首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
One of the major concerns of the general public about transgenic crops relates to the mixing of genetic materials between species that cannot hybridize by natural means. To meet this concern, the two transformation concepts cisgenesis and intragenesis were developed as alternatives to transgenesis. Both concepts imply that plants must only be transformed with genetic material derived from the species itself or from closely related species capable of sexual hybridization. Furthermore, foreign sequences such as selection genes and vector‐backbone sequences should be absent. Intragenesis differs from cisgenesis by allowing use of new gene combinations created by in vitro rearrangements of functional genetic elements. Several surveys show higher public acceptance of intragenic/cisgenic crops compared to transgenic crops. Thus, although the intragenic and cisgenic concepts were introduced internationally only 9 and 7 years ago, several different traits in a variety of crops have currently been modified according to these concepts. Five of these crops are now in field trials and two have pending applications for deregulation. Currently, intragenic/cisgenic plants are regulated as transgenic plants worldwide. However, as the gene pool exploited by intragenesis and cisgenesis are identical to the gene pool available for conventional breeding, less comprehensive regulatory measures are expected. The regulation of intragenic/cisgenic crops is presently under evaluation in the EU and in the US regulators are considering if a subgroup of these crops should be exempted from regulation. It is accordingly possible that the intragenic/cisgenic route will be of major significance for future plant breeding.  相似文献   

2.
Marker genes (MGs) are essential tools for plant research and biotechnology. Positive selectable marker genes (SMGs) are used in genetic transformation to allow only transgenic cells to grow and develop and are necessary for efficient transformation. Negative SMGs confer a selective disadvantage to the cells that express them, and have several uses in both basic and applied research. Reporter genes (RGs) make it possible to easily screen cells or tissues for their expression. Several tens of different genes from bacteria, fungi, plants, and animals have been demonstrated to function as SMGs. Here, SMGs are classified based on the mechanism of action of the gene products. To provide the readers with practically useful information, details on transformation and selection efficiency are given. RGs are the object of intense research. Refinement of existing RGs and development of new ones is constant, and has provided powerful aids for fine studies on cell biology and more efficient genetic engineering. They are classified as vital and non vital, depending on the possibility to screen their expression in living cells. The effect of MG expression on the phenotype and their safety in crops is briefly discussed. The picture emerging from this literature review is that a plentiful array of powerful and versatile tools for basic and applied research is available.  相似文献   

3.
Selectable markers of bacterial origin such as the neomycin phosphotransferase type II gene, which can confer kanamycin resistance to transgenic plants, represent an invaluable tool for plant engineering. However, since all currently used antibiotic-resistance genes are of bacterial origin, there have been concerns about horizontal gene transfer from transgenic plants back to bacteria, which may result in antibiotic resistance. Here we characterize a plant gene, Atwbc19, the gene that encodes an Arabidopsis thaliana ATP binding cassette (ABC) transporter and confers antibiotic resistance to transgenic plants. The mechanism of resistance is novel, and the levels of resistance achieved are comparable to those attained through expression of bacterial antibiotic-resistance genes in transgenic tobacco using the CaMV 35S promoter. Because ABC transporters are endogenous to plants, the use of Atwbc19 as a selectable marker in transgenic plants may provide a practical alternative to current bacterial marker genes in terms of the risk for horizontal transfer of resistance genes.  相似文献   

4.
Methods to produce marker-free transgenic plants   总被引:2,自引:0,他引:2  
Selectable marker genes (SMGs) have been extraordinarily useful in enabling plant transformation because of the low efficiency of transgene integration. The most used SMGs encode proteins resistant to antibiotics or herbicides and use negative selection, i.e., by killing nontransgenic tissue. However, there are perceived risks in wide-scale deployment of SMG-transgenic plants, and therefore research has recently been performed to develop marker-free systems. In this review, transformation using markers not based on antibiotic or herbicide resistance genes, as well as different systems of marker gene deletion, are discussed.  相似文献   

5.
Cisgenic engineering involves isolation and modification of genetic elements from the host genome, which are reinserted to develop plant varieties with improved characteristics. As a first step toward production of fungal-disease resistant cisgenic grapevines, the Vitis vinifera thaumatin-like protein (vvtl-1) gene was isolated from “Chardonnay” and reengineered for constitutive expression. Embryogenic cultures of “Thompson Seedless” were initiated from leaves and transformed with Agrobacterium to regenerate cisgenic VVTL-1 plants. Cisgene presence and copy number were confirmed by PCR and quantitative real-time PCR. Protein expression was measured using ELISA. Among the plant lines tested, two exhibited a 7–10 day delay in powdery mildew disease development during greenhouse screening and decreased severity of black rot disease in field tests. Berries exhibited a 42.5% reduction in sour-bunch rot disease incidence compared to non-transformed controls after 3 wk of storage at room temperature. Although plants recovered in this study contain viral promoters and reporter/marker genes, this is the first report of a cisgenic approach to obtain broad-spectrum fungal-disease resistance in genetically engineered grapevine.  相似文献   

6.
There are two ways for genetic improvement in classical plant breeding: crossing and mutation. Plant varieties can also be improved through genetic modification; however, the present GMO regulations are based on risk assessments with the transgenes coming from non-crossable species. Nowadays, DNA sequence information of crop plants facilitates the isolation of cisgenes, which are genes from crop plants themselves or from crossable species. The increasing number of these isolated genes, and the development of transformation protocols that do not leave marker genes behind, provide an opportunity to improve plant breeding while remaining within the gene pool of the classical breeder. Compared with induced translocation and introgression breeding, cisgenesis is an improvement for gene transfer from crossable plants: it is a one-step gene transfer without linkage drag of other genes, whereas induced translocation and introgression breeding are multiple step gene transfer methods with linkage drag. The similarity of the genes used in cisgenesis compared with classical breeding is a compelling argument to treat cisgenic plants as classically bred plants. In the case of the classical breeding method induced translocation breeding, the insertion site of the genes is a priori unknown, as it is in cisgenesis. This provides another argument to treat cisgenic plants as classically bred plants, by exempting cisgenesis of plants from the GMO legislations.  相似文献   

7.
Antibiotic-resistance genes of bacterial origin are invaluable markers for plant genetic engineering. However, these genes are feared to pose possible risk to human health by horizontal gene transfer from transgenic plants to bacteria, potentially resulting in antibiotic-resistant pathogenic bacteria; this is a considerable regulatory concern in some countries. The Atwbc19 gene, encoding an Arabidopsis thaliana ATP-binding cassette transporter, has been reported to confer resistance to kanamycin specifically as an alternative to bacterial antibiotic-resistance genes. In this report, we transformed hybrid aspen (Populus canescens × P. grandidentata) with the Atwbc19 gene. Unlike Atwbc19-transgenic tobacco that was only resistant to kanamycin, the transgenic Populus plants also showed resistance to three other aminoglycoside antibiotics (neomycin, geneticin, and paromomycin) at comparable levels to plants containing a CaMV35S-nptII cassette. Although it is unknown why the transgenic Populus with the Atwbc19 gene is resistant to all aminoglycoside antibiotics tested, the broad utility of the Atwbc19 gene as a reporter gene is confirmed here in a second dicot species. Because the Atwbc19 gene is plant-ubiquitous, it might serve as an alternative selectable marker to current bacterial antibiotic-resistance marker genes and alleviate the potential risk for horizontal transfer of bacterial-resistance genes in transgenic plants.  相似文献   

8.
Non-antibiotic,efficient selection for alfalfa genetic engineering   总被引:2,自引:0,他引:2  
A selectable marker gene (SMG), usually conferring resistance to an antibiotic or herbicide, is generally introduced into the plant cells with the gene(s) for the trait of interest to allow only the cells that have integrated and express the foreign sequences to regenerate into a plant. The availability of several SMGs for each plant species is useful for both basic and applied research to combine several genes of interest in the same plant. A selection system based on gabaculine (3-amino-2,3-dihydrobenzoic acid) as the selective substance and the bacterial hemL gene [encoding a mutant for of the enzyme glutamate 1-semialdehyde aminotransferase (GSA-AT)] as the SMG was previously used for genetic transformation of tobacco. The hemL gene is a good candidate for a safe SMG, because GSA-AT is present in all plants and is likely involved in one metabolic step only, so that unintended effects of its overexpression in plants are not probable. In this work, we have compared this new selection system with the conventional, kanamycin-based system for alfalfa Agrobacterium-mediated transformation. The hemL and NptII genes were placed together into a T-DNA under the control of identical promoters and terminators. We show that the gabaculine-based system is more efficient than the conventional, kanamycin-based system. The inheritance of hemL was Mendelian, and no obvious phenotypic effect of its expression was observed.  相似文献   

9.
The development of marker-free transgenic plants has responded to public concerns over the safety of biotechnology crops. It seems that continued work in this area will soon remove the question of unwanted marker genes from the debate concerning the public acceptability of transgenic crop plants. Selectable marker genes are co-introduced with genes of interest to identify those cells that have integrated the DNA into their genome. Despite the large number of different selection systems, marker genes that confer resistance to the antibiotics, hygromycin (hpt) and kanamycin (nptII) or herbicide phosphinothricin (bar), have been used in most transgenic research and crop development techniques. The techniques that remove marker gene are under development and will eventually facilitate more precise and subtle engineering of the plant genome, with widespread applications in both fundamental research and biotechnology. In addition to allaying public concerns, the absence of resistance genes in transgenic plants could reduce the costs of developing biotechnology crops and lessen the need for time-consuming safety evaluations, thereby speeding up the commercial production of biotechnology crops. Many research results and various techniques have been developed to produce marker-free transgenic plants. This review describes the strategies for eliminating selectable marker genes to generate marker-free transgenic plants, focusing on the three significant marker-free technologies, co-transformation, site-specific recombinase-mediated excision, and non-selected transformation.  相似文献   

10.
The implication of molecular biology in crop improvement is now more than three decades old. Not surprisingly, technology has moved on, and there are a number of new techniques that may or may not come under the genetically modified (GM) banner and, therefore, GM regulations. In cisgenic technology, cisgenes from crossable plants are used and it is a single procedure of gene introduction whereby the problem of linkage drag of other genes is overcome. The gene used in cisgenic approach is similar compared with classical breeding and cisgenic plant should be treated equally as classically bred plant and differently from transgenic plants. Therefore, it offers a sturdy reference to treat cisgenic plants similarly as classically bred plants, by exemption of cisgenesis from the current GMO legislations. This review covers the implications of cisgenesis towards the sustainable development in the genetic improvement of crops and considers the prospects for the technology.  相似文献   

11.
培育具有安全选择标记或无选择标记的转基因植物   总被引:10,自引:1,他引:9  
李晓兵  陈彩艳  翟文学 《遗传》2003,25(3):345-349
转基因植物中选择标记的安全性已成为植物基因工程研究的热点之一。从两个方面可以解决转基因植物中的选择标记问题。一是选用安全的正向选择标记,主要是与糖代谢和激素代谢相关的基因。二是构建能去除选择标记基因的转化系统,主要有共转化系统、双T-DNA边界载体系统、位点特异性重组系统和转座子系统等。这些植物基因工程的方法将有助于培育安全的转基因植物。 Abstract:The bio-safety of selective markers in transgenic plants has been a hot spot in the field of plant genetic engineering.To solve the problem of selective markers in the transgenic plants,two means of producing transgenic plants have been developed.One is the utilization of bio-safe positive selective markers which are genes mainly related to metabolism of auxins and carbohydrates.The other is the establishment of transformation systems allowing marker genes to be eliminated from the transgenic plants,which include co-ransformation,double T-DNA border vectors,site-specific recombination and transposition.All these approaches of plant genetic engineering will benefit breeding transgenic plants with bio-safety.  相似文献   

12.
RNA interference (RNAi) is a powerful tool for functional gene analysis, which has been successfully used to down-regulate the levels of specific target genes, enabling loss-of-function studies in living cells. Hairpin (hp) RNA expression cassettes are typically constructed on binary plasmids and delivered into plant cells by Agrobacterium-mediated genetic transformation. Realizing the importance of RNAi for basic plant research, various vectors have been developed for RNAi-mediated gene silencing, allowing the silencing of single target genes in plant cells. To further expand the collection of available tools for functional genomics in plant species, we constructed a set of modular vectors suitable for hpRNA expression under various constitutive promoters. Our system allows simple cloning of the target gene sequences into two distinct multicloning sites and its modular design provides a straightforward route for replacement of the expression cassette's regulatory elements. More importantly, our system was designed to facilitate the assembly of several hpRNA expression cassettes on a single plasmid, thereby enabling the simultaneous suppression of several target genes from a single vector. We tested the functionality of our new vector system by silencing overexpressed marker genes (green fluorescent protein, DsRed2, and nptII) in transgenic plants. Various combinations of hpRNA expression cassettes were assembled in binary plasmids; all showed strong down-regulation of the reporter genes in transgenic plants. Furthermore, assembly of all three hpRNA expression cassettes, combined with a fourth cassette for the expression of a selectable marker, resulted in down-regulation of all three different marker genes in transgenic plants. This vector system provides an important addition to the plant molecular biologist's toolbox, which will significantly facilitate the use of RNAi technology for analyses of multiple gene function in plant cells.  相似文献   

13.
A major limitation of crop biotechnology and breeding is the lack of efficient molecular technologies for precise engineering of target genomic loci. While transformation procedures have become routine for a growing number of plant species, the random introduction of complex transgenenic DNA into the plant genome by current methods generates unpredictable effects on both transgene and homologous native gene expression. The risk of transgene transfer into related plant species and consumers is another concern associated with the conventional transformation technologies. Various approaches to avoid or eliminate undesirable transgenes, most notably selectable marker genes used in plant transformation, have recently been developed. These approaches include cotransformation with two independent T-DNAs or plasmid DNAs followed by their subsequent segregation, transposon-mediated DNA elimination, and most recently, attempts to replace bacterial T-DNA borders and selectable marker genes with functional equivalents of plant origin. The use of site-specific recombination to remove undesired DNA from the plant genome and concomitantly, via excision-mediated DNA rearrangement, switch-activate by choice transgenes of agronomical, food or feed quality traits provides a versatile “transgene maintenance and control” strategy that can significantly contribute to the transfer of transgenic laboratory developments into farming practice. This review focuses on recent reports demonstrating the elimination of undesirable transgenes (essentially selectable marker and recombinase genes) from the plant genome and concomitant activation of a silent transgene (e.g., a reporter gene) mediated by different site-specific recombinases driven by constitutive or chemically, environmentally or developmentally regulated promoters. These reports indicate major progress in excision strategies which extends application of the technology from annual, sexually propagated plants towards perennial, woody and vegetatively propagated plants. Current trends and future prospects for optimization of excision-activation machinery and its practical implementation for the generation of transgenic plants and plant products free of undesired genes are discussed.  相似文献   

14.
The generation of transgenic plants free of antibiotic resistance markers is a major challenge to plant biologists and plant breeders. Currently, there are two main strategies to achieve this goal: one approach is to excise or segregate marker genes from the host genome after regeneration of transgenic plants, and the second is based on so-called 'marker-free' transformation. Marker-free transformation has been successfully demonstrated by the use of several plant and non-plant genes that are capable of promoting explant regeneration. This approach appears not only to be effective for the generation of marker-free transgenic plants, but also has great potential to improve the transformation frequency of recalcitrant species.  相似文献   

15.
Selectable marker genes (SMGs) are necessary for selection of transgenic plants. However, once stable transformants have been identified, the marker gene is no longer needed. In this study, we demonstrate the use of the small serine recombination systems, ParA‐MRS and CinH‐RS2, to precisely excise a marker gene from the plastid genome of tobacco. Transplastomic plants transformed with the pTCH‐MRS and pTCH‐RS2 vectors, containing the visual reporter gene DsRed flanked by directly oriented MRS and RS2 recognition sites, respectively, were crossed with nuclear‐genome transformed tobacco plants expressing plastid‐targeted ParA and CinH recombinases, respectively. One hundred per cent of both types of F1 hybrids exhibited excision of the DsRed marker gene. PCR and Southern blot analyses of DNA from F2 plants showed that approximately 30% (CinH‐RS2) or 40% (ParA‐MRS) had lost the recombinase genes by segregation. The postexcision transformed plastid genomes were stable and the excision events heritable. The ParA‐MRS and CinH‐RS2 recombination systems will be useful tools for site‐specific manipulation of the plastid genome and for generating marker‐free plants, an essential step for reuse of SMG and for addressing concerns about the presence of antibiotic resistance genes in transgenic plants.  相似文献   

16.
Approximately fifty marker genes used for transgenic and transplastomic plant research or crop development have been assessed for efficiency, biosafety, scientific applications and commercialization. Selectable marker genes can be divided into several categories depending on whether they confer positive or negative selection and whether selection is conditional or non-conditional on the presence of external substrates. Positive selectable marker genes are defined as those that promote the growth of transformed tissue whereas negative selectable marker genes result in the death of the transformed tissue. The positive selectable marker genes that are conditional on the use of toxic agents, such as antibiotics, herbicides or drugs were the first to be developed and exploited. More recent developments include positive selectable marker genes that are conditional on non-toxic agents that may be substrates for growth or that induce growth and differentiation of the transformed tissues. Newer strategies include positive selectable marker genes which are not conditional on external substrates but which alter the physiological processes that govern plant development. A valuable companion to the selectable marker genes are the reporter genes, which do not provide a cell with a selective advantage, but which can be used to monitor transgenic events and manually separate transgenic material from non-transformed material. They fall into two categories depending on whether they are conditional or non-conditional on the presence of external substrates. Some reporter genes can be adapted to function as selectable marker genes through the development of novel substrates. Despite the large number of marker genes that exist for plants, only a few marker genes are used for most plant research and crop development. As the production of transgenic plants is labor intensive, expensive and difficult for most species, practical issues govern the choice of selectable marker genes that are used. Many of the genes have specific limitations or have not been sufficiently tested to merit their widespread use. For research, a variety of selection systems are essential as no single selectable marker gene was found to be sufficient for all circumstances. Although, no adverse biosafety effects have been reported for the marker genes that have been adopted for widespread use, biosafety concerns should help direct which markers will be chosen for future crop development. Common sense dictates that marker genes conferring resistance to significant therapeutic antibiotics should not be used. An area of research that is growing rapidly but is still in its infancy is the development of strategies for eliminating selectable marker genes to generate marker-free plants. Among the several technologies described, two have emerged with significant potential. The simplest is the co-transformation of genes of interest with selectable marker genes followed by the segregation of the separate genes through conventional genetics. The more complicated strategy is the use of site-specific recombinases, under the control of inducible promoters, to excise the marker genes and excision machinery from the transgenic plant after selection has been achieved. In this review each of the genes and processes will be examined to assess the alternatives that exist for producing transgenic plants.  相似文献   

17.
Neural crest cells in the embryo migrate to reach target sites as neural crest-derived cells (NCDCs) where they differentiate into a variety of derivatives. Some NCDCs are maintained in an undifferentiated state throughout the life of the animal and are considered to be a useful cell source for regenerative medicine. However, no established method to obtain NCDCs sufficient for regenerative medicine from adults with high purity has been presented, since their distribution in adult tissues is not fully understood. It is critical to identify reliable markers for NCDCs in adults, as the expressions of P0 and Wnt1, the most reliable NCDC markers, are shut off in the embryonic stage. To analyze the characteristics of NCDCs in adult tissues, we utilized a double transgenic mouse strain, P0-Cre/CAG-CAT-EGFP transgenic mice (P0 mice), in which NCDCs were shown to express EGFP and we were able to recognize GFP-positive cells in those. We focused on the submandibular glands (SMGs), which are known to be derived from the neural crest. GFP-positive cells were shown to be scattered like islands in the SMGs of adult P0 mice. We surgically removed SMGs from adult mice and digested samples into single cell suspensions. GFP-positive cells separated using flow cytometry expressed a high level of Sox10, a marker of embryonic neural crest cells, suggesting successful isolation of NCDCs. To identify candidate marker genes in isolated NCDCs, we performed DNA microarray analyses and real-time PCR analysis of GFP-positive and -negative cells isolated from P0 mice, then selected genes showing differential gene expression patterns. As compared to GFP-negative cells, GFP-positive cells expressed Gpr4 and Ednrb at higher levels, whereas Pdgfra and Pdgfrb were expressed at lower levels. Furthermore, DNA microarray analysis showed that GFP-positive cells were positive for aquaporin 5, a marker for acinar cells. Together, our results indicate that NCDCs in adult SMGs have characteristic gene expression profiles specially their cell surface molecules. Cell sorting using a combination of these specific cell surface proteins would be a useful strategy for isolation of NCDCs from SMGs with high purity.  相似文献   

18.
Antibiotic and herbicide resistance genes are currently the most frequently used selectable marker genes for plant research and crop development. However, the use of antibiotics and herbicides must be carefully controlled because the degree of susceptibility to these compounds varies widely among plant species and because they can also affect plant regeneration. Therefore, new selectable marker systems that are effective for a broad range of plant species are still needed. Here, we report a simple and inexpensive system based on providing transgenic plant cells the capacity to convert a nonmetabolizable compound (phosphite, Phi) into an essential nutrient for cell growth (phosphate) trough the expression of a bacterial gene encoding a phosphite oxidoreductase (PTXD). This system is effective for the selection of Arabidopsis transgenic plants by germinating T0 seeds directly on media supplemented with Phi and to select transgenic tobacco shoots from cocultivated leaf disc explants using nutrient media supplemented with Phi as both a source of phosphorus and selective agent. Because the ptxD/Phi system also allows the establishment of large‐scale screening systems under greenhouse conditions completely eliminating false transformation events, it should facilitate the development of novel plant transformation methods.  相似文献   

19.
Both cisgenesis and transgenesis are plant breeding techniques that can be used to introduce new genes into plant genomes. However, transgenesis uses gene(s) from a non-plant organism or from a donor plant that is sexually incompatible with the recipient plant while cisgenesis involves the introduction of gene(s) from a crossable—sexually compatible—plant. Traditional breeding techniques could possibly achieve the same results as those from cisgenesis, but would require a much larger timeframe. Cisgenesis allows plant breeders to enhance an existing cultivar more quickly and with little to no genetic drag. The current regulation in the European Union (EU) on genetically modified organisms (GMOs) treats cisgenic plants the same as transgenic plants and both are mandatorily labeled as GMOs. This study estimates European consumers’ willingness-to-pay (WTP) for rice labeled as GM, cisgenic, with environmental benefits (which cisgenesis could provide), or any combination of these three attributes. Data were collected from 3,002 participants through an online survey administered in Belgium, France, the Netherlands, Spain and the United Kingdom in 2013. Censored regression models were used to model consumers’ WTP in each country. Model estimates highlight significant differences in WTP across countries. In all five countries, consumers are willing-to-pay a premium to avoid purchasing rice labeled as GM. In all countries except Spain, consumers have a significantly higher WTP to avoid consuming rice labeled as GM compared to rice labeled as cisgenic, suggesting that inserting genes from the plant’s own gene pool is more acceptable to consumers. Additionally, French consumers are willing-to-pay a premium for rice labeled as having environmental benefits compared to conventional rice. These findings suggest that not all GMOs are the same in consumers’ eyes and thus, from a consumer preference perspective, the differences between transgenic and cisgenic products are recommended to be reflected in GMO labeling and trade policies.  相似文献   

20.
The proper use of a marker gene in a transformation process is critical for the production of transgenic plants. However, consumer concerns and regulatory requirements raise an objection to the presence of exogenous DNA in transgenic plants, especially antibiotic-resistant genes and promoters derived from viruses. One approach to overcome this problem is the elimination of marker genes from the plant genome by using several site-specific recombination systems. We propose an alternative method to solve this problem using a marker gene exclusively derived from the host plant DNA. We cloned a genomic DNA fragment containing regulatory and coding sequences of acetolactate synthase (ALS) gene from rice, and mutagenized the ALS gene into a herbicide-resistant form. After transfer of this construct to the rice genome, transgenic plants were efficiently selected with a herbicide, bispyribac-sodium salt, which inhibits the activity of wild type ALS. We also analyzed the regulatory feature of the rice ALS gene promoter with the gusA reporter gene and revealed that GUS expression was observed constitutively in aerial parts of rice seedlings and root tips. The marker system consisted exclusively of host plant DNA and enabled efficient selection in a monocot crop plant, rice. The selection system can potentially be applied to generate transgenic plants of other crop species and can be expected to be publicly acceptable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号