首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dormant buds from a mature tree of Populus tremula ‘Erecta’ were incubated on a Murashige and Skoog (MS) medium supplemented with 1.0 μM thidiazuron (TDZ). Induced shoots were then proliferated on medium of MS or Woody Plant Medium (WPM), or Driver and Kuniyuki Walnut (DKW) supplemented with varying levels of benzyladenine (BA). Overall, shoots grown on MS medium supplemented with 1.25–2.5 μM BA exhibited the highest frequency of shoot proliferation (>95%) and more than 60% of responding explants produced more than five shoots per explant. Shoot organogenesis was induced from both leaf and petiole explants incubated on WPM medium containing BA, or TDZ, or zeatin. Among the different cytokinins tested, zeatin induced the highest frequency (average 72.1%) of shoot organogenesis. None of explants survived on media containing no cytokinins within 6–8 weeks following culture. Overall, a higher frequency of shoot regeneration was obtained from petioles than from leaf explants. The highest frequency of regeneration was achieved when petioles were incubated on WPM containing 10–20 μM zeatin. Addition of naphthaleneacetic acid (NAA) did not have a significant effect on shoot regeneration in all treatments. Shoot organogenesis was directly induced from petiole explants without intervening callus. Regenerated shoots were easily rooted on all tested media supplemented with 0.5 μM NAA. Rooted plants were transferred to potting mix and grown in the greenhouse.  相似文献   

2.
The effects of culture media and cytokinin types on micropropagation of mature Crataegus aronia L. were investigated. Using single-axillary bud explants, the growth of cultures on MS, WPM, DKW and NRM containing 4.44 μM benzyladenine (BA) plus 0.05 μM indole-3-butyric acid (IBA), and on NRM containing thidiazuron, meta-Topolin (mT) or BA at 1.25, 2.5, 5.0 or 7.5 μM plus 0.05 μM IBA were compared. The culture medium had significant effects on shoot number and length. In comparison with MS, DKW and WPM, shoot production was greater on NRM (5.7 shoots per explant). Shoot production on MS, DKW and WPM (4.2, 4.2 and 4.1, respectively) were statistically similar to each other. Thidiazuron was detrimental to shoot formation and caused formation of rosette shoots and/or large callus to form on explants. In the presence of mT, only some of the explants developed into shoots. Benzyladenine was the only cytokinin that promoted both shoot proliferation and shoot elongation. Higher shoot numbers were obtained at 5.0 and 7.5 μM BA compared to lower concentrations of BA. Over 80% of microshoots rooted and rooted shoots were successfully acclimatized to ex vitro conditions.  相似文献   

3.
Primulina tabacum is a rare and endangered species that is endemic to China. Establishing an efficient regeneration system is necessary for its conservation and reintroduction. In this study, when leaf explants collected from plants grown in four ecotypes in China are incubated on Murashige and Skoog (MS) medium containing 5.0 μM thidiazuron (TDZ) for 30 days, then transferred to medium containing 5.0 μM 6-benzyladenine (BA), adventitious shoots are then observed. Conversely, when leaf explants are incubated on medium containing 5.0 μM BA for 30 days, then transferred to medium containing 5.0 μM TDZ, somatic embryogenesis is induced. This indicates that somatic embryogenesis and shoot organogenesis could be switched simply by changing the order of two cytokinins supplemented in the culture medium. Histological investigation has revealed that embryogenic cells are induced within 30 days following incubation of explants in medium containing TDZ. Only if embryogenic cells were induced, TDZ could enhance somatic embryogenesis and BA could stimulate shoot organogenesis. When comparing explants from different ecotypes, leaf explants from Zixiadong in Hunan Province could induce low numbers (1–2) of either somatic embryos or adventitious shoots on medium containing either 5.0 μM TDZ or 5.0 μM BA, respectively. Whereas, leaf explants from plants collected from the other three ecological habitats could induce 50–70 somatic embryos/adventitious shoots per explant. Moreover, somatic embryos could induce secondary somatic embryogenesis and adventitious shoots on different media. All regenerated shoots developed adventitious roots when these are transferred to rooting medium, and over 95% of plantlets have survived following acclimatization and transfer to a potting mixture (1:1, sand:vermiculite).  相似文献   

4.
A method for in vitro regeneration of Searsia dentata from nodal and shoot tip explants derived from mature trees is outlined. Nodal explants produced multiple shoots from the axis when cultured on Murashige and Skoog (MS) medium containing 3% sucrose supplemented with 0, 5, 7.5, 10, or 12.5 μM N 6-benzyladenine (BA). An average of 5.3 shoots was obtained from nodal explants on 10 μM BA. For shoot tip explants, however, supplementation of α-naphthaleneacetic acid (NAA) with BA favored a caulogenic response. A maximum of 6.1 shoots were produced per shoot tip explant on MS containing 7.5 μM BA plus 5.0 μM NAA. The in vitro-regenerated shoots produced roots when transferred to full-strength MS medium containing 3% sucrose and 10 μM indole-3-butyric acid (IBA). The developed plantlets were transferred initially to a mist house. After an initial acclimatization period of 3–4 mo, plantlets were shifted to the greenhouse where they thrived for 9 mo. The standardized protocol for mass propagation of S. dentata should eliminate the dependence on natural stands of plants for traditional medicinal purposes, and will also serve as a means of conservation as the species is heavily overexploited.  相似文献   

5.
An efficient regeneration protocol for rapid multiplication of Melia azedarach, an economically as well as medicinally important timber-yielding tree, was developed. Nearly 90% of the culture exhibited axillary bud sprouting and multiple shoot formation from nodal segments derived from 20-year-old candidate plus tree on Murashige and Skoog (MS) medium supplemented with 5 μM 6-benzyladenine (BA). The highest shoot regeneration frequency (92%), maximum number of multiple shoots (19.7 ± 0.31) as well as shoot length (4.9 ± 0.08 cm) was induced from nodal explants on MS medium amended with 5.0 μM BA, 0.5 μM indole-3-acetic acid (IAA) and 30 μM adenine sulfate (AdS). Addition of 250 mg l−1 ammonium sulphate, (NH4)2SO4, and 100 mg l−1 K2SO4, prevented defoliation and tip burning without affecting the number of shoots. The explant harvest period also influenced the bud break and shoot sprouting from nodal segments. Repeated subculturing of nodal explants on fresh MS medium containing lower concentration of BA (2.5 μM) along with IAA (0.5 μM), AdS (30 μM) and additives was found most suitable growth regulator regime for achieving 1.2-fold increase in shoot multiplication rate. The percentage of shoot multiplication as well as the number of shoots per node remained the same during first three subculture passages, afterwards a decline was recorded. About 90% of the in vitro regenerated shoots were successfully rooted ex vitro by giving a pulse treatment of 250 μM indole-3-butyric acid for 15 min, followed by their transfer to thermocol cups containing soilrite. The raised plantlets were successfully acclimatized first under culture room conditions, then to green house with 85% survival rate.  相似文献   

6.
In vitro propagation of northern red oak (Quercus rubra) shoots was successful from cotyledonary node explants excised from 8-wk-old in vitro grown seedlings. Initially, four shoots per explant were obtained on Murashige and Skoog (MS) medium supplemented with 4.4 μM 6-benzylaminopurine (BA), 0.45 μM thidiazuron (TDZ), and 500 mg l−1 casein hydrolysate (CH) with a regeneration frequency of 64.7% after 3 wk. Subculturing explants (after harvesting shoots) to fresh treatment medium significantly increased shoot bud regeneration (16.6 buds per explant), but the buds failed to develop into shoots. A higher percentage (73.3%) of the explants regenerated four shoots per explant on woody plant medium (WPM) supplemented with 4.4 μM BA, 0.29 μM gibberellic acid (GA3), and 500 mg l−1 CH after 3 wk. Explants subcultured to fresh treatment medium after harvesting shoots significantly increased shoot regeneration (16 shoots per explant). Shoot elongation was achieved (4 cm) when shoots were excised and cultured on WPM supplemented with 0.44 μM BA and 0.29 μM GA3. In vitro regenerated shoots were rooted on WPM supplemented with 4.9 μM indole-3-butyric acid. A higher percentage regeneration response and shoot numbers per explant were recorded on WPM supplemented with BA and GA3, than on MS medium containing BA and TDZ. Lower concentrations of BA and GA3 were required for shoot elongation and prevention of shoot tip necrosis. Each cotyledonary node yielded approximately 20 shoots within 12 wk. Rooted plantlets were successfully acclimatized.  相似文献   

7.
Seabuckthorn (Hippophae rhamnoides) is a multipurpose small tree with unique berries of high nutritional and pharmaceutical values. A clonally propagated plant originating from a 20-year-old tree of H. r. rhamnoides × mongolica hybrid cultivar Julia and seedling offspring of this cultivar were investigated regarding induction of shoot organogenesis in leaf explants and in roots of intact seedlings, and induction of direct somatic embryogenesis in explants from shoot tissue. The highest percentage of leaf explants showing shoot organogenesis was achieved (juvenile explants, 65%; adult explants, 75%) when incubated in Murashige and Skoog (MS) medium supplemented with either 4.5 μM of the phenylurea cytokinin thidiazuron (TDZ) or 2.25 μM TDZ plus 2.2 μM 6-benzyladenine (BA), for juvenile and adult explants, respectively, both supplemented with 0.53 μM α-naphthaleneacetic acid (NAA). Juvenile explants developed on average 18 shoots per explant in the MS medium supplemented with 4.5 μM TDZ, a four fold increase over those incubated on the medium supplemented with 2.25 μM TDZ and 2.2 μM BA. Adult leaf explants grown on medium containing 2.25 μM TDZ and 2.2 μM BA medium produced 12 shoots per explant, while those grown on medium containing 4.5 μM TDZ produced 5 shoots per explant. Shoot organogenesis was observed in roots of intact seedlings pre-cultured on plain medium lacking nutrients (PM) or woody plant medium (WPM) salts and then grown on WPM salts supplemented with 4.4 μM BA, 0.29 μM gibberrelic acid (GA3), and 57.0 μM indoleacetic acid (IAA). The number of shoots formed on each seedling root system was ten fold higher when the pre-culture was in WPM medium indicating a promoting effect of mineral nutrients in the pre-culture medium. Somatic embryogenesis was induced in both juvenile and adult leaf explants in 65 and 78% of the explants, respectively, in MS-based medium supplemented with 2.0 μM N-(2-Chloro-4-pyridyl)-N 1-phenylurea (CPPU), 0.53 μM NAA and varying concentrations of BA. There was an interaction effect between MS salt strength and BA concentration. The most effective medium for inducing somatic embryogenesis in juvenile explants contained half strength MS salts and 2.2 μM BA and full strength MS salts and 13.2 μM BA for adult explants.  相似文献   

8.
An efficient in vitro micropropagation system for Clivia miniata Regel was developed using basal tissues of young petals and young ovaries as explants. For callus induction, explants were incubated on Murashige and Skoog (MS) medium containing either 2.22 μM 6-benzyladenine (BA) and 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-D) or 4.44 μM BA, 5.37 μM α-naphthaleneacetic acid (NAA), and 9.05 μM 2,4-D. Moreover, callus was induced from young ovaries when these were incubated on MS medium containing 8.88 μM BA, 10.74 μM NAA, and 9.05 or 18.10 μM 2,4-D. Subsequently, callus was transferred to MS medium supplemented with kinetin (KT) and NAA for shoot organogenesis. Frequency of shoot regeneration from petal-derived callus was highest when callus was transferred to medium containing 2.69 μM NAA with either 9.29 or 13.94 μM KT. Shoot regeneration frequency from ovary-derived callus was highest when this callus was transferred to medium containing 9.29 μM KT and 10.74 μM NAA. Overall, different explant types exhibited different organogenic capacities wherein, young petals had higher shoot regeneration frequencies than young ovaries. The highest rooting frequency (98.25 ± 3.04%) was obtained when shoots were transferred to half-strength MS medium without plant growth regulators. Regenerated plantlets were transplanted to soil mix and acclimatized, yielding a 96.80% survival frequency. Only 0.6% of regenerated plantlets exhibited morphological changes. The diploid status (2n = 22) of regenerated plantlets was determined using chromosome counts of root-tips. Moreover, inter-simple sequence repeats were used to assess the genetic fidelity of regenerated plantlets. Overall, regenerated plants shared 90.5–100.0% genetic similarities with mother plants and 89.0–100.0% similarities with each other.  相似文献   

9.
Using immature embryos and cotyledons as explants, a successful system to culture immature embryos and induce direct regeneration from cotyledons was established for Prunus mume “Xuemei”. For immature embryo culture, a high frequency of plantlet formation (89.5%) from the embryonic axis was obtained using half-strength Murashige and Skoog (1/2 MS) medium supplemented with 13.2 μM 6-benzyladenine (BA) and 2.7 μM 1-naphthaleneacetic (NAA). Shoots formed directly from cotyledons with the embryo axis intact when explants were cultured on 1/2 MS medium containing 2.2 μM BA with different combinations of NAA (2.7, 5.4 μM) and indole-3-butyric acid (IBA) (0, 2.5, 5.0 μM). Better results were achieved when the embryonic axis was removed from the cotyledons and cultured on 1/2 MS medium supplement with 13.2 μM BA, 2.7 μM NAA or 2.2 μM BA, 2.2 μM thidiazuron (TDZ), and 2.7 μM NAA, respectively. Regenerated shoots were successfully rooted on 1/2 MS or Woody Plant medium (WPM) supplemented with 2.5–5.0 μM IBA. The effect of the embryonic axis, BA, and TDZ on cotyledon regeneration was investigated in detail. Rooted plantlets were transferred to soil successfully.  相似文献   

10.
Plantlet regeneration through shoot formation from young leaf explant-derived callus of Camptotheca acuminata is described. Calli were obtained by placing leaf explants on Woody plant medium (WPM) supplemented with various concentrations of 6-benzyladenine (BA) and naphthaleneacetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D). Callus induction was observed in all media evaluated. On the shoot induction medium, the callus induced on the WPM medium containing 19.8 μM BA and 5.8 μM NAA was the most effective, providing high shoot regeneration frequency (70.3 %) as well as the highest number of shoots (11.2 shoots explant−1). The good rooting percentage and root quality (98 %, 5.9 roots shoot−1) were achieved on WPM medium supplemented with 9.6 μM indole-3-butyric acid (IBA). 96 % of the in vitro rooted plantlets with well developed shoots and roots survived transfer to soil.  相似文献   

11.
An efficient propagation and regeneration system via direct shoot organogenesis for an endangered species, Metabriggsia ovalifolia, was established. High activity cytokinins [6-benzyladeneine (BA) and thidiazuron (TDZ)] and low activity auxins [α-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA)] could directly induce adventitious shoots from leaf or petiole explants within 5 weeks. Cytokinins (TDZ or BA) combined with auxin (NAA) in the induction media induced more adventitious shoots than when auxins or cytokinins were used alone. Adventitious shoots could be induced and also mass-propagated on media containing 2.5–5.0 μM TDZ (or BA) and 0.25–0.5 μM NAA. Adventitious roots differentiated at the proximal end of shoots on rooting media containing half-strength MS salts and 0.5 μM IBA, 0.5 μM NAA, 0.1% activated charcoal or no plant growth regulators. Over 90% of plantlets survived following acclimatization and transfer to a potting mixture (1:1, sand:vermiculite) in basins.  相似文献   

12.
Saffron (Crocus sativus L.) is a monocotyledonous plant propagated via corms, but recently several alternative methods have been reported. To find the conditions suitable for saffron shoot formation from corms, the effect of different concentrations of the plant growth regulatory cytokinins N6-benzyladenine (BA) and N-phenyl-1, 2,3-thidiazol-5-ylurea, commonly known as thidiazuron (TDZ), were compared. In all corm explants, an average of 39.5 ± 5.1 shoots per corm were induced by 4.54 μM TDZ, whereas only 3.6-11.4% by BA. The outstanding result in the shoot formation stage is the generation of globular, translucent structures that are morphologically similar to globular embryos. To optimize the plant regeneration from the induced adventitious shoots obtained from the TDZ treatment, the shoots were transferred to MS and B5 media supplemented with different concentrations and combinations of NAA and BA. The highest rate of plant regeneration from developing shoots was observed in the B5 medium containing 2.22 μM NAA and 2.68 μM BA. With optimized hormonal conditions, an average of 19.55 ± 5.75 shoots and 3.18 ± 1.5 roots per explants were obtained. Based on this experiment, a simple, new and efficient protocol is presented to produce numerous plants from induced corm explants of saffron.  相似文献   

13.
A simple, rapid and efficient protocol for micropropagation of Cardiospermum halicacabum via axillary bud multiplication has been successfully developed. The organogenic competence of nodal segments was investigated on Murashige and Skoog (MS) medium supplemented with different concentrations of benzyladenine (BA), kinetin (Kn), thidiazuron (TDZ) and 2-isopentenyladenine (2-iP). Multiple shoots differentiated directly without callus mediation within 4 weeks when explants were cultured on a medium fortified with cytokinins. The maximum number of shoots (14.83 ± 0.52) was developed on a medium supplemented with 0.3 μM TDZ. Such proliferating shoots when subcultured onto MS media devoid of TDZ gave the highest rate of shoot multiplication (35.66 ± 1.00) by the end of fourth subculture passage. Elongated shoots were rooted on 1/3 MS medium augmented with 0.5 μM IAA. The plantlets thus obtained were successfully hardened and transferred to greenhouse.  相似文献   

14.
An efficient and reproducible method for the regeneration of multiple shoots of brown oak (Quercus semecarpifolia Sm.) has been developed in which a part of the petiolar tube containing a primary shoot is used as the explant. Explants derived from in vitro grown seedlings were cultured either on Murashige and Skoog or Woody Plant medium (WPM) containing different concentrations of benzyladenine (BAP) throughout the range of 1–20 μM. WPM supplemented with 20 μM BAP was found to be best for adventitious shoot induction and for the multiplication of individual shoots. In-vitro-produced shoots were rooted using a two-step method. Firstly, shoots were cultured on WPM containing indolebutyric acid (IBA) at either 50 or 100 μM for 24 or 48 h. Secondly, the shoots were transferred to plant-growth-regulator-free half-strength WPM. The second step not only considerably improved the rooting percentage but also minimized the formation of basal callus. The most effective first-step treatment was found to be 100 μM IBA for 24 h, which initiated rooting at a frequency of 100%. Well-rooted plants were transferred to plastic cups containing nonsterile, sieved soil and farmyard manure, hardened under greenhouse conditions, and then successfully established in pots. This procedure is suitable for use in large-scale production of plants and may have potential application in additional oak species.  相似文献   

15.
Padar (Stereospermum personatum, family Bignoniaceae) is a well-known medicinal tree. Its complete regeneration occurred through shoot bud culture in vitro. The seeds germinated sequentially on plastic trays and polyethylene bags for 21 days served as explants source. Nodal segments from the seedlings were established on MS medium supplemented with 4.44 μM BA, in which 86.6% nodes showed shoot bud elongation. Then, nodal segments from the developed shoots were cultured on MS medium with several BA concentrations; best shoot multiplication was obtained with 0.44 μM BA. In a second experiment where PVP was added to proliferation medium, nodal segments from developed shoots produced maximum 2.78 shoots per node. The nodal segments showed shoot multiplication up to seventh subculture on. Finally, shoots were rooted on MS medium with 2.46 μM IBA. The plants transferred to net pots containing coco-peat were acclimatized in green house, where more than 80% plants survived and grew normally.  相似文献   

16.
Summary A protocol was developed for rapid clonal propagation of the important medicinal climber, Tinospora cordifolia, through in vitro culture of mature nodal explants. Shoots were initiated on both Murashige and Skoog (MS) medium and woody plant medium (WPM) supplemented with 2.32 μM kinetin (KIN). Of the two basal media tested, WPM was found to be superior to MS medium for the induction of multiple shoots. Among the cytokinins tested, N6-benzyladenine (BA) was more effective than KIN for axillary shoot proliferation. KIN was superior to BA in terms of shoot elongation. An average multiplication rate of 6.3 shoots per explant was obtained with WPM supplemented with 8.87 μM BA. Shoot clumps harvested from this medium were transferred to WPM supplemented with 2.22 μM BA and 4.65 μM KIN for shoot elongation. Elongated shoots were rooted in half-strength MS medium supplemented with 2.85 μM indole-3-acetic acid (IAA). Rooted plantlets were successfully transferred to sand and established with 80% survival.  相似文献   

17.
Alternative methods for in vitro shoot culture of Cleome rosea, a Brazilian herbaceous species with ornamental value and medicinal potential, were evaluated. A protocol for rapid in vitro multiplication of roots, a valuable source of medicinal compounds, was also developed. Stem explants were cultured in liquid media (continuous immersion and paper bridge), while root explants were cultivated in continuous immersion and on solidified media. The highest numbers of shoots, 20 ± 4.6 shoots/explant, were obtained from stem explants incubated in a continuous immersion system in a liquid medium supplemented with 2.2 μM BA. Root explants cultivated in liquid media produced only hyperhydrous adventitious shoots. However, these explants generated 5.8 ± 0.8 shoots/explant by indirect organogenesis when cultivated on solidified medium supplemented with 2.2 μM BA. In addition, root multiplication was achieved in liquid medium in the presence of α-naphthaleneacetic acid. Adventitious shoots developed on newly formed roots when inoculated on solidified medium supplemented with 2.2 μM BA. Shoot microcuttings developed roots when transferred onto solidified MS medium without growth regulators. Rooted microcuttings were efficiently acclimatized when transferred ex vitro.  相似文献   

18.
An efficient shoot organogenesis system has been developed from mature plants of selected elite clones of Eucalyptus tereticornis Sm. Cultures were established using nodal explants taken from freshly coppice shoots cultured on Murashige and Skoog medium containing 58 mM sucrose, 0.7% (w/v) agar (MS medium) and supplemented with 2.5 μM benzyladenine (BA) and 0.5 μM α-naphthaleneacetic acid (NAA). Shoot organogenesis was achieved from leaf segments taken from elongated microshoots on MS medium supplemented with 5.0 μM BA and 1.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D). The addition of cefotaxime to the medium promoted shoot differentiation, whereas carbenicillin and cephalexin inhibited shoot differentiation. Maximum shoot bud organogenesis (44.6%) occurred in explants cultured on MS medium supplemented with 5.0 μM BA, 1.0 μM 2,4-D and 500 mg/l cefotaxime. Leaf maturity influenced shoot regeneration, with maximum shoot organogeneisis (40.5%) occurring when the source of explants was the fifth leaf (14–16 days old) from the top of microshoot. Shoot organogenic potential also varied amongst the different clones of E. tereticornis. Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) analyses indicated clonal uniformity of the newly formed shoots/plants, and these were also found to be true-to-type.  相似文献   

19.
Summary An efficient protocol for in vitro propagation of the valuable medicinal plant, Wasabia japonica (Miq.) Matsumura is described through shoot tip proliferation and direct regeneration. Multiple shoots were induced from shoort tips cultured on Murashige and Skoog (MS) semi-solid medium containing various concentrations (0.5–50 μM) of N6-benzyladenine (BA), thidiazuron, kinetin, and zeatin. A comparison was made on shoot multiplication between semi-solid and liquid culture media. Well-developed shoots were obtained using full-strength MS semi-solid medium containing 5.0 μM BA. However, the greatest shoot proliferation was achieved on either full- or half-strength MS liquid media supplemented with 5.0 μM BA for 4 wk (15.3±0.9 and 15.0±0.7 shoots per explant, respectively), and on half-strength MS liquid medium for 6 wk (25.8±1.3 shoots per explant) in culture. In contrast, the maximum number of shoots per explant on full-strength MS semi-solid medium was achieved with either 5.0 μM BA (10.4±0.6 shoots per explant) or 10.0 μM kinetin (10.9±0.8 shoots per explant). Fresh weight of explants and length of shoots derived from full-strength MS liquid medium (1055±77 mg and 34.2±1.0 mm, respectively) were significantly higher than those derived from full-strength MS semisolid medium (437.6±17.3 mg and 15.4±0.7 mm, respectively). Quarter-strength MS liquid medium had no significant difference in shoot proliferation when compared to quarter-strength MS semi-solid medium. Elongated shoots were separated and rooted on half-strength MS semi-solid media fortified with 1-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA), or indole-3-acetic acid (IAA) ranging from 0.1 to 10.0 μM. Root formation was greatest with IBA when compared with IAA and NAA. One hundred percent of shoots were rooted on half-strength MS medium with 5.0 μM IBA, while vigorous roots were obtained with 10.0 μM IBA. Micropropagated plantlets were successfully established in soil with 95% survival rate after heardening.  相似文献   

20.
Trichopus zeylanicus subsp. travancoricus (known as Arogyapacha), an endangered ethnomedicinal plant of the Western Ghats of South India, serves as the major source of the commercial drug Jeevani. The present study established a long-term high frequency in vitro propagation protocol for Arogyapacha. Callus obtained from the branch–petiole explants cultured on Murashige and Skoog (MS) medium with 4.5 μM 2,4-dichlorophenoxyacetic acid upon subculture to medium with different concentrations of 6-benzyladenine (BA) either alone or in combination with an auxin favoured shoot morphogenesis. Medium with 13.3 μM BA alone facilitated high frequency shoot bud (mean of 93.2) formation. Medium with lower concentrations of BA (4.4, 6.6 and 8.8 μM) alone or in combination with lower concentration of α-naphthaleneacetic acid (NAA) or indole-3-butyric acid (IBA) favoured better shoot growth than 13.3 μM BA containing medium, but with reduced number of shoot buds. Subsequent cultures on medium with lower concentrations of BA and also on MS basal media facilitated shoot formation as well as growth of shoots. The shoot regeneration potential showed no decline up to 5 years. Culture of the in vitro-derived whole branch–leaf explants on MS basal medium developed shoots directly from the node. On medium with 19.6 μM IBA, the whole branch–leaf explants induced nodular callus from the node, which developed shoots later. Subsequent cultures on medium with BA exhibited high frequency shoot formation. The transfer of shoots after 10–15 days culture on half-strength MS medium containing 2.7 μM NAA to half-strength basal medium induced a mean of 11.3 roots. Field survival of plantlets relied on the soil mix: a 1:4 ratio of sand and red-soil exhibited the highest plantlets survival (86.6%). RAPD profile of the source plant and plants regenerated from calli after 4 years showed no polymorphism. The established plantlets with morpho-floral features similar to that of the source plants flowered normally and set fruits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号