首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous invasive aquatic species introductions can be traced to the aquarium trade. Many potentially harmful aquarium species may be difficult to identify based on morphology alone. As such, some prohibited or invasive species may be available for purchase if they are mislabeled as species without restrictions. Here we compare molecular identifications to internet vendors’ identifications for accessions of a popular genus of aquarium plants that are difficult to distinguish morphologically (Myriophyllum; watermilfoils). Specifically, we identified the extensive mislabeling of M. heterophyllum—an invasive species in the northeastern and western US. Furthermore, genotypes of M. heterophyllum found in our aquarium survey have also been found in invasive populations, suggesting their potential introduction through escape from aquaria, water gardens, or nurseries. Two additional taxa were sold under incorrect names. Finally, our survey revealed that Myriophyllum taxa present in the aquarium trade generally have poorly known distributions and ecologies, and therefore their invasive potential is unknown. Our study confirms that molecular identification methods can provide a valuable tool to survey commercial pathways for potentially harmful species that are otherwise difficult to identify.  相似文献   

2.
The recent recognition of invasive hybrid watermilfoil (Myriophyllum spicatum × M. sibiricum) in North America has necessitated a more thorough evaluation of its overall distribution and occurrence in natural populations. A comprehensive survey of watermilfoil populations was conducted in five Minnesota lakes, three of which were suspected a priori to contain hybrid watermilfoil. DNA sequence data verified that hybrid plants between the nonindigenous M. spicatum L. and indigenous M. sibiricum Kom. occurred in three of the five lakes sampled. Myriophyllum spicatum was not detected in lakes where hybrids were prevalent. Further sampling of lakes in Idaho, Michigan, Minnesota, Wisconsin and Washington identified 30 additional hybrid watermilfoil populations. In only three of these populations the hybrid watermilfoil was found to co-occur with M. spicatum. To facilitate the field identification of the two parental species and their hybrid, morphological data from watermilfoil specimens collected across the United States were evaluated. We determined that leaf segment/leaf length measurements can effectively distinguish M. spicatum and M. sibiricum; however, hybrids are intermediate for these characters and such measurements frequently overlap with respect to their parental taxa. By incorporating a combined molecular and morphological approach to identifying watermilfoils, the hybrids can be identified readily and their distributions elucidated both within and between lakes. Because hybrids may respond differently to local ecological conditions than their parents, information on their presence and distribution should be of particular importance to management and conservation programs.  相似文献   

3.
Halophila stipulacea is a dioecious marine angiosperm, widely distributed along the western coasts of the Indian Ocean and the Red Sea. This species is thought to be a Lessepsian immigrant that entered the Mediterranean Sea from the Red Sea after the opening of the Suez Canal (1869). Previous studies have revealed both high phenotypic and genetic variability in Halophila stipulacea populations from the western Mediterranean basin. In order to test the hypothesis of a Lessepsian introduction, we compare genetic polymorphism between putative native (Red Sea) and introduced (Mediterranean) populations through rDNA ITS region (ITS1-5.8S-ITS2) sequence analysis. A high degree of intraindividual variability of ITS sequences was found. Most of the intragenomic polymorphism was due to pseudogenic sequences, present in almost all individuals. Features of ITS functional sequences and pseudogenes are described. Possible causes for the lack of homogenization of ITS paralogues within individuals are discussed.  相似文献   

4.
Abstract: In the present study, we evaluated the genetic diversity of Panax notoginseng F H Chen, a domesticated species, and P. stipuleanatus H T Tsai et K M Feng, an endangered wild species in southeastern Yunnan and adjacent areas in Vietnam, using sequences of the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA and amplified fragment length polymorphism (AFLP) markers. Twenty‐four accessions from three plantations of P. notoginseng and 51 samples from eight populations of P. stipuleanatus were assayed. A total of 694 bp of partial sequences of 18S, ITS 1, 5.8S, ITS2, and partial sequences of 26S were obtained. No sequence variation was detected within P. notoginseng and nine sites (1.30%) were variable in P. stipuleanatus. Two‐thirds of the variable sites were found between Langqiao and other populations. In P. notoginseng, four pairs of AFLP primer combinations generated 312 bands, of which 240 (76.9%) were polymorphic and 60.15% of the polymorphisms were harbored within plantations. Approximately 41.0% and 66.9% of bands were polymorphic in population D7 and 5589, respectively. In P. stipuleanatus, the same four primer combinations produced 346 bands, of which 334 (96.5%) were polymorphic and approximately 62.14% of polymorphisms were maintained within populations. Considerable variations were observed. The percentage of polymorphic bands ranged from 50.2% to 84.9% and the average over populations was 70.9%. Cluster analysis did not show correlation of genetic differentiation with the distinctive leaf morphology of P. stipuleanatus(i.e. one form with bipinnatifid leaflets and the other with undivided leaflets). Because over 40% of genetic variations were maintained among populations and because of the very restricted distribution of P. stipuleanatus, all natural populations of this species should be conserved in situ. Considering that there are variations in P. notoginseng within and among plantations, we suggest establishing a genetic resource conservation garden or reintroducing P. notoginseng into its native habitats in southwestern China. Such reintroduction should be carefully executed after large‐scale screening of genetic variation within the species. ( Managing editor: Li‐Hui ZHAO 1 )  相似文献   

5.
Surveys of allozyme polymorphisms in the carpet shell clam Ruditapes decussatus have revealed sharp genetic differentiation of populations. Analysis of population structure in this species has now been extended to include nuclear and mitochondrial genes. A partial sequence of a mitochondrial COI gene and of the internal transcribed spacer region (ITS-1) were used to study haplotype distribution, the pattern of gene flow, and population genetic structure of R. decussatus. The samples were collected from twelve populations from the eastern and western Mediterranean coasts of Tunisia, one from Concarneau and one from Thau. A total of twenty and twenty-one haplotypes were detected in the examined COI and ITS1 regions respectively. The study revealed higher levels of genetic diversity for ITS1 compared to COI. The analysis of haplotype frequency distribution and molecular variation indicated that the majority of the genetic variation was distributed within populations (93% and 86% for COI and ITS1 respectively). No significant differentiation was found among eastern and western groups on either side of the Siculo-Tunisian strait. However, distinct and significant clinal changes in haplotypes frequencies between eastern and western samples were found at the most frequent COI haplotype and at three out of five major ITS1 haplotypes. These results suggest the relative importance of historical processes and contemporary hydrodynamic features on the observed patterns of genetic structure.  相似文献   

6.
High levels of genetic variation enable species to adapt to changing environments and provide plant breeders with the raw materials necessary for artificial selection. In the present study, six AFLP primer pairs were used to assess the genetic diversity of Desmodium triflorum (L.) DC. from 12 populations in South China. A high percentage of polymorphic loci (P = 76.16%) and high total gene diversity (H T = 0.310) were found, indicating that the genetic diversity of D. triflorum is high at the species level. Genetic diversity was also relatively high at the population level (P = 55.85%, H e = 0.230). The coefficient of gene differentiation among populations (G ST) was 0.255, indicating that while most genetic diversity resided within populations, there was also considerable differentiation among populations. AMOVA also indicated 24.29% of the total variation to be partitioned among populations (ΦST = 0.243). UPGMA clustering analysis based on genetic distances showed that the 12 populations could be separated into three subgroups: an eastern, a western, and a central-southern subgroup. However, a Mantel test revealed no significant correlation (r = 0.286, p = 0.983) between the geographical distances and genetic distances separating these populations; mountain barriers to gene flow and human disturbance may have confounded these correlations. The present study has provided some fundamental genetic data that will be of use in the exploitation of D. triflorum.  相似文献   

7.
Changes in growth forms frequently accompany plant adaptive radiations, including páramo–a high‐elevation treeless habitat type of the northern Andes. We tested whether diverse group of Senecio inhabiting montane forests and páramo represented such growth form changes. We also investigated the role of Andean geography and environment in structuring genetic variation of this group. We sampled 108 populations and 28 species of Senecio (focusing on species from former genera Lasiocephalus and Culcitium) and analyzed their genetic relationships and patterns of intraspecific variation using DNA fingerprinting (AFLPs) and nuclear DNA sequences (ITS). We partitioned genetic variation into environmental and geographical components. ITS‐based phylogeny supported monophyly of a LasiocephalusCulcitium clade. A grade of herbaceous alpine Senecio species subtended the LasiocephalusCulcitium clade suggesting a change from the herbaceous to the woody growth form. Both ITS sequences and the AFLPs separated a group composed of the majority of páramo subshrubs from other group(s) comprising both forest and páramo species of various growth forms. These morphologically variable group(s) further split into clades encompassing both the páramo subshrubs and forest lianas, indicating independent switches among the growth forms and habitats. The finest AFLP genetic structure corresponded to morphologically delimited species except in two independent cases in which patterns of genetic variation instead reflected geography. Several morphologically variable species were genetically admixed, which suggests possible hybrid origins. Latitude and longitude accounted for 5%–8% of genetic variation in each of three AFLP groups, while the proportion of variation attributed to environment varied between 8% and 31% among them. A change from the herbaceous to the woody growth form is suggested for species of high‐elevation Andean Senecio. Independent switches between habitats and growth forms likely occurred within the group. Hybridization likely played an important role in species diversification.  相似文献   

8.
The perennial herb Meconopsis cambrica, a western European endemic, is the only European species of the otherwise Himalayan genus Meconopsis and has been interpreted as a Tertiary relict species. Using rbcL and ITS sequence variation, we date the split between M. cambrica and its sister clade Papaver s.str. to the Middle to Upper Miocene (12.8 Myr, 6.4–19.2 Myr HPD). Within M. cambrica, cpDNA sequence variation reveals the existence of two groups of populations with a comparable level of genetic variation: a northern group from Great Britain, the Massif Central, the western Pyrenees and the Iberian System, and a southern group from the central and eastern Pyrenees. Populations from the Cantabrian Mountains were placed in both groups. Based on ITS sequence variation, the divergence between these two groups can be dated to 1.5 Myr (0.4–2.8 Myr HPD), and the age of the British populations is estimated as 0.37 Myr (0.0–0.9 Myr HPD). Amplified fragment length polymorphism results confirm the distinctive nature of the populations from Britain, the Massif Central and the central and eastern Pyrenees. These patterns of latitudinal variation of M. cambrica differ from patterns of longitudinal differentiation found in many other temperate species and imply glacial survival of the northern populations in northerly refugia. The primary differentiation into northern and southern cpDNA groups dates to near the onset of the Quaternary and suggests that an ancient phylogeographic pattern has survived through several glacial periods. Our data provide evidence that the species has persisted for a long period with a highly fragmented and probably very localized distribution.  相似文献   

9.
Eurasian watermilfoil (Myriophyllum spicatum L.) is a nuisance aquatic weed, exotic to North America. The freshwater weevil Euhrychiopsis lecontei (Dietz) is a potential control agent of Eurasian watermilfoil and is a fully submersed aquatic specialist herbivore. Its presumed original host is the native northern watermilfoil (Myriophyllum sibiricum Komarov). We conducted a set of oviposition experiments to reveal first and second oviposition preference of Euhrychiopsis lecontei when presented with seven macrophytes. We tested differences between source (lake) populations of weevils, differences in behavior between weevils reared on the exotic Eurasian watermilfoil and the native northern watermilfoil and between weevils in the presence and absence of their preferred hostplant. Oviposition assays confirmed that E. lecontei is a watermilfoil specialist. Out of the 207 females that laid eggs, only three oviposited on a non-watermilfoil plant, Megalodonta beckii. The weevils' degree of specificity was influenced by the watermilfoil species on which they were reared. Weevils reared on Eurasian watermilfoil tended to oviposit on Eurasian watermilfoil, spent more time on Eurasian watermilfoil than on other plants, and spent more time off plants and took longer to oviposit when Eurasian watermilfoil was removed. Weevils reared on northern watermilfoil did not exhibit a preference for either watermilfoil species in oviposition or in time allocation, although they oviposited on and spent significantly more time on watermilfoils than on other species. Rearing of the two populations on their complementary watermilfoil hostplant resulted in responses typical of the rearing plant, not the original host. These results show that although both weevil populations are watermilfoil specialists, Eurasian-reared weevils prefer Eurasian watermilfoil in general host attraction and oviposition, whereas northern-reared weevils do not. The results support the contention that E. lecontei may be a good biocontrol agent for Eurasian watermilfoil because of its high specificity. The results also suggest that the current host range expansion of the weevil to Eurasian watermilfoil has the potential to become a host shift due to the increased specificity. Herbivory in freshwater systems is not well studied, and the E. lecontei-M. spicatum relationship is a rare example of submersed freshwater specialist herbivore-host-plant interactions.  相似文献   

10.
Distinguishing natural versus anthropogenic dispersal of organisms is essential for determining the native range of a species and implementing an effective conservation strategy. For cryptogenic species with limited historical records, molecular data can help to identify introductions. Nematostella vectensis is a small, burrowing estuarine sea anemone found in tidally restricted salt marsh pools. This species’ current distribution extends over three coast lines: (i) the Atlantic coast of North America from Nova Scotia to Georgia, (ii) the Pacific coast of North America from Washington to central California, and (iii) the southeast coast of England. The 1996 IUCN Red List designates N. vectensis as “vulnerable” in England. Amplified fragment length polymorphism (AFLP) fingerprinting of 516 individuals from 24 N. vectensis populations throughout its range and mtDNA sequencing of a subsample of these individuals strongly suggest that anthropogenic dispersal has played a significant role in its current distribution. Certain western Atlantic populations of N. vectensis exhibit greater genetic similarity to Pacific populations or English populations than to other western Atlantic populations. At the same time, F-statistics showing high degrees of genetic differentiation between geographically proximate populations support a low likelihood for natural dispersal between salt marshes. Furthermore, the western Atlantic harbors greater genetic diversity than either England or the eastern Pacific. Collectively, these data clearly imply that N. vectensis is native to the Atlantic coast of North America and that populations along the Pacific coast and in England are cases of successful introduction.  相似文献   

11.
Physaria bellii (Brassicaceae) is a rare, outcrossing perennial endemic to shale and sandstone outcrops along the Front Range of northern Colorado, USA. This species is locally abundant, but ranked G2/S2—imperiled because of threats to its habitat and a small number of populations—according to NatureServe’s standardized ranking system. Leaf tissue from ten populations was analyzed with ISSR (Inter-Simple Sequence Repeat) markers to discern the amount of genetic diversity and degree of population subdivision in P. bellii. Genetic diversity was moderate (0.22) and a moderately high degree of population structure was found (F ST calculated using two algorithms ranged from 0.17 to 0.24). An AMOVA partitioned most of the variation among individuals within populations (76%), and the remainder among populations (24%). Results from a Principal Coordinates analysis were consistent with the geographic distribution of populations. A Mantel test of the correlation between genetic and geographic distances was highly significant (P < 0.001). The pattern of variation thus appears to be distributed along a gradient, and efforts to conserve this species should involve preserving enough populations so that gene flow between populations is not interrupted.  相似文献   

12.
The endangered orchid, Microtis angusii, was recently described from a single population consisting of approximately 100 plants. This species is morphologically very similar to close relatives, and taxonomic difficulties have hindered attempts to identify further populations for protection. Here we present a rapid, economical, PCR-based assay for the effective identification of this species based on rDNA sequence variation. Using two single nucleotide substitutions in the internal transcribed spacer (ITS) region of the ribosomal DNA that are diagnostic for M. angusii, we developed an allele-specific PCR that can be easily visualized on a standard agarose gel, avoiding the use of expensive restriction enzymes and DNA sequencing reagents and equipment. Using PCR primer pairs for both the M. angusii, and the alternate allele, we also detected an individual heterozygous for the two alleles, indicating a need for further detailed genetic study. We performed a ‘blind trial’ to confirm the utility of this assay. Microtis angusii samples were successfully discriminated from amongst several congeners, and a further, previously unknown, population of the species was identified.  相似文献   

13.
In the present study, we evaluated the genetic diversity of Panax notoginseng F H Chen, a domesticated species, and P. stipuleanatus H T Tsai et K M Feng, an endangered wild species in southeastern Yunnan and adjacent areas in Vietnam, using sequences of the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA and amplified fragment length polymorphism (AFLP) markers. Twenty-four accessions from three plantations of P. notoginseng and 51 samples from eight populations of P. stipuleanatus were assayed. A total of 694 bp of partial sequences of 18S, ITS 1, 5.8S, ITS2, and partial sequences of 26S were obtained. No sequence variation was detected within P. notoginseng and nine sites (1.30%) were variable in P. stipuleanatus. Two-thirds of the variable sites were found between Langqiao and other populations. In P. notoginseng, four pairs of AFLP primer combinations generated 312 bands, of which 240 (76.9%) were polymorphic and 60.15% of the polymorphisms were harbored within plantations. Approximately 41.0% and 66.9% of bands were polymorphic in population D7 and 5589, respectively. In P.stipuleanatus, the same four primer combinations produced 346 bands, of which 334 (96.5%) were polymorphic and approximately 62.14% of polymorphisms were maintained within populations. Considerable variations were observed. The percentage of polymorphic bands ranged from 50.2% to 84.9% and the average over populations was 70.9%. Cluster analysis did not show correlation of genetic differentiation with the distinctive leaf morphology of P. stipuleanatus (i.e. one form with bipinnatifid leaflets and the other with undivided leaflets). Because over 40% of genetic variations were maintained among populations and because of the very restricted distribution of P. stipuleanatus, all natural populations of this species should be conserved in situ. Considering that there are variations in P. notoginseng within and among plantations, we suggest establishing a genetic resource conservation garden or reintroducing P. notoginseng into its native habitats in southwestern China. Such reintroduction should be carefully executed after large-scale screening of genetic variation within the species.  相似文献   

14.
European fallow deer are an introduced species classified as partly protected wildlife in Tasmania, Australia. Current management practices are primarily governed under the Quality Deer Management regime, in which animals are harvested during designated hunting seasons. Among populations, prominent morphological differences have been reported; however, the genetic relationship of these populations has until now been poorly understood. Representative animals were sampled from three key areas across their range and genotyped at ten polymorphic microsatellite loci to investigate genetic diversity, population structure, and genetic bottlenecks. Allelic richness was low in all three populations and ranged between 2.20 and 2.49 alleles/locus. A genetic bottleneck was detected in two of the three populations (P < 0.001). Population differentiation was evident between Lake Echo and Benham (q = 0.122; P < 0.001) and Benham and Connorville (q = 0.110; P < 0.001), but not between Lake Echo and Connorville (q = 0.0235), with individuals being identified as belonging to two genetic clusters. The pattern of population differentiation from the three study populations suggests that deer from the western region of their range are genetically distinct to those from the eastern region. This correlates with morphological variation within Tasmanian fallow deer, in which differences between the regions maybe attributable to geographical barriers.  相似文献   

15.
16.
Phenotypic variation within species is widespread among salt marsh plants. For Spartina alterniflora, the dominant species of low intertidal wetlands across the Altantic and Gulf coasts of the US, distinct phenological and morphological differences among populations from different latitudes have been found. To determine whether S. alterniflora plants from lower latitudes and those regenerated from Delaware tissue cultures would maintain differences from that of native plants, we conducted a field study in a natural salt marsh in Delaware, US. After two growing seasons, plant height, stem density, above- and belowground biomass, elemental composition, and nutrient resorption were measured. Natural variation in porewater salinity influenced physiological traits of Na+/K+ ratio regulation and nitrogen resorption efficiency similarly across populations. While plant height exhibited plasticity where populations tended to converge to a similar height, several other traits remained distinct. Delaware plants had a greater rate of rhizome growth than Georgia and Louisiana plants, which correlated with a greater magnitude of fall senescence. If traits such as seasonal translocation are plastic and can change with the length of the growing season, climate warming may alter belowground biomass production of S. alterniflora in wetlands of the mid-Atlantic.  相似文献   

17.
Aim Although hundreds of tree species have broad geographic ranges in the Neotropics, little is known about how such widespread species attained disjunct distributions around mountain, ocean and xeric barriers. Here, we examine the phylogeographic structure of a widespread and economically important tree, Cordia alliodora, to: (1) test the roles of vicariance and dispersal in establishing major range disjunctions, (2) determine which geographic regions and/or habitats contain the highest levels of genetic diversity, and (3) infer the geographic origin of the species. Location Twenty‐five countries in Central and South America, and the West Indies. Methods Chloroplast simple sequence repeats (cpSSR; eight loci) were assayed in 67 populations (240 individuals) sampled from the full geographic range of C. alliodora. Chloroplast (trnH–psbA) and nuclear (internal transcribed spacer, ITS) DNA sequences were sampled from a geographically representative subset. Genetic structure was determined with samova , structure and haplotype networks. Analysis of molecular variance (AMOVA) and rarefaction analyses were used to compare regional haplotype diversity and differentiation. Results Although the ITS region was polymorphic it revealed limited phylogeographic structure, and trnH–psbA was monomorphic. However, structure analysis of cpSSR variation recovered three broad demes spanning Central America (Deme 1), the Greater Antilles and the Chocó (Deme 2), and the Lesser Antilles and cis‐Andean South America (Deme 3). samova showed two predominant demes (Deme 1 + 2 and Deme 3). The greatest haplotype diversity was detected east of the Andes, while significantly more genetic variation was partitioned among trans‐Andean populations. Populations experiencing high precipitation seasonality (dry ecotype) had greater levels of genetic variation. Main conclusions Cordia alliodora displayed weak cis‐ and trans‐Andean phylogeographic structure based on DNA sequence data, indicative of historical dispersal around this barrier and genetic exchange across its broad range. The cpSSR data revealed phylogeographic structure corresponding to three biogeographic zones. Patterns of genetic diversity are indicative of an origin in the seasonally dry habitats of South America. Therefore, C. alliodora fits the disperser hypothesis for widespread Neotropical species. Dispersal is evident in the West Indies and the northern Andean cordilleras. The dry ecotype harbours genetic variation that is likely to represent the source for the establishment of populations under future warmer and drier climatic scenarios.  相似文献   

18.
Heterosis, or hybrid vigor, has recently been proposed as a factor promoting invasive growth of some non-indigenous aquatic plant species, particularly those capable of spreading rapidly within and among lakes through clonal reproduction. We tested this hypothesis for variable-leaf water milfoil (Myriophyllum heterophyllum), a non-indigenous aquatic plant that has become a major management and conservation concern in New England. Using nuclear ribosomal DNA, we looked for F1 hybrid populations of invasive M. heterophyllum in 25 New Hampshire (NH) lakes. In contrast to a previous study that found F1 hybrid lineages of invasive M. heterophyllum in Connecticut, we did not find hybrids in our study lakes. This result has two implications: (1) pure lineages of M. heterophyllum are also capable of invasive growth, and (2) the distribution of invasive M. heterophyllum lineages (hybrid vs. pure) may be spatially structured across New England. We stress the importance of more detailed distributional and ecological studies for understanding the invasive potential of this species.  相似文献   

19.
Invasiveness might depend on the ability of genetically diverse populations of exotic species to adapt to novel environments, which suggests a paradox since exotic species are expected to lose genetic diversity when introduced. The apparent need for genetic diversity is particularly important for exotic species that lack bi-parental reproduction and genetic recombination. We used genetic marker studies to determine the genotypic diversity of invasive US populations of the clonal New Zealand mudsnail (Potamopyrgus antipodarum). We report here on a three-pronged survey of allozyme, microsatellite DNA, and mitochondrial DNA genetic markers of invasive populations with a focus on the western US. Combining the three types of genetic markers, we discovered four distinct genotypes of P. antipodarum. These results show that only one genotype (US 1) occupied the vast majority of the western US range, and a second occurred in the Great Lakes in the eastern US (US 2). Two other genotypes occurred in the western US (US 1a and US 3), but were restricted to populations near the presumed source of invasion in the middle Snake River, ID. These results suggest that P. antipodarum spread across a broad geographic range in the western US from a single introduced source population, and that the populations are comprised of a single clonal lineage.  相似文献   

20.
Chinese mitten crab (Eriocheir sinensis), a native species in China, has populated Continental Europe and North America since 1912. In this paper, the nucleotide variation in the fragments of mitochondrial COII (693 bp), Cytb (766 bp), and nucleotide ITS (706 bp) was analyzed in native (Yantgze, Yellow, and Liaohe Rivers in China) and colonized (Elbe, Rhine, and Thames Rivers in Europe, and San Francisco Bay in North America) populations of the Chinese mitten crab. The major findings are as follows. First, the genetic variability in the native populations is higher than that in the colonized European and North American populations, with the exception of the Elbe River population, which possesses a similar level of variability with the native populations. Second, a remarkable loss of singletons has been associated with the colonization of Chinese mitten crabs. Third, the AMOVA and F ST results demonstrate that there are no significant genetic differentiations among the populations from the three continents, but there is a significant differentiation between pairwise populations within and among continents. Fourth, it is found that expansion-drift and gene flow pattern are involved in the European populations. The neutrality test and R 2 statistics suggest that a moderate founder population exists in the colonized populations, and only the Yangtze River population has undergone a recent population expansion. Finally, the results demonstrate that the European populations originate from multiple rivers in China on multiple occasions. The San Francisco population originates from both the native Chinese populations and the colonized European populations, most likely the Thames population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号