首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Numerous invasive aquatic species introductions can be traced to the aquarium trade. Many potentially harmful aquarium species may be difficult to identify based on morphology alone. As such, some prohibited or invasive species may be available for purchase if they are mislabeled as species without restrictions. Here we compare molecular identifications to internet vendors’ identifications for accessions of a popular genus of aquarium plants that are difficult to distinguish morphologically (Myriophyllum; watermilfoils). Specifically, we identified the extensive mislabeling of M. heterophyllum—an invasive species in the northeastern and western US. Furthermore, genotypes of M. heterophyllum found in our aquarium survey have also been found in invasive populations, suggesting their potential introduction through escape from aquaria, water gardens, or nurseries. Two additional taxa were sold under incorrect names. Finally, our survey revealed that Myriophyllum taxa present in the aquarium trade generally have poorly known distributions and ecologies, and therefore their invasive potential is unknown. Our study confirms that molecular identification methods can provide a valuable tool to survey commercial pathways for potentially harmful species that are otherwise difficult to identify.  相似文献   

2.
The recent recognition of invasive hybrid watermilfoil (Myriophyllum spicatum × M. sibiricum) in North America has necessitated a more thorough evaluation of its overall distribution and occurrence in natural populations. A comprehensive survey of watermilfoil populations was conducted in five Minnesota lakes, three of which were suspected a priori to contain hybrid watermilfoil. DNA sequence data verified that hybrid plants between the nonindigenous M. spicatum L. and indigenous M. sibiricum Kom. occurred in three of the five lakes sampled. Myriophyllum spicatum was not detected in lakes where hybrids were prevalent. Further sampling of lakes in Idaho, Michigan, Minnesota, Wisconsin and Washington identified 30 additional hybrid watermilfoil populations. In only three of these populations the hybrid watermilfoil was found to co-occur with M. spicatum. To facilitate the field identification of the two parental species and their hybrid, morphological data from watermilfoil specimens collected across the United States were evaluated. We determined that leaf segment/leaf length measurements can effectively distinguish M. spicatum and M. sibiricum; however, hybrids are intermediate for these characters and such measurements frequently overlap with respect to their parental taxa. By incorporating a combined molecular and morphological approach to identifying watermilfoils, the hybrids can be identified readily and their distributions elucidated both within and between lakes. Because hybrids may respond differently to local ecological conditions than their parents, information on their presence and distribution should be of particular importance to management and conservation programs.  相似文献   

3.
High levels of genetic variation enable species to adapt to changing environments and provide plant breeders with the raw materials necessary for artificial selection. In the present study, six AFLP primer pairs were used to assess the genetic diversity of Desmodium triflorum (L.) DC. from 12 populations in South China. A high percentage of polymorphic loci (P = 76.16%) and high total gene diversity (H T = 0.310) were found, indicating that the genetic diversity of D. triflorum is high at the species level. Genetic diversity was also relatively high at the population level (P = 55.85%, H e = 0.230). The coefficient of gene differentiation among populations (G ST) was 0.255, indicating that while most genetic diversity resided within populations, there was also considerable differentiation among populations. AMOVA also indicated 24.29% of the total variation to be partitioned among populations (ΦST = 0.243). UPGMA clustering analysis based on genetic distances showed that the 12 populations could be separated into three subgroups: an eastern, a western, and a central-southern subgroup. However, a Mantel test revealed no significant correlation (r = 0.286, p = 0.983) between the geographical distances and genetic distances separating these populations; mountain barriers to gene flow and human disturbance may have confounded these correlations. The present study has provided some fundamental genetic data that will be of use in the exploitation of D. triflorum.  相似文献   

4.
Invasiveness might depend on the ability of genetically diverse populations of exotic species to adapt to novel environments, which suggests a paradox since exotic species are expected to lose genetic diversity when introduced. The apparent need for genetic diversity is particularly important for exotic species that lack bi-parental reproduction and genetic recombination. We used genetic marker studies to determine the genotypic diversity of invasive US populations of the clonal New Zealand mudsnail (Potamopyrgus antipodarum). We report here on a three-pronged survey of allozyme, microsatellite DNA, and mitochondrial DNA genetic markers of invasive populations with a focus on the western US. Combining the three types of genetic markers, we discovered four distinct genotypes of P. antipodarum. These results show that only one genotype (US 1) occupied the vast majority of the western US range, and a second occurred in the Great Lakes in the eastern US (US 2). Two other genotypes occurred in the western US (US 1a and US 3), but were restricted to populations near the presumed source of invasion in the middle Snake River, ID. These results suggest that P. antipodarum spread across a broad geographic range in the western US from a single introduced source population, and that the populations are comprised of a single clonal lineage.  相似文献   

5.
Eurasian watermilfoil (Myriophyllum spicatum L.) is a nuisance aquatic weed, exotic to North America. The freshwater weevil Euhrychiopsis lecontei (Dietz) is a potential control agent of Eurasian watermilfoil and is a fully submersed aquatic specialist herbivore. Its presumed original host is the native northern watermilfoil (Myriophyllum sibiricum Komarov). We conducted a set of oviposition experiments to reveal first and second oviposition preference of Euhrychiopsis lecontei when presented with seven macrophytes. We tested differences between source (lake) populations of weevils, differences in behavior between weevils reared on the exotic Eurasian watermilfoil and the native northern watermilfoil and between weevils in the presence and absence of their preferred hostplant. Oviposition assays confirmed that E. lecontei is a watermilfoil specialist. Out of the 207 females that laid eggs, only three oviposited on a non-watermilfoil plant, Megalodonta beckii. The weevils' degree of specificity was influenced by the watermilfoil species on which they were reared. Weevils reared on Eurasian watermilfoil tended to oviposit on Eurasian watermilfoil, spent more time on Eurasian watermilfoil than on other plants, and spent more time off plants and took longer to oviposit when Eurasian watermilfoil was removed. Weevils reared on northern watermilfoil did not exhibit a preference for either watermilfoil species in oviposition or in time allocation, although they oviposited on and spent significantly more time on watermilfoils than on other species. Rearing of the two populations on their complementary watermilfoil hostplant resulted in responses typical of the rearing plant, not the original host. These results show that although both weevil populations are watermilfoil specialists, Eurasian-reared weevils prefer Eurasian watermilfoil in general host attraction and oviposition, whereas northern-reared weevils do not. The results support the contention that E. lecontei may be a good biocontrol agent for Eurasian watermilfoil because of its high specificity. The results also suggest that the current host range expansion of the weevil to Eurasian watermilfoil has the potential to become a host shift due to the increased specificity. Herbivory in freshwater systems is not well studied, and the E. lecontei-M. spicatum relationship is a rare example of submersed freshwater specialist herbivore-host-plant interactions.  相似文献   

6.
To explore the roles of plasticity and genetic variation in the response to spatial and temporal climate variation, we established a common garden consisting of paired collections of native and introduced riparian trees sampled along a latitudinal gradient. The garden in Fort Collins, Colorado (latitude 40.6°N), included 681 native plains cottonwood (Populus deltoides subsp. monilifera) and introduced saltcedar (Tamarix ramosissima, T. chinensis and hybrids) collected from 15 sites at 29.2–47.6°N in the central United States. In the common garden both species showed latitudinal variation in fall, but not spring, leaf phenology, suggesting that the latitudinal gradient in fall phenology observed in the field results at least in part from inherited variation in the critical photoperiod, while the latitudinal gradient in spring phenology observed in the field is largely a plastic response to the temperature gradient. Populations from higher latitudes exhibited earlier bud set and leaf senescence. Cold hardiness varied latitudinally in both fall and spring for both species. For cottonwood, cold hardiness began earlier and ended later in northern than in southern populations. For saltcedar northern populations were hardier throughout the cold season than southern populations. Although cottonwood was hardier than saltcedar in midwinter, the reverse was true in late fall and early spring. The latitudinal variation in fall phenology and cold hardiness of saltcedar appears to have developed as a result of multiple introductions of genetically distinct populations, hybridization and natural selection in the 150 years since introduction.  相似文献   

7.
Distinguishing natural versus anthropogenic dispersal of organisms is essential for determining the native range of a species and implementing an effective conservation strategy. For cryptogenic species with limited historical records, molecular data can help to identify introductions. Nematostella vectensis is a small, burrowing estuarine sea anemone found in tidally restricted salt marsh pools. This species’ current distribution extends over three coast lines: (i) the Atlantic coast of North America from Nova Scotia to Georgia, (ii) the Pacific coast of North America from Washington to central California, and (iii) the southeast coast of England. The 1996 IUCN Red List designates N. vectensis as “vulnerable” in England. Amplified fragment length polymorphism (AFLP) fingerprinting of 516 individuals from 24 N. vectensis populations throughout its range and mtDNA sequencing of a subsample of these individuals strongly suggest that anthropogenic dispersal has played a significant role in its current distribution. Certain western Atlantic populations of N. vectensis exhibit greater genetic similarity to Pacific populations or English populations than to other western Atlantic populations. At the same time, F-statistics showing high degrees of genetic differentiation between geographically proximate populations support a low likelihood for natural dispersal between salt marshes. Furthermore, the western Atlantic harbors greater genetic diversity than either England or the eastern Pacific. Collectively, these data clearly imply that N. vectensis is native to the Atlantic coast of North America and that populations along the Pacific coast and in England are cases of successful introduction.  相似文献   

8.
The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known regarding the influence of the environment on population divergence of Cerrado species. Here, we searched for climatic drivers of genetic (nuclear microsatellites) and leaf trait divergence in Annona crassiflora, a widespread tree in the Cerrado. The sampling encompassed all phytogeographic provinces of the continuous area of the Cerrado and included 397 individuals belonging to 21 populations. Populations showed substantial genetic and leaf trait divergence across the species' range. Our data revealed three spatially defined genetic groups (eastern, western and southern) and two morphologically distinct groups (eastern and western only). The east‐west split in both the morphological and genetic data closely mirrors previously described phylogeographic patterns of Cerrado species. Generalized linear mixed effects models and multiple regression analyses revealed several climatic factors associated with both genetic and leaf trait divergence among populations of A. crassiflora. Isolation by environment (IBE) was mainly due to temperature seasonality and precipitation of the warmest quarter. Populations that experienced lower precipitation summers and hotter winters had heavier leaves and lower specific leaf area. The southwestern area of the Cerrado had the highest genetic diversity of A. crassiflora, suggesting that this region may have been climatically stable. Overall, we demonstrate that a combination of current climate and past climatic changes have shaped the population divergence and spatial structure of A. crassiflora. However, the genetic structure of A. crassiflora reflects the biogeographic history of the species more strongly than leaf traits, which are more related to current climate.  相似文献   

9.
Physaria bellii (Brassicaceae) is a rare, outcrossing perennial endemic to shale and sandstone outcrops along the Front Range of northern Colorado, USA. This species is locally abundant, but ranked G2/S2—imperiled because of threats to its habitat and a small number of populations—according to NatureServe’s standardized ranking system. Leaf tissue from ten populations was analyzed with ISSR (Inter-Simple Sequence Repeat) markers to discern the amount of genetic diversity and degree of population subdivision in P. bellii. Genetic diversity was moderate (0.22) and a moderately high degree of population structure was found (F ST calculated using two algorithms ranged from 0.17 to 0.24). An AMOVA partitioned most of the variation among individuals within populations (76%), and the remainder among populations (24%). Results from a Principal Coordinates analysis were consistent with the geographic distribution of populations. A Mantel test of the correlation between genetic and geographic distances was highly significant (P < 0.001). The pattern of variation thus appears to be distributed along a gradient, and efforts to conserve this species should involve preserving enough populations so that gene flow between populations is not interrupted.  相似文献   

10.
Bouteloua gracilis (blue grama grass) native populations have been shown to be highly variable, however the genetic basis of this variability has not been well established. Determining the extent of genetic variability within and among plant populations have important repercussions for the management and conservation of species, and in particular for those subjected to intensive use such as forage plants. Using RAPD, this study was undertaken to investigate the genetic variability of four B. gracilis native populations developed in three grasslands and one shrubland at the southernmost part of the North American Graminetum in México. Significant differences in grass aboveground production were found among the study sites, while considerable genetic variation within each of the four blue grama populations evaluated was detected. The molecular analysis, based on 55 individuals, revealed a total of 108 scorable repeatable bands, with 99 of them being polymorphic (overall polymorphism= 91.7%). Within every population each individual was genetically distinct and no population-specific bands (fixed marker differences) were identified. Pair-wise Φ ST comparisons indicated that the four blue grama populations examined were significantly different in their genetic constitution (P<0.001). AMOVA revealed that most of the genetic variation detected in Bouteloua gracilis was explained by intra- (88.53%), rather than by inter-population (11.47%) differences. UPGMA based on the Φ ST values indicated that the blue grama population collected from the shrubland displayed the RAPD profiles that most differed among the study sites. Possible causes of these results could reside on intensive grazing reducing, and proper management conserving, the forage production and genetic diversity of blue grama native populations. Our results are consistent with previous studies analyzing population genetic variation in outcrossing grasses and, in particular, with ecological and cytological evidence for a high genetic variability in native populations of B. gracilis. The implications of our findings and prospective studies to be undertaken using molecular tools in the study of blue grama biology and ecology are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Well-characterized species introductions provide opportunities to compare the genetic signatures of known founder effects across classes of molecular markers. The release of small numbers of house finches (Carpodacus mexicanus) into the eastern United States in the 1940s led to substantial interest in the effects of this introduction on genetic diversity in this now abundant species, an issue that has been highlighted by a recent Mycoplasma disease epidemic that most intensively affects the introduced and potentially genetically depauperate house finch populations. Previous studies comparing genetic diversity levels in native and introduced house finch populations produced seemingly disparate results: comparisons based on amplified fragment length polymorphism, RFLP mtDNA, and allozyme markers found essentially equivalent levels of diversity in eastern and western populations, whereas microsatellite markers showed clear reductions in diversity in the introduced populations. Here we employ sequence variation at the ND2 mtDNA locus to further compare levels of diversity between the four native and five introduced house finch populations that were previously examined in the microsatellite study. We found substantially lower ND2 haplotype richness and diversity across all introduced populations of house finches. The majority of sequence variation (78%) was detected within subpopulations, with the remainder (22%) explained by the historical status of each population (native or introduced). Our results are consistent with previous microsatellite evidence for a founder effect during the introduction of eastern house finches, and suggest that the mtDNA founder effect was particularly severe, likely owing to a male-biased sex ratio at the time of introduction coupled with the lower effective population size of clonally inherited markers. We discuss how the inconsistencies between past studies of house finch diversity can inform the usefulness of distinct marker sets for detecting molecular signatures of founder events.  相似文献   

12.
While there is evidence that the genetic structure of invasive populations may be distinct from native populations, it has proved difficult to establish the causes of any variation owing in part to the range of evolutionary processes involved. In order to assess differences in the genetic structure of invasive populations of Gunnera tinctoria, five native populations were compared to 23 geographically widely dispersed invasive populations using amplified fragment length polymorphic markers (AFLPs). In total, 221 individuals were sampled at three spatial scales: inter-regional, within-region, and at a high-resolution local scale. It was observed that there were high levels of genetic variation between most populations, that invasive populations were generally distinct from both native populations and from each other and that genetic variation away from founding populations can occur relatively quickly and within a small geographic area. Changes in the pattern of genetic variation observed in invasive populations strongly indicated that founder effects and genetic drift played a significant role in shaping their genetic structure. It was further concluded that gene flow had a homogenizing effect on the structure of invasive populations occurring in close proximity, increasing their allele content and potentially contributing to their successful establishment.  相似文献   

13.
European fallow deer are an introduced species classified as partly protected wildlife in Tasmania, Australia. Current management practices are primarily governed under the Quality Deer Management regime, in which animals are harvested during designated hunting seasons. Among populations, prominent morphological differences have been reported; however, the genetic relationship of these populations has until now been poorly understood. Representative animals were sampled from three key areas across their range and genotyped at ten polymorphic microsatellite loci to investigate genetic diversity, population structure, and genetic bottlenecks. Allelic richness was low in all three populations and ranged between 2.20 and 2.49 alleles/locus. A genetic bottleneck was detected in two of the three populations (P < 0.001). Population differentiation was evident between Lake Echo and Benham (q = 0.122; P < 0.001) and Benham and Connorville (q = 0.110; P < 0.001), but not between Lake Echo and Connorville (q = 0.0235), with individuals being identified as belonging to two genetic clusters. The pattern of population differentiation from the three study populations suggests that deer from the western region of their range are genetically distinct to those from the eastern region. This correlates with morphological variation within Tasmanian fallow deer, in which differences between the regions maybe attributable to geographical barriers.  相似文献   

14.
Phenotypic variation within species is widespread among salt marsh plants. For Spartina alterniflora, the dominant species of low intertidal wetlands across the Altantic and Gulf coasts of the US, distinct phenological and morphological differences among populations from different latitudes have been found. To determine whether S. alterniflora plants from lower latitudes and those regenerated from Delaware tissue cultures would maintain differences from that of native plants, we conducted a field study in a natural salt marsh in Delaware, US. After two growing seasons, plant height, stem density, above- and belowground biomass, elemental composition, and nutrient resorption were measured. Natural variation in porewater salinity influenced physiological traits of Na+/K+ ratio regulation and nitrogen resorption efficiency similarly across populations. While plant height exhibited plasticity where populations tended to converge to a similar height, several other traits remained distinct. Delaware plants had a greater rate of rhizome growth than Georgia and Louisiana plants, which correlated with a greater magnitude of fall senescence. If traits such as seasonal translocation are plastic and can change with the length of the growing season, climate warming may alter belowground biomass production of S. alterniflora in wetlands of the mid-Atlantic.  相似文献   

15.
Heterosis, or hybrid vigor, has recently been proposed as a factor promoting invasive growth of some non-indigenous aquatic plant species, particularly those capable of spreading rapidly within and among lakes through clonal reproduction. We tested this hypothesis for variable-leaf water milfoil (Myriophyllum heterophyllum), a non-indigenous aquatic plant that has become a major management and conservation concern in New England. Using nuclear ribosomal DNA, we looked for F1 hybrid populations of invasive M. heterophyllum in 25 New Hampshire (NH) lakes. In contrast to a previous study that found F1 hybrid lineages of invasive M. heterophyllum in Connecticut, we did not find hybrids in our study lakes. This result has two implications: (1) pure lineages of M. heterophyllum are also capable of invasive growth, and (2) the distribution of invasive M. heterophyllum lineages (hybrid vs. pure) may be spatially structured across New England. We stress the importance of more detailed distributional and ecological studies for understanding the invasive potential of this species.  相似文献   

16.
Mitochondrial DNA D-loop (control) region (426-bp) was used to infer the genetic structure of Spanish mackerel (Scomberomorus commerson) from populations in Southeast Asia (Brunei, East and West Malaysia, Philippines, Thailand, Singapore, and China) and northern Australia (including western Timor). An east–west division along Wallace’s Line was strongly supported by a significant AMOVA, with 43% of the total sequence variation partitioned among groups of populations. Phylogenetic and network analyses supported two clades: clade A and clade B. Members of clade A were found in Southeast Asia and northern Australia, but not in locations to the west (Gulf of Thailand) or north (China). Clade B was found exclusively in Southeast Asia. Genetic division along Wallace’s Line suggests that co-management of S. commerson populations for future sustainability may not be necessary between Southeast Asian nations and Australia, however all countries should share the task of management of the species in Southeast Asia equally. More detailed genetic studies of S. commerson populations in the region are warranted.  相似文献   

17.
Generic variation within and among one Finnish and three Swedish populations of Fomitopsis pinicola (Schwarts: Fr.) Karst. were studied by amplifying DNA from hap-loid isolates originating from single spore cultures using two arbitrary primers. Analysis offspring from single fruit bodies revealed only three pairs of codominant alleles among 42 variable genetic markers, the remaining 38 segregated independently. Genetic similarity was measured in terms of Euclidean distance. Individuals in the Finnish population tended to form a distinct cluster in the principal component analysis. Variation within and among populations/regions was partitioned by Analysis of Molecular Variance — AMOVA. Within population variation accounted for 91.6% of the total genetic variation. The remaining 7.68% was accounted for by variation between the Finnish population and each of the three Swedish ones. Variation among the Swedish populations accounted for only 0.72% of the total variation. Wright's Fst was 0.17 for all four populations and 0.13 for the three Swedish populations. These relatively low values indicate that there is gene flow among all populations or that they are derived from a common ancestral population. The observed pattern of genetic variation is probably the result of effective spore dispersal and the continuous distribution of this common early successional species.  相似文献   

18.
Various approaches have been developed to define conservation units for plant and animal species. In this study we combined nuclear microsatellites (from a previous published study) and chloroplast microsatellites (assessed in the present study), leaf and seed morphology traits and abiotic variables (climate and soil) to define evolutionary significant units (ESU) of Santalum austrocaledonicum, a tree species growing in New Caledonia. Results for chloroplast microsatellites showed that the total population heterozygosity was␣high, (H cp = 0.84) but varied between islands. Differentiation was strong in the total population (F stcp = 0.66) but also within the main island Grande Terre (F stcp = 0.73) and within Iles Loyauté (F stcp = 0.52), highlighting a limited gene flow between populations. These results confirmed those obtained with nuclear microsatellites. The cluster analysis on molecular markers discriminated two main groups constituted by the populations of Grande Terre and the populations of Iles Loyauté. A principal component analysis of leaf and seed morphology traits singled out the populations of Iles Loyauté and the western populations of Grande Terre. Quantitative genetic analyses showed that the variation between populations was under genetic control (broad sense heritability close to 80%). A high correlation between rainfall and morphological traits suggested an impact of climate on this variation. The integration of these results allows to define two ESUs, one corresponding to Grande Terre and Ile des Pins and the other the Iles Loyauté archipelago. This study stresses the need to restore some populations of Grande Terre that are currently threatened by their small size.  相似文献   

19.
We investigated the influence of differing life history traits on the genetic structure of the related species Mimetes fimbriifolius and Mimetes hirtus (Proteaceae), which occur in the South African fynbos. Both species are bird‐pollinated and ant‐dispersed, but differ in rarity, longevity, ecological strategy and the fragmentation of their distribution area. We used AFLPs to study genetic variation within and between 21 populations of these two species across their distribution range. AFLP analysis revealed significantly higher genetic variation within populations of M. fimbriifolius than within M. hirtus. While M. fimbriifolius clearly lacked any significant genetic differentiation between populations, a distinct geographic pattern was observed for M. hirtus. Differentiation was, however, stronger at the regional (ΦPT = 0.57) than at the local scale (ΦPT = 0.08). Our results clearly indicate that even closely related species that share the same mode of pollination and seed dispersal can differ in their genetic structure, depending on the magnitude of fragmentation, longevity of individuals and ecological strategy.  相似文献   

20.
城隍竹——福建竹亚科一新种   总被引:1,自引:0,他引:1  
报道了竹亚科(Bambusoideae)少穗竹属(Oligostachyum Z.P.Wang et G.H.Ye)一新种——城隍竹(O. heterophyllum M.M.Lin)。该新种分布于我国福建西部,它与糙花少穗竹[O.scabriflorum(McClure) Z.P.Wang et G.H.Ye]相似或近缘,但秆小,直径不超过1.5 cm;秆箨淡紫绿色,背面具有瘤基刺毛,无斑点,无白粉,亦无焦边,基部密被细刚毛;箨片直立,基部不收缩;箨舌淡禾秆色;叶鞘被细微柔毛而与后者相区别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号