinoderm development from a feeding to a non-feeding mode can be examined by studying non-feeding larvae with structures that appear to be vestiges derived from a feeding ancestral state. The lecithotrophic larvae of the Australian brittle star Ophionereis schayeri possess such features, and the early development of this species was documented by light and scanning electron microscopy. The embryos undergo irregular cleavage, resulting in the formation of different sized blastomeres, with subsequent development through a wrinkled blastula stage. The lecithotrophic larva of O. schayeri possesses several vestigial ophiopluteal structures, including a continuous ciliated band, a larval gut, and a larval skeleton. The ciliated band is a reduced expression of the continuous ciliated band typical of ophioplutei. The larval gut is a transiently complete system, but an esophageal plug and rapid closure of the blastopore renders it nonfunctional. The larval skeleton, though reduced, consists of four rods corresponding to the body, posterolateral, anterolateral, and postoral rods characteristic of an ophiopluteus. Due to a heterochrony in larval skeletogenesis, the postoral rods develop early and simultaneously with the other rods. Compared with the larvae of other lecithotrophic ophiuroids, the larva of O. schayeri is one of the most reduced ophiopluteal forms reported to date.  相似文献   

10.
Shallow-water coastal areas suffer frequent reductions in salinity due to heavy rains, potentially stressing the organisms found there, particularly the early stages of development (including pelagic larvae). Individual adults and newly hatched larvae of the gastropod Crepipatella peruviana were exposed to different levels of salinity stress (32(control), 25, 20 or 15), to quantify the immediate effects of exposure to low salinities on adult and larval behavior and on the physiological performance of the larvae. For adults we recorded the threshold salinity that initiates brood chamber isolation. For larvae, we measured the impact of reduced salinity on velar surface area, velum activity, swimming velocity, clearance rate (CR), oxygen consumption (OCR), and mortality (LC50); we also documented the impact of salinity discontinuities on the vertical distribution of veliger larvae in the water column. The results indicate that adults will completely isolate themselves from the external environment by clamping firmly against the substrate at salinities ≤24. Moreover, the newly hatched larvae showed increased mortality at lower salinities, while survivors showed decreased velum activity, decreased exposed velum surface area, and decreased mean swimming velocity. The clearance rates and oxygen consumption rates of stressed larvae were significantly lower than those of control individuals. Finally, salinity discontinuities affected the vertical distribution of larvae in the water column. Although adults can protect their embryos from low salinity stress until hatching, salinities <24 clearly affect survival, physiology and behavior in early larval life, which will substantially affect the fitness of the species under declining ambient salinities.  相似文献   

11.
A compilation of distributional and life-history data relatingto mode of larval development is presented for 26 species ofSiphonana, a genus of intertidal pulmonates. Most species depositgelatinous benthic egg masses with two species releasing pelagicegg masses. Fifteen species hatch as planktonic-developing larvae,nine hatch as direct-developing juveniles, and in a furthertwo larvae hatch with both the swimming velar apparatus (associatedwith plank-tonic development) and a crawling foot (associatedwith direct development). Data on mode of larval developmentare interpreted with respect to some adaptive models. Despiteimportant exceptions, there is support for adaptive models basedupon egg capsule size (direct developers hatch from larger eggcapsules) and intertidal distribution (direct developers generallyoccur higher on the shore than planktonic developers). Worldwide,planktonic developers are more widespread than direct-developingspecies, and individual planktonic species have a greater meanlatitudinal range. The evidence for adaptive models relatinglatitudinal distribution to developmental mode is equivocal.There appears to be no clear relationship between body sizeand developmental mode in the genus, although the smallest specieshas direct development and the largest has planktonic development.In most siphonariid subgenera, developmental mode appears tobe constant, but two subgenera contain a mixture of developmentaltypes (Received 1 November 1993; accepted 15 April 1994)  相似文献   

12.
Among marine benthic organisms, the ability to disperse, primarily during the larval stage, is widely thought to influence the extent of species geographic range. Because related species often differ in their modes of larval development (pelagic, feeding larvae; pelagic, nonfeeding larvae; or brooded development), and these can have dramatically different planktonic intervals, the mode of development may influence geographic range. A global survey of 215 regular echinoids shows that species with pelagic, feeding larvae have significantly larger ranges than those with pelagic, nonfeeding larvae, but there is no difference in ranges between species with pelagic, nonfeeding larvae and those with brooded development. These patterns are maintained within the Cidaroida and the Temnopleuroida, which account for the great majority of species with pelagic, nonfeeding development and brooded development. This limited effect of developmental mode on geographic range is found among species occurring predominantly in waters shallower than 100 m. For species occurring deeper than 100 m, there is no significant difference in geographic range related to type of development. The relationship between developmental mode and species range was examined more closely for circa 30 species for which the developmental period was known from laboratory observations. Adjusting the developmental times to a common temperature, 20°C, using realistic values for Q10 from 2.0 to 3.6, showed a highly significant, negative correlation between egg volume and developmental time, indicating the potential for developmental mode to influence the planktonic interval. However, there was no relationship between time in the plankton, estimated from unadjusted developmental times, and extent of species geographic range. These results suggest that developmental mode may influence extent of species geographic ranges indirectly through the consequences of dispersal for gene flow or recovery from disturbance.  相似文献   

13.
Many herbivorous insects feed on plant tissues as larvae but use other resources as adults. Adult nectar feeding is an important component of the diet of many adult herbivores, but few studies have compared adult and larval feeding for broad groups of insects. We compiled a data set of larval host use and adult nectar sources for 995 butterfly and moth species (Lepidoptera) in central Europe. Using a phylogenetic generalized least squares approach, we found that those Lepidoptera that fed on a wide range of plant species as larvae were also nectar feeding on a wide range of plant species as adults. Lepidoptera that lack functional mouthparts as adults used more plant species as larval hosts, on average, than did Lepidoptera with adult mouthparts. We found that 54% of Lepidoptera include their larval host as a nectar source. By creating null models that described the similarity between larval and adult nectar sources, we furthermore showed that Lepidoptera nectar feed on their larval host more than would be expected if they fed at random on available nectar sources. Despite nutritional differences between plant tissue and nectar, we show that there are similarities between adult and larval feeding in Lepidoptera. This suggests that either behavioral or digestive constraints are retained throughout the life cycle of holometabolous herbivores, which affects host breadth and identity.  相似文献   

14.
The larvae of marine annelids capture food using an unusual diversity of suspension-feeding mechanisms. Many of the feeding mechanisms of larval annelids are poorly known despite the abundance and ecological significance of both larvae and adults of some annelid taxa. Here we show that larvae of two species of sabellariid annelids, Sabellaria cementarium and Phragmatopoma californica, bear prototrochal and metatrochal cilia that beat in opposition to each other. For larvae of S. cementarium, we provide evidence that these opposed bands of cilia are used to capture suspended particles. In video recordings, captured particles were overtaken by a prototrochal cilium and then moved with the cilium to the food groove, a band of cilia between the prototroch and metatroch. They were then transported by cilia of the food groove to the mouth. Lengths of the prototrochal cilia, lengths of the prototrochal ciliary band, size range of the particles captured, and estimated rates of clearance increased with larval age and body size. Confirmation of the presence of opposed bands in larvae of sabellariids extends their known occurrence in the annelids to members of 10 families. Opposed bands in these different taxa differ in the arrangements and spacing of prototrochal and metatrochal cilia, and in whether they are used in combination with other feeding mechanisms. Opposed bands appear to be particularly widespread among the larvae of sabellidan annelids (a clade that includes sabellariids, sabellids, and serpulids), even in some species whose larvae do not feed. A parsimony analysis suggests that opposed bands are ancestral in this clade of annelids.  相似文献   

15.
16.
Preexisting developmental plasticity in feeding larvae may contribute to the evolutionary transition from development with a feeding larva to nonfeeding larval development. Differences in timing of development of larval and juvenile structures (heterochronic shifts) and differences in the size of the larval body (shifts in allocation) were produced in sea urchin larvae exposed to different amounts of food in the laboratory and in the field. The changes in larval form in response to food appear to be adaptive, with increased allocation of growth to the larval apparatus for catching food when food is scarce and earlier allocation to juvenile structures when food is abundant. This phenotypic plasticity among full siblings is similar in direction to the heterochronic evolutionary changes in species that have greater nutrient reserves within the ova and do not depend on particulate planktonic food. This similarity suggests that developmental plasticity that is adaptive for feeding larvae also contributes to correlated and adaptive evolutionary changes in the transition to nonfeeding larval development. If endogenous food supplies have the same effect on morphogenesis as exogenous food supplies, then changes in genes that act during oogenesis to affect nutrient stores may be sufficient to produce correlated adaptive changes in larval development.  相似文献   

17.
Recent work on a diverse array of echinoderm species has demonstrated, as is true in amphibians, that thyroid hormone (TH) accelerates development to metamorphosis. Interestingly, the feeding larvae of several species of sea urchins seem to obtain TH through their diet of planktonic algae (exogenous source), whereas nonfeeding larvae of the sand dollar Peronella japonica produce TH themselves (endogenous source). Here we examine the effects of TH (thyroxine) and a TH synthesis inhibitor (thiourea) on the development of Dendraster excentricus, a sand dollar with a feeding larva. We report reduced larval skeleton lengths and more rapid development of the juvenile rudiment in the exogenous TH treatments when compared to controls. Also, larvae treated with exogenous TH reached metamorphic competence faster at a significantly reduced juvenile size, representing the greatest reduction in juvenile size ever reported for an echinoid species with feeding larvae. These effects of TH on D. excentricus larval development are strikingly similar to the phenotypically plastic response of D. excentricus larvae reared under high food conditions. We hypothesize that exogenous (algae-derived) TH is the plasticity cue in echinoid larvae, and that the larvae use ingested TH levels as an indicator for larval nutrition, ultimately signaling the attainment of metamorphic competence. Furthermore, our experiments with the TH synthesis inhibitor thiourea indicate that D. excentricus larvae can produce some TH endogenously. Endogenous TH production might, therefore, be a shared feature among sand dollars, facilitating the evolution of nonfeeding larval development in that group. Mounting evidence on the effects of thyroid hormones in echinoderm development suggests life-history models need to incorporate metamorphic hormone effects and the evolution of metamorphic hormone production.  相似文献   

18.
A controversial issue in anuran systematics is the relationship of Leiopelma to other anurans because recent phylogenetic constructions imply different relationships among the basal frogs. Of particular evolutionary interest is whether early development of Leiopelma resembles an ancestral salamander-like larva, an anuran tadpole, or neither. In the 1950s, Neville G. Stephenson hypothesized that direct development is the primary mode of development in amphibians, based on the fact that Leiopelma spp. lack a free-living (=feeding) larval stage. Although this hypothesis has not been generally accepted, it has not been formally refuted. We review Stephenson's work on Leiopelma and examine the anatomy of embryos/"larvae" of the four extant Leiopelma species for evidence of vestigial larval features that might refute the "direct-developing ancestor" hypothesis. We describe internal oral features in early developmental stages of Leiopelma and compare Leiopelma with a closely related basal anuran, Ascaphus, to assess whether their early developmental stages share any derived features. In Leiopelma hochstetteri, embryos/larvae have open gill slits and some faint rugosities around one gill slit that may be vestiges of gill rakers or filters. They also have more intestinal loops, indicative of an elongated alimentary tract, at earlier rather than late embryonic/larval stages. Collectively, these features support the view that the ancestor of Leiopelma had a free-swimming, free-feeding, aquatic larva. The palatoquadrate of Leiopelma archeyi reorients approximately 40 degrees from a more horizontal to a more vertical position through embryonic/"larval" development. This amount of cranial remodeling is intermediate between that seen in salamanders (17-27 degrees) and that reported for Ascaphus (64 degrees ) and other basal frogs (71-78 degrees) at metamorphosis. We found no internal oral features that Leiopelma shares specifically with Ascaphus. However, Leiopelma embryos have a ventrally positioned mouth and a downturned rostrum, characteristic of Ascaphus and other stream-adapted tadpoles.  相似文献   

19.
SUMMARY Heterochronic developmental plasticity of the juvenile rudiment and larval body of sea urchin larvae occurs in response to supply of food. Evolutionary increase in egg size can also be associated with earlier development of the juvenile rudiment. We examined effects of egg volume of feeding larvae on this heterochrony and other changes in larval form. (1) Evolutionary and experimental enlargements of egg volume did not accelerate formation of the rudiment relative to the larval body. Development of the larval body and juvenile rudiment was compared for the echinoids Strongylocentrotus purpuratus (with an egg of 78–82 μm) and Strongylocentrotus droebachiensis (with an egg of 150–160 μm diameter). Development of both larval body and rudiment were accelerated in S. droebachiensis relative to S. purpuratus but with greater acceleration of the larval body, so that the rudiment of S. droebachiensi s was initiated at a later larval stage even though at an earlier age. Also, experimentally doubling the egg volume of S. purpuratus did not accelerate development of the juvenile rudiment relative to the larval body. (2) Both species exhibited similar plasticity in timing of rudiment development in response to food supplies. (3) Doubling egg volume of S. purpuratus produced a larval form more similar to that of S. droebachiensis . This result mirrors previous experiments in which larvae from half embryos of S. droebachiensis were more similar to larvae of S. purpuratus . Many of the effects of egg volume on larval form are similar against either species' genetic background and are thus evolutionarily reversible effects on larval form.  相似文献   

20.
Stenothermal polar benthic marine invertebrates are highly sensitive to environmental perturbations but little is known about potential synergistic effects of concurrent ocean warming and acidification on development of their embryos and larvae. We examined the effects of these stressors on development to the calcifying larval stage in the Antarctic sea urchin Sterechinus neumayeri in embryos reared in present and future (2100+) ocean conditions from fertilization. Embryos were reared in 2 temperature (ambient: ?1.0 °C, + 2 °C : 1.0 °C) and 3 pH (ambient: pH 8.0, ?0.2–0.4 pH units: 7.8,7.6) levels. Principle coordinates analysis on five larval metrics showed a significant effect of temperature and pH on the pattern of growth. Within each temperature, larvae were separated by pH treatment, a pattern primarily influenced by larval arm and body length. Growth was accelerated by temperature with a 20–28% increase in postoral (PO) length at +2 °C across all pH levels. Growth was strongly depressed by reduced pH with a 8–19% decrease in PO length at pH 7.6–7.8 at both temperatures. The boost in growth caused by warming resulted in larvae that were larger than would be observed if acidification was examined in the absence of warming. However, there was no significant interaction between these stressors. The increase in left‐right asymmetry and altered body allometry indicated that decreased pH disrupted developmental patterning and acted as a teratogen (agent causing developmental malformation). Decreased developmental success with just a 2 °C warming indicates that development in S. neumayeri is particularly sensitive to increased temperature. Increased temperature also altered larval allometry. Altered body shape impairs swimming and feeding in echinoplutei. In the absence of adaptation, it appears that the larval phase may be a bottleneck for survivorship of S. neumayeri in a changing ocean in a location where poleward migration to escape inhospitable conditions is not possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号