首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gender polymorphism, plant-animal interactions, and environmental heterogeneity are the three important sources of variation in mating system and pollen dispersal patterns. We used progeny arrays and paternity analysis to assess the effects of gender type and density level on variation in mating patterns within a highly isolated population of Prunus mahaleb, a gynodioecious species. All the adult trees in the population were sampled and located. The direct estimate of long-distance insect-mediated pollination events was low (< 10%). Gender expression deeply influenced the mating system, decreasing the outcrossing rates (t(m)) and the pollen pool diversity in hermaphrodite trees. Long intermate distances (> 250 m) were significantly more frequent among female mother trees. Variation in local tree density also affected pollen pool diversity and intermate distance, with a higher effective number of fathers (k(e)) and longer intermate distances for female trees in low-density patches. A canonical correlation analysis showed significant correlations between mating variables and the maternal ecological neighbourhood. Only the first canonical variable was significant and explained 78% of variation. Outcrossing rates tended to decrease, and the relatedness among the fathers tended to increase, when mother trees grew in dense patches with high cover of other woody species and taller vegetation away from the pine forest edge. We highlight the relevance of considering maternal ecological neighbourhood effects on mating system and gene flow studies as maternal trees act simultaneously as receptors of pollen and as sources of the seeds to be dispersed.  相似文献   

2.
Outcrossing rates, pollen dispersal and male mating success were assessed in Dicorynia guianensis Amshoff, a neotropical tree endemic to the Guiana shield. All adult trees within a continuous area of 40 ha (n = 157) were mapped, and were genotyped with six microsatellite loci. In addition, progenies were genotyped from 22 mature trees. At the population level, the species was mostly outcrossing (tm = 0.89) but there was marked variation among individuals. One tree exhibited mixed mating, confirming earlier results obtained with isozymes that D. guianensis can tolerate selfing. A Bayesian extension of the fractional paternity method was used for paternity analysis, and was compared with the neighbourhood method used widely for forest trees. Both methods indicated that pollen dispersal was only weakly related to distance between trees within the study area, and that the majority (62%) of pollen came from outside the study stand. Using maximum likelihood, male potential population size was estimated to be 1119, corresponding to a neighbourhood size of 560 hectares. Male mating success was, however, related to the diameter of the stem and to flowering intensity assessed visually. The mating behaviour of D. guianensis is a combination of long-distance pollen flow and occasional selfing. The species can still reproduce when it is extremely rare, either by selfing or by dispersing pollen at long distances. These results, together with the observation that male mating success was correlated with the size of the trees, could be implemented in management procedures aiming at regenerating the species.  相似文献   

3.
The influence of habitat fragmentation on mating patterns and progeny fitness in trees is critical for understanding the long-term impact of contemporary landscape change on the sustainability of biodiversity. We examined the relationship between mating patterns, using microsatellites, and fitness of progeny, in a common garden trial, for the insect-pollinated big-leaf mahogany, Swietenia macrophylla King, sourced from forests and isolated trees in 16 populations across Central America. As expected, isolated trees had disrupted mating patterns and reduced fitness. However, for dry provenances, fitness was negatively related to correlated paternity, while for mesic provenances, fitness was correlated positively with outcrossing rate and negatively with correlated paternity. Poorer performance of mesic provenances is likely because of reduced effective pollen donor density due to poorer environmental suitability and greater disturbance history. Our results demonstrate a differential shift in reproductive assurance and inbreeding costs in mahogany, driven by exploitation history and contemporary landscape context.  相似文献   

4.
Mating patterns in heterodichogamous species are generally considered to be disassortative between flowering morphs, but this hypothesis has hitherto not been vigorously tested. Here, mating patterns and pollen dispersal were studied in Juglans mandshurica, a heterodichogamous wind-pollinated species that is widely distributed in northern and north-eastern China. Paternity analyses carried out on 11 microsatellite loci were used to estimate morph-specific rates of outcrossing and disassortative mating. Pollen dispersal and genetic structure were also investigated in the population under study. The mating pattern of J. mandshurica was highly outcrossing and disassortative. Pairwise values of intramorph relatedness were much higher than those of intermorph relatedness, and a low level of biparental inbreeding was detected. There was no significant difference in outcrossing and disassortative mating rates between the two morphs. The effective pollen dispersal distribution showed an excess of near-neighbor matings, and most offspring of individual trees were sired by one or two nearby trees. These results corroborate the previous suggestion that mating in heterodichogamous plant species is mainly disassortative between morphs, which not only prevents selfing but also effectively reduces intramorph inbreeding.  相似文献   

5.
Summary Pollen pool heterogeneity, which violates an assumption of the mixed-mating model, is a major potential problem in measuring plant mating systems. In this study, isozyme markers were used to examine pollen pool heterogeneity in two natural populations of jack pine, Pinus banksiana Lamb., in northwestern Ontario, Canada. Population multilocus estimates of outcrossing rate ranged from 0.83 to 0.95 and differed significantly between populations. Single-tree multilocus outcrossing rates were found to be homogeneous among trees in both populations. Computer simulation studies indicated that a consanguineous pollen pool (pollen gametes related to the mother tree) was capable of biasing population outcrossing estimates downward. Random pollen pool heterogeneity (uncorrelated with maternal genotypes) did not appear to affect population outcrossing estimates in the simulations. Heterogeneity G-tests and Spearman rank tests showed that pollen pool heterogeneity existed in the two natural populations examined; however, it did not have a major effect on population outcrossing estimates, since the consanguineous pollen pool detected was probably a relatively minor component of the outcross pollen pool in both populations. In addition, heterogeneity G-tests were found to be not sensitive in detecting pollen pool heterogeneity caused by consanguineous pollen pool.  相似文献   

6.
The maintenance of mixed mating was studied in Shorea curtisii, a dominant and widely distributed dipterocarp species in Southeast Asia. Paternity and hierarchical Bayesian analyses were used to estimate the parameters of pollen dispersal kernel, male fecundity and self-pollen affinity. We hypothesized that partial self incompatibility and/or inbreeding depression reduce the number of selfed seeds if the mother trees receive sufficient pollen, whereas reproductive assurance increases the numbers of selfed seeds under low amounts of pollen. Comparison of estimated parameters of self-pollen affinity between high density undisturbed and low density selectively logged forests indicated that self-pollen was selectively excluded from mating in the former, probably due to partial self incompatibility or inbreeding depression until seed maturation. By estimating the self-pollen affinity of each mother tree in both forests, mother trees with higher amount of self-pollen indicated significance of self-pollen affinity with negative estimated value. The exclusion of self-fertilization and/or inbreeding depression during seed maturation occurred in the mother trees with large female fecundity, whereas reproductive assurance increased self-fertilization in the mother trees with lower female fecundity.  相似文献   

7.
Seed orchards are forest tree production populations for supplying the forest industry with consistent and abundant seed crops of superior genetic quality. However, genetic quality can be severely affected by non-random mating among parents and the occurrence of background pollination. This study analyzed mating structure and background pollination in six large isolation tents established in a clonal Scots pine seed orchard in northern Sweden. The isolation tents were intended to form a physical barrier against background pollen and induce earlier flowering relative to the surrounding trees. We scored flowering phenology inside and outside the tents and tracked airborne pollen density inside and outside the seed orchard in three consecutive pollination seasons. We genotyped 5683 offspring collected from the tents and open controls using nine microsatellite loci, and assigned paternity using simple exclusion method. We found that tent trees shed pollen and exhibited maximum female receptivity approximately 1 week earlier than trees in open control. The majority of matings in tents (78.3 %) occurred at distances within two trees apart (about 5 m). Self-fertilization was relatively high (average 21.8 %) in tents without supplemental pollination (SP), but it was substantially reduced in tents with SP (average 7.7 %). Pollen contamination was low in open controls (4.8–7.1 %), and all tents remained entirely free of foreign pollen. Our study demonstrates that tent isolation is effective in blocking pollen immigration and in manipulating flowering phenology. When complimented with supplemental pollination, it could become a useful seed orchard management practice to optimize the gain and diversity of seed orchard crops.  相似文献   

8.
Heterodichogamy, including protandrous (PA) and protogynous (PG) morphs, is considered a mechanism to avoid selfing and promote disassortative mating. Although morphotypes are usually present in a population at a 1:1 ratio, this ratio may be biased in a low-density population by demographic stochasticity, resulting in a deficiency of mating partners in a neighbourhood dominated by a single morph. In this study, we determined morph ratio of the heterodichogamous tree species, Juglans ailantifolia by observing flowering in a low-density population during 2?years. The morph ratio (PG: PA) of 2.56:1 deviated significantly deviated from 1:1. We genotyped 59 reproductive trees and 405 offspring derived from eight PG-mother and three PA-mother trees with 11 microsatellite markers. Paternity analysis was conducted to clarify the effects of mother morph on the proportion of intra-morph mating. Then, we applied the Bayesian mixed effect mating model (MEMM) to clarify mating system, pollen dispersal, and individual fecundity of PG- and PA-mother trees. We found that the selfing rate and the distance of pollen dispersal were not clearly different between PG- and PA-mother trees. In contrast, the proportion of intra-morph mating was higher in the majority-morph (PG) mother trees than in the minor-morph (PA) mother trees. The MEMM indicated that mean dispersal distance of PG-mother trees was larger than that of PA-mother trees with large variance. Furthermore, we observed individuals with unusually high intra-morph fecundity for majority-morph (PG) trees. These findings indicate that intra-morph mating may occur when majority-morph mothers suffer a deficiency of potential inter-morph mates.  相似文献   

9.
Pollinator syndrome is one of the most important determinants regulating pollen dispersal in tropical tree species. It has been widely accepted that the reproduction of tropical forest species, especially dipterocarps that rely on insects with weak flight for their pollination, is positively density-dependent. However differences in pollinator syndrome should affect pollen dispersal patterns and, consequently, influence genetic diversity via the mating process. We examined the pollen dispersal pattern and mating system of Shorea maxwelliana, the flowers of which are larger than those of Shorea species belonging to section Mutica which are thought to be pollinated by thrips (weak flyers). A Bayesian mating model based on the paternity of seeds collected from mother trees during sporadic and mass flowering events revealed that the estimated pollen dispersal kernel and average pollen dispersal distance were similar for both flowering events. This evidence suggests that the putative pollinators – small beetles and weevils – effectively contribute to pollen dispersal and help to maintain a high outcrossing rate even during sporadic flowering events. However, the reduction in pollen donors during a sporadic event results in a reduction in effective pollen donors, which should lead to lower genetic diversity in the next generation derived from seeds produced during such an event. Although sporadic flowering has been considered less effective for outcrossing in Shorea species that depend on thrips for their pollination, effective pollen dispersal by the small beetles and weevils ensures outcrossing during periods of low flowering tree density, as occurs in a sporadic flowering event.  相似文献   

10.
Simple theories for the evolution of breeding systems suggest that the fate of an allele that modifies the rate of self-fertilization hinges only on the degree to which selfing reduces opportunities for outcrossing ("pollen discounting") and the extent of inbreeding depression. These theories predict that outcrossing evolves whenever deleterious mutations have a more severe effect in combination than expected from their individual effects. We study the evolutionary dynamics of a modifier of the rate of self-fertilization in populations subject to complete pollen discounting and recurrent mutations which impair viability at a single locus in diploids and at two loci in haploids. Our analysis indicates that genetic associations arising immediately upon the introduction of a rare modifier allele generate substantial quantitative and qualitative departures from expectation. Higher rates of segregation under selfing in our one-locus diploid model generate positive associations between enhancers of selfing and wild-type viability alleles, which in turn favor the evolution of selfing under a wider range of conditions than expected. Greater opportunities for recombination under outcrossing in our two-locus haploid model generate positive associations between enhancers of outcrossing and wild-type viability alleles. These associations favor the evolution of outcrossing under a wider range of conditions, and introduce the possibility of stable mixed mating systems involving both selfing and outcrossing. Our explicit analysis of genetic associations between loci affecting viability and the rate of self-fertilization indicates that modifiers that enhance the production of offspring with very high (and very low) viability by promoting segregation or recombination develop positive associations with high viability. This advantage of producing extremes can compensate for an initial disadvantage in offspring number.  相似文献   

11.
Ovule discounting denotes the reduction in the number of ovules available for cross-fertilization due to the interference of inferior pollen. Traditionally, ovule discounting has been discussed solely from the perspective of compromised outcrossing opportunities as a result of selfing, but the principle is more general. Here, we extend its applicability beyond the simple contrast between selfing and outcrossing by showing that, in the cryptically dioecious tree species Fraxinus ornus, ovule discounting through frequent outcrossing with inferior fathers also constitutes a substantial cost of mating. In F. ornus, hermaphrodites produce pollen capable of siring offspring, but these offspring are less viable than those sired by males and are inferred to produce few, if any, surviving progeny. In this paper, we used microsatellite markers to analyze the mating system and paternity in a wild population of F. ornus. We found that the effective number of sires per mother was low (N(ep) = 2.93 to 4.95), and that paternity was correlated among progeny sampled from the same mother, but not among progeny sampled from neighboring mothers. Despite the existence of a local spatial genetic structure (up to 30 m), we found no evidence of biparental inbreeding. There was negligible selfing by hermaphrodites, but they sired approximately one fourth of the seeds produced by other hermaphrodites. Given that these progeny are not inferred to reach reproductive maturity, this constitutes a substantial cost of ovule discounting in the broad sense. We discuss the possible reasons for why hermaphrodites invest resources into inferior pollen.  相似文献   

12.
Polymorphic allozyme loci were used to estimate outcrossing rates for three tree species from a disturbed dry forest in southern Costa Rica. Estimates of the multilocus outcrossing rates of Cedrela odorata and Jacaranda copaia were 0.969 and 0.982, respectively, and suggest that these species may be self-incompatible. The subcanopy tree Stemmadenia donnell-smithii also demonstrated little self-fertilization based on an estimated outcrossing rate of 0.896. Significant heterogeneity in pollen allele frequencies among maternal trees was detected for at least two enzyme loci for each species. A test of correlated mating between progeny of S. donnell-smithii revealed that all seeds within a fruit were singly sired. In addition, the low estimates of biparental inbreeding and significant differences in pollen and ovule allele frequencies for this species suggest that gene flow into the sampled forest fragment may occur. The implications of deforestation on the mating systems of these tropical tree taxa are discussed.  相似文献   

13.
Six microsatellite loci were used to compare the mating system and gene flow in two consecutive years of a natural, unlogged population of Symphonia globulifera in a 500 ha experimental plot in the Brazilian Amazon (Flona Tapajós). The species had a low density of reproductive trees per hectare (   d = 0.46  trees/ha). We analyzed 205 trees and 261 and 487 open-pollinated seeds from 26 and 30 mother-trees in the years 2002 and 2003, respectively. A significant spatial genetic structure was detected for the adult trees for distances up to 100 m. We observed only small interannual differences in multilocus outcrossing rate (     ,     ), biparental inbreeding (     ,     ), and paternity correlation (     ,     ). The number of pollen donors contributing to mating of each tree in both years was estimated to be low (     ). Using TwoGener analysis to calculate the density of reproductive trees and the distance of pollen dispersal for normal and exponential models, the lowest error was detected for exponential model. For this model, the estimated density of reproductive trees was lower in 2002 (     trees/ha) than 2003 (     trees/ha), resulting in a higher distance of pollen dispersal in 2002 (     m) than 2003 (     m), although these changes did not affect the outcrossing and correlated mating rates.  相似文献   

14.
15.
Hymenaea stigonocarpa is a neotropical tree that is economically important due to its high‐quality wood; however, because it has been exploited extensively, it is currently considered threatened. Microsatellite loci were used to investigate the pollen and seed dispersal, mating patterns, spatial genetic structure (SGS), genetic diversity, and inbreeding depression in H. stigonocarpa adults, juveniles, and open‐pollinated seeds, which were sampled from isolated trees in a pasture and trees within a forest fragment in the Brazilian savannah. We found that the species presented a mixed mating system, with population and individual variations in the outcrossing rate (0.53–1.0). The studied populations were not genetically isolated due to pollen and seed flow between the studied populations and between the populations and individuals located outside of the study area. Pollen and seed dispersal occurred over long distances (>8 km); however, the dispersal patterns were isolated by distance, with a high frequency of mating occurring between near‐neighbor trees and seeds dispersed near the parent trees. The correlated mating for individual seed trees was higher within than among fruits, indicating that fruits present a high proportion of full‐sibs. Genetic diversity and SGS were similar among the populations, but offspring showed evidence of inbreeding, mainly originating from mating among related trees, which suggests inbreeding depression between the seed and adult stages. Selfing resulted in a higher inbreeding depression than mating among relatives, as assessed through survival and height. As the populations are not genetically isolated, both are important targets for in situ conservation to maintain their genetic diversity; for ex situ conservation, seeds can be collected from at least 78 trees in both populations separated by at least 250 m.  相似文献   

16.
NM+ is computer software designed for making inferences on plant gene dispersal and mating patterns by modelling parentage probabilities of offspring based on the spatially explicit neighbourhood model. NM+ requires a sample of mapped and genotyped candidate parents and offspring; however, offspring may optionally be assigned to single maternal parents (forming so-called half-sib progeny arrays). Using maximum likelihood, NM+ estimates a number of parameters, including proportions of offspring due to self-fertilization, pollen immigration from outside of a defined study site, parameters of pollen (and/or seed) dispersal kernels (exponential-power, Weibull, geometric or 2Dt) and selection gradients relating covariates (phenotypic traits) with male (and/or female) reproductive success. NM+ allows for missing data both in parents and in offspring. It accounts for null alleles and their frequencies can optionally be considered as estimable parameters. Data files are formatted in a table-like structure so they can be easily prepared in a spreadsheet software. By default NM+ is for studying plant populations, however, it can be used for any organism as long as data requirements and model assumptions are met. NM+ runs under Windows, but it can be launched under Linux using WINE emulator. NM+ can be downloaded free of charge from http://www.genetyka.ukw.edu.pl/index_pliki/software.htm.  相似文献   

17.
Genetic variation at microsatellite markers was used to quantify genetic structure and mating behavior in a severely fragmented population of the wind-pollinated, wind-dispersed temperate tree Fraxinus excelsior in a deforested catchment in Scotland. Remnants maintain high levels of genetic diversity, comparable with those reported for continuous populations in southeastern Europe, and show low interpopulation differentiation (E = 0.080), indicating that historical gene exchange has not been limited (Nm = 3.48). We estimated from seeds collected from all trees producing fruits in three of five remnants that F. excelsior is predominantly outcrossing (t(m) = 0.971 +/- 0.028). Use of a neighborhood model approach to describe the relative contribution of local and long-distance pollen dispersal indicates that pollen gene flow into each of the three remnants is extensive (46-95%) and pollen dispersal has two components. The first is very localized and restricted to tens of meters around the mother trees. The second is a long-distance component with dispersal occurring over several kilometers. Effective dispersal distances, accounting for the distance and directionality to mother trees of sampled pollen donors, average 328 m and are greater than values reported for a continuous population. These results suggest that the opening of the landscape facilitates airborne pollen movement and may alleviate the expected detrimental genetic effects of fragmentation.  相似文献   

18.
Despite a nearly worldwide distribution in nature, Caenorhabditis elegans exhibits low levels of genetic polymorphism, possibly as an indirect consequence of low levels of outcrossing. In the laboratory, Caenorhabditis elegans males are produced at low rates and are steadily eliminated from cultures, so that reproduction happens largely through self-fertilization in hermaphrodites. C. elegans is increasingly the focus of evolutionary research; however, natural outcrossing rates are difficult to measure because mating tests with laboratory strains are usually required to identify C. elegans. We sampled natural populations of C. elegans with an RNA interference (RNAi) assay. Heterozygosities and polymorphism patterns revealed surprisingly high levels of population structure and outcrossing (approximately 22% of individuals are estimated to be the result of outcrossing and not self-fertilization). The finding of strong local population structure, together with low levels of diversity on local and global scales, suggests a metapopulation model of frequent extinction and recolonization of local populations. The occurrence of substantial outcrossing suggests that the extinction of local populations is probably not driven by the accumulation of harmful mutations.  相似文献   

19.
Heterodichogamy is defined as the presence of two flower morphs that exhibit the male and female functions at different times among individuals within a population. Heterodichogamy is regarded as an adaptation to promote outcrossing through enhanced inter-morph mating, together with a 1:1 morph ratio. However, in highly fragmented populations, the morph ratio may be more likely to be biased by stochastic events. In such a situation, individuals of a minority morph within a population are expected to have higher reproductive success than those of a majority morph, which may suffer from pollen shortages of the minority morph. In this paper, we evaluated mating patterns and male reproductive success in a highly fragmented population of Machilus thunbergii, a putative heterodichogamous evergreen laurel tree. Results of paternity analysis indicated that the selfing rate was not clearly different between the two morphs. In contrast, the proportion of intra-morph mating was higher in the majority-morph (MM) mother trees than in the minority-morph (MF) mother trees. Bayesian estimated male reproductive success indicated that male reproductive success was higher in minority-morph (MF) than in majority-morph (MM) mother trees. These findings indicate that (1) the majority morph mothers, suffering a shortage of the opposite morph pollen, could partly compensate for the reduced reproductive success by intra-morph mating rather than by selfing, and (2) negative-frequency dependent selection may be involved in the maintenance of the two morphs.  相似文献   

20.
Quantifying the effect of pollen dispersal and flowering traits on mating success is essential for understanding evolutionary responses to changing environments and establishing strategies for forest tree breeding. This study examined, quantitatively, the effects of male fecundity, interindividual distance and anisotropic pollen dispersal on the mating success of Scots pine (Pinus sylvestris), utilizing a well-mapped Scots pine seed orchard. Paternity analysis of 1021 seeds sampled from 87 trees representing 28 clones showed that 53% of the seeds had at least one potential pollen parent within the orchard. Pronounced variation in paternal contribution was observed among clones. Variations in pollen production explained up to 78% of the variation in mating success, which was 11.2 times greater for clones producing the largest amount of pollen than for clones producing the least pollen. Mating success also varied with intertree distance and direction, which explained up to 28% of the variance. Fertilization between neighboring trees 2.3 m apart was 2.4 times more frequent than between trees 4.6 m apart, and up to 12.4 times higher for trees downwind of the presumed prevailing wind direction than for upwind trees. The effective number of pollen donors recorded in the seed orchard (12.2) was smaller than the theoretical expectation (19.7). Based on the empirical observations, a mating model that best describes the gene dispersal pattern in clonal seed orchards was constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号