首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TtpC is a fourth required protein in the TonB2 energy transduction system in Vibrio anguillarum. TtpC is necessary for iron transport mediated by the TonB2 system and is highly conserved in all pathogenic vibrio species studied to date as well as several marine organisms. We show here that the TtpC proteins from selected pathogenic vibrio species can function with the TonB2 system of V. anguillarum to allow iron transport mediated by a chimeric TonB2 system where the native ExbB2, ExbD2 and TonB2 function with an episomally expressed TtpC in trans from a different species. The discovery that inter-species complementation occurs can be used to identify the functional regions of the TtpC proteins and will lead to an investigation of the mechanism of interaction between the TtpC protein and other members of the TonB2 system.  相似文献   

2.
Active transport across the outer membrane in gram-negative bacteria requires the energy that is generated by the proton motive force in the inner membrane. This energy is transduced to the outer membrane by the TonB protein in complex with the proteins ExbB and ExbD. In the pathogen Vibrio anguillarum we have identified two TonB systems, TonB1 and TonB2, the latter is used for ferric-anguibactin transport and is transcribed as part of an operon that consists of orf2, exbB2, exbD2, and tonB2. This cluster was identified by a polar transposon insertion in orf2 that resulted in a strain deficient for ferric-anguibactin transport. Only the entire cluster (orf2, exbB2, exbD2 and tonB2) could complement for ferric-anguibactin transport, while just the exbB2, exbD2, and tonB2 genes were unable to restore transport. This suggests an essential role for this Orf2, designated TtpC, in TonB2-mediated transport in V. anguillarum. A similar gene cluster exists in V. cholerae, i.e., with the homologues of ttpC-exbB2-exbD2-tonB2, and we demonstrate that TtpC from V. cholerae also plays a role in the TonB2-mediated transport of enterobactin in this human pathogen. Furthermore, we also show that in V. anguillarum the TtpC protein is found as part of a complex that might also contain the TonB2, ExbB2, and ExbD2 proteins. This novel component of the TonB2 system found in V. anguillarum and V. cholerae is perhaps a general feature in bacteria harboring the Vibrio-like TonB2 system.  相似文献   

3.
The TonB system of proteins is required for the energy-dependent active transport of iron-bound substrates across the outer membrane of gram-negative bacteria. We have identified three TonB systems within the human pathogen Vibrio vulnificus. The TonB1 system contains the TonB1, ExbD1, and ExbB1 proteins, whereas both the TtpC2-TonB2 and TtpC3-TonB3 systems contain an additional fourth protein, TtpC. Here we report that TtpC3, although highly related to TtpC2, is inactive in iron transport, whereas TtpC2 is essential for the function of the TtpC2-TonB2 system in V. vulnificus. This protein, together with TonB2, is absolutely required for both the uptake of endogenously produced iron-bound siderophores as well as siderophores produced from other organisms. Through complementation we show that V. vulnificus is capable of using different TtpC2 proteins from other Vibrio species to drive the uptake of multiple siderophores. We have also determined that aerobactin, a common bacterial siderophore involved in virulence of enteric bacteria, can only be brought into the cell using the TtpC2-TonB2 system, indicating an important evolutionary adaptation of TtpC2 and TonB2. Furthermore, in the absence of TonB1, TtpC2 is essential for a fully virulent phenotype as demonstrated using 50% lethal dose (LD(50)) experiments in mice.  相似文献   

4.
The mechanism of iron transport in Francisella is still a puzzle since none of the sequenced Francisella strains appears to encode a TonB protein, the energy transducer of the proton motive force necessary to act on the bacterial outer membrane siderophore receptor to allow the internalization of iron. In this work we demonstrate using kinetic experiments of radioactive Fe3+ utilization, that iron uptake in Francisella novicida, although with no recognizable TonB protein, is indeed dependent on energy generated by the proton motive force. Moreover, mutants of a predicted outer membrane receptor still transport iron and are sensitive to the iron dependent antimicrobial compound streptonigrin. Our studies suggest that alternative pathways to internalize iron might exist in Francisella.  相似文献   

5.
6.
TonB is a key protein in active transport of essential nutrients like vitamin B12 and metal sources through the outer membrane transporters of Gram-negative bacteria. This inner membrane protein spans the periplasm, contacts the outer membrane receptor by its periplasmic domain and transduces energy from the cytoplasmic membrane pmf to the receptor allowing nutrient internalization. Whereas generally a single TonB protein allows the acquisition of several nutrients through their cognate receptor, in some species one particular TonB is dedicated to a specific system. Despite a considerable amount of data available, the molecular mechanism of TonB-dependent active transport is still poorly understood. In this work, we present a structural study of a TonB-like protein, HasB dedicated to the HasR receptor. HasR acquires heme either free or via an extracellular heme transporter, the hemophore HasA. Heme is used as an iron source by bacteria. We have solved the structure of the HasB periplasmic domain of Serratia marcescens and describe its interaction with a critical region of HasR. Some important differences are observed between HasB and TonB structures. The HasB fold reveals a new structural class of TonB-like proteins. Furthermore, we have identified the structural features that explain the functional specificity of HasB. These results give a new insight into the molecular mechanism of nutrient active transport through the bacterial outer membrane and present the first detailed structural study of a specific TonB-like protein and its interaction with the receptor.  相似文献   

7.
The energy source for active transport of iron–siderophore complexes and vitamin B12 across the outer membrane in Gram-negative bacteria is the cytoplasmic membrane proton-motive force (pmf). TonB protein is required in this process to transduce cytoplasmic membrane energy to the outer membrane. In this study, Escherichia coli TonB was found to be distributed in sucrose density gradients approximately equally between the cytoplasmic membrane and the outer membrane fractions, while two proteins with which it is known to interact, ExbB and ExbD, as well as the NADH oxidase activity characteristic of the cytoplasmic membrane, were localized in the cytoplasmic membrane fraction. Neither the N-terminus of TonB nor the cytoplasmic membrane pmf, both of which are essential for TonB activity, were required for TonB to associate with the outer membrane. When the TonB C-terminus was absent, TonB was found associated with the cytoplasmic membrane, suggesting that the C-terminus was required for outer membrane association. When ExbB and ExbD, as well as their cross-talk-competent homologues TolQ and TolR, were absent, TonB was found associated with the outer membrane. TetA–TonB protein, which cannot interact with ExbB/D, was likewise found associated with the outer membrane. These results indicated that the role of ExbB/D in energy transduction is to bring TonB that has reached the outer membrane back to associate with the cytoplasmic membrane. Two possible explanations exist for the observations presented in this study. One possibility is that TonB transduces energy by shuttling between membranes, and, at some stages in the energy-transduction cycle, is associated with either the cytoplasmic membrane or the outer membrane, but not with both at the same time. This hypothesis, together with the alternative interpretation that TonB remains localized in the cytoplasmic membrane and changes its affinity for the outer and cytoplasmic membrane during energy transduction, are incorporated with previous observations into two new models, consistent with the novel aspects of this system, that describe a mechanism for TonB-dependent energy transduction.  相似文献   

8.
Transport of iron across the outer membrane   总被引:36,自引:0,他引:36  
Summary The TonB protein is involved in energy-coupled receptor-dependent transport processes across the outer membrane. The TonB protein is anchored in the cytoplasmic membrane but exposed to the periplasmic space. To fulfill its function, it has to couple the energy-providing metabolism in the cytoplasmic membrane with regulation of outer membrane receptor activity. Ferrichrome and albomycin transport, uptake of colicin M, and infection by the phages T1 and80 occur via the same receptor, the FhuA protein in the outer membrane. Therefore, this receptor is particularly suitable for the study of energy-coupled TonB-dependent transport across the outer membrane. Ferrichrome, albomycin and colicin M bind to the FhuA receptor but are not released into the periplasmic space of unenergized cells, ortonB mutants. In vivo interaction between FhuA and TonB is suggested by the restoration of activity of inactive FhuA proteins, bearing amino acid replacements in the TonB box, by TonB derivatives with single amino acid substitutions. Point mutations in thefhuA gene are suppressed by point mutations in thetonB gene. In addition, naturally occurring degradation of the TonB protein and its derivatives is preferentially prevented in vivo by FhuA and FhuA derivatives where functional interaction takes place. It is proposed that in the energized state, TonB induces a conformation in FhuA which leads to the release of the FhuA-bound compounds into the periplasmic space. Activation of FhuA by TonB depends on the ExbBD proteins in the cytoplasmic membrane. They can be partially replaced by the TolQR proteins which show strong sequence similarity to the ExbBD proteins. A physical interaction of these proteins with the TonB protein is suggested by TonB stabilization through ExbB and TolQR. We propose a permanent or reversible complex in the cytoplasmic membrane composed of the TonB protein and the ExbBD/TolQR proteins through which TonB is energized.  相似文献   

9.
Vibrio cholerae has multiple iron transport systems, one of which involves haem uptake through the outer membrane receptor HutA. A hutA mutant had only a slight defect in growth using haemin as the iron source, and we show here that V. cholerae encodes two additional TonB-dependent haem receptors, HutR and HasR. HutR has significant homology to HutA as well as to other outer membrane haem receptors. Membrane fractionation confirmed that HutR is present in the outer membrane. The hutR gene was co-transcribed with the upstream gene ptrB, and expression from the ptrB promoter was negatively regulated by iron. A hutA, hutR mutant was significantly impaired, but not completely defective, in the ability to use haemin as the sole iron source. HasR is most similar to the haemophore-utilizing haem receptors from Pseudomonas aeruginosa and Serratia marcescens. A mutant defective in all three haem receptors was unable to use haemin as an iron source. HutA and HutR functioned with either V. cholerae TonB1 or TonB2, but haemin transport through either receptor was more efficient in strains carrying the tonB1 system genes. In contrast, haemin uptake through HasR was TonB2 dependent. Efficient utilization of haemoglobin as an iron source required HutA and TonB1. The triple haem receptor mutant exhibited no defect in its ability to compete with its Vib- parental strain in an infant mouse model of infection, indicating that additional iron sources are present in vivo. V. cholerae used haem derived from marine invertebrate haemoglobins, suggesting that haem may be available to V. cholerae growing in the marine environment.  相似文献   

10.
Active transport of vitamin B12 and Fe(III)-siderophore complexes across the outer membrane of Escherichia coli appears to be dependent upon the ability of the TonB protein to couple cytoplasmic membrane-generated protonmotive force to outer membrane receptors. TonB is supported in this role by an auxiliary protein, ExbB, which, in addition to stabilizing TonB against the activities of endogenous envelope proteases, directly contributes to the energy transduction process. The topological partitioning of TonB and ExbB to either side of the cytoplasmic membrane restricts the sites of interaction between these proteins primarily to their transmembrane domains. In this study, deletion of valine 17 within the amino-terminal transmembrane anchor of TonB resulted in complete loss of TonB activity, as well as loss of detectable in vivo crosslinking into a 59 kDa complex believed to contain ExbB. The ΔV17 mutation had no effect on TonB export. The loss of crosslinking appeared to reflect conformational changes in the TonB/ExbB pair rather than loss of interaction since ExbB was still required for some stabilization of TonBΔV17. Molecular modeling suggested that the ΔV17 mutation caused a significant change in the predicted conserved face of the TonB amino-terminal membrane anchor. TonBΔV17 was unable to achieve the 23 kDa proteinase K-resistant form in lysed sphaeroplasts that is characteristic of active TonB. Wild-type TonB also failed to achieve the proteinase K-resistant configuration when ExbB was absent. Taken together these results suggested that the ΔV17 mutation interrupted productive TonB–ExbB interactions. The apparent ability to crosslink to ExbB as well as a limited ability to transduce energy were restored by a second mutation (A39E) in or near the first predicted transmembrane domain of the ExbB protein. Consistent with the weak suppression, a 23 kDa proteinase K-resistant form of TonBΔV17 was not observed in the presence of ExbBA39E. Neither the ExbBA39E allele nor the absence of ExbB affected TonB or TonBΔV17 export. Unlike the tonBΔV17 mutation, the exbBA39E mutation did not greatly alter a modelled ExbB transmembrane domain structure. Furthermore, the suppressor ExbBA39E functioned normally with wild-type TonB, suggesting that the suppressor was not allele specific. Contrary to expectations, the TonBδV17, ExbBA39E pair resulted in a TonB with a greatly reduced half-life (≅ 10 min). These results together with protease susceptibility studies suggest that ExbB functions by modulating the conformation of TonB.  相似文献   

11.
12.
TonB is a cytoplasmic membrane protein required for active transport of various essential substrates such as heme and iron siderophores through the outer membrane receptors of Gram-negative bacteria. This protein spans the periplasm, contacts outer membrane transporters by its C-terminal domain, and transduces energy from the protonmotive force to the transporters. The TonB box, a relatively conserved sequence localized on the periplasmic side of the transporters, has been shown to directly contact TonB.While Serratia marcescens TonB functions with various transporters, HasB, a TonB-like protein, is dedicated to the HasR transporter. HasR acquires heme either freely or via an extracellular heme carrier, the hemophore HasA, that binds to HasR and delivers heme to the transporter. Here, we study the interaction of HasR with a HasB C-terminal domain and compare it with that obtained with a TonB C-terminal fragment. Analysis of the thermodynamic parameters reveals that the interaction mode of HasR with HasB differs from that with TonB, the difference explaining the functional specificity of HasB for HasR. We also demonstrate that the presence of the substrate on the extracellular face of the transporter modifies, via enthalpy-entropy compensation, the interaction with HasB on the periplasmic face. The transmitted signal depends on the nature of the substrate. While the presence of heme on the transporter modifies only slightly the nature of interactions involved between HasR and HasB, hemophore binding on the transporter dramatically changes the interactions and seems to locally stabilize some structural motifs. In both cases, the HasR TonB box is the target for those modifications.  相似文献   

13.
TonB and the Gram-negative dilemma   总被引:50,自引:15,他引:35  
TonB protein serves as an energy transducer to couple cytoplasmic membrane energy to high-affinity active transport of iron siderophores and vitamin B12 across the outer membranes of Gram-negative bacteria. The biochemical mechanism of the energy transduction remains to be determined, but important details are already known. TonB is targeted to and anchored in the cytoplasmic membrane by a single membrane-spanning domain and spans the periplasm to physically interact with outer-membrane receptors of the transport ligands. TonB-dependent energy transduction is modulated by ExbB protein, which stabilizes TonB, and possibly by several other proteins including ExbC, ExbD, and TolQ. TonB has a relatively short functional half-life that is accelerated when rates of active transport across the outer membrane are increased. A model that incorporates this information, as well as some tempered speculation, is presented.  相似文献   

14.
In gram-negative organisms, high-affinity transport of iron substrates requires energy transduction to specific outer membrane receptors by the TonB-ExbB-ExbD complex. Vibrio cholerae encodes two TonB proteins, one of which, TonB1, recognizes only a subset of V. cholerae TonB-dependent receptors and does not facilitate transport through Escherichia coli receptors. To investigate the receptor specificity exhibited by V. cholerae TonB1, chimeras were created between V. cholerae TonB1 and E. coli TonB. The activities of the chimeric TonB proteins in iron utilization assays demonstrated that the C-terminal one-third of either TonB confers the receptor specificities associated with the full-length TonB. Single-amino-acid substitutions near the C terminus of V. cholerae TonB1 were identified that allowed TonB1 to recognize E. coli receptors and at least one V. cholerae TonB2-dependent receptor. This indicates that the very C-terminal end of V. cholerae TonB1 determines receptor specificity. The regions of the TonB-dependent receptors involved in specificity for a particular TonB protein were investigated in experiments involving domain switching between V. cholerae and E. coli receptors exhibiting different TonB specificities. Switching the conserved TonB box heptapeptides at the N termini of these receptors did not alter their TonB specificities. However, replacing the amino acid immediately preceding the TonB box in E. coli receptors with an aromatic residue allowed these receptors to use V. cholerae TonB1. Further, site-directed mutagenesis of the TonB box -1 residue in a V. cholerae TonB2-dependent receptor demonstrated that a large hydrophobic amino acid in this position promotes recognition of V. cholerae TonB1. These data suggest that the TonB box -1 position controls productive interactions with V. cholerae TonB1.  相似文献   

15.
TonB protein functions as an energy transducer, coupling cytoplasmic membrane electrochemical potential to the active transport of vitamin B12 and Fe(III)–siderophore complexes across the outer membrane of Escherichia coli and other Gram-negative bacteria. Accumulated evidence indicates that TonB is anchored in the cytoplasm, but spans the periplasmic space to interact physically with outer membrane receptors. It has been presumed that this ability is caused by a conserved (Glu–Pro)n–(Lys–Pro)m repeat motif, predicted to assume a rigid, linear conformation of sufficient length to reach the outer membrane. Based on in vitro studies with synthetic peptides and purified FhuA outer membrane receptor, it has been suggested that this region contains a site that directly binds outer membrane receptors and is essential for energy transduction. We have found a TonB lacking the (Glu–Pro)n–(Lys–Pro)m, repeat motif (TonBΔ(66–100)). TonBΔ(66–100) is fully capable of irreversible 80 adsorption, except under physiological circumstances where the periplasmic space is expanded. Based on the ability of TonBΔ(66–100) to interact with outer membrane receptors and components of the energy transduction apparatus under normal physiological conditions, it is evident that the TonB proline-rich region has no role in energy transduction other than to provide a physical extension sufficient to reach the outer membrane.  相似文献   

16.
The MotA/MotB proteins serve as the motor that drives bacterial flagellar rotation in response to the proton motive force (pmf). They have been shown to comprise a transmembrane proton pathway. The ExbB/ExbD/TonB protein complex serves to energize transport of iron siderophores and vitamin B12 across the outer membrane of the Gram-negative bacterial cell using the pmf. These two protein complexes have the same topology and are homologous. Based on molecular data for the MotA/MotB proteins, we propose simple three-dimensional channel structures for both MotA/MotB and ExbB/ExbD/TonB using modeling methods. Features of the derived channels are discussed, and two possible proton transfer pathways for the ExbBD/TonB system are proposed. These analyses provide a guide for molecular studies aimed at elucidating the mechanism by which chemiosmotic energy can be transferred either between two adjacent membranes to energize outer membrane transport or to the bacterial flagellum to generate torque.  相似文献   

17.
TonB is a proline-rich protein which provides a functional link between the inner and outer membranes of Gram-negative bacteria. TonB is anchored to the inner membrane via an N-terminal signal-like sequence and spans the periplasm, interacting with transport receptors in the outer membrane. We have investigated the role of the N-terminal signal-like peptide in TonB function. Replacement of the N-terminal sequence with heterologous sequences indicates that it has at least three distinct rotes in TonB function: (i) to facilitate translocation of TonB across the cytoplasmic membrane; (ii) to anchor TonB to the cytoplasmic membrane; (iii) a sequence-specific functional interaction with the ExbBD proteins.  相似文献   

18.
Vibrio cholerae uses a variety of strategies for obtaining iron in its diverse environments. In this study we report the identification of a novel iron utilization protein in V. cholerae, VciB. The vciB gene and its linked gene, vciA, were isolated in a screen for V. cholerae genes that permitted growth of an Escherichia coli siderophore mutant in low-iron medium. The vciAB operon encodes a predicted TonB-dependent outer membrane receptor, VciA, and a putative inner membrane protein, VciB. VciB, but not VciA, was required for growth stimulation of E. coli and Shigella flexneri strains in low-iron medium. Consistent with these findings, TonB was not needed for VciB-mediated growth. No growth enhancement was seen when vciB was expressed in an E. coli or S. flexneri strain defective for the ferrous iron transporter Feo. Supplying the E. coli feo mutant with a plasmid encoding either E. coli or V. cholerae Feo, or the S. flexneri ferrous iron transport system Sit, restored VciB-mediated growth; however, no stimulation was seen when either of the ferric uptake systems V. cholerae Fbp and Haemophilus influenzae Hit was expressed. These data indicate that VciB functions by promoting iron uptake via a ferrous, but not ferric, iron transport system. VciB-dependent iron accumulation via Feo was demonstrated directly in iron transport assays using radiolabeled iron. A V. cholerae vciB mutant did not exhibit any growth defects in either in vitro or in vivo assays, possibly due to the presence of other systems with overlapping functions in this pathogen.  相似文献   

19.
20.
Aims: To develop an effective multiplex PCR for simultaneous and rapid detection of Vibrio cholerae, Vibrio vulnificus and Vibrio parahaemolyticus, the three most important Vibrio species that can cause devastating health hazards among human. Methods and Results: Species‐specific PCR primers were designed based on toxR gene for V. cholerae and V. parahaemolyticus, and vvhA gene for V. vulnificus. The multiplex PCR was validated with 488 Vibrio strains including 322 V. cholerae, 12 V. vulnificus, and 82 V. parahaemolyticus, 20 other Vibrio species and 17 other bacterial species associated with human diseases. It could detect the three target bacteria without any ambiguity even among closely related species. It showed good efficiency in detection of co‐existing target species in the same sample. The detection limit of all the target species was ten cells per PCR tube. Conclusions: Specificity and sensitivity of the multiplex PCR is 100% each and sufficient for simultaneous detection of these potentially pathogenic Vibrio species in clinical and environmental samples. Significance and Impact of the Study: This simple, rapid and cost‐effective method can be applicable in a prediction system to prevent disease outbreak by these Vibrio species and can be considered as an effective tool for both epidemiologist and ecologist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号