首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lanthanum ions antagonize calcium and are used as a Ca2+ channel blocker but their direct effects are unknown. We investigated lanthanum effects on endogenous abscisic acid (ABA) levels in protoplasts and intact primary roots of Zea mays L. Application of 1 mM La3+ reduced primary root elongation, caused swelling of root tips, and essentially doubled the ABA content in intact roots but decreased ABA in root protoplasts in a concentration-dependent manner. Osmotic stress increased ABA level in protoplasts more than in intact roots. Temporal ABA changes in response to La3+ treatment indicate that La3+ affects root growth at least partially via ABA pathway.  相似文献   

2.
Little information is known on what the magnitude of nitrogen (N) processed by ectomycorrhizal (ECM) fungal species in the field. In a common garden experiment performed in a northern California oak woodland, we investigated transfer of nitrogen applied as 15NH4 or 15NO3 from leaves to ectomycorrhizal roots of three oak species, Quercus agrifolia, Q. douglasii, and Q. garryana. Oak seedlings formed five common ectomycorrhizal morphotypes on root tips. Mycorrhizal tips were more enriched in 15N than fine roots. N transfer was greater to the less common morphotypes than to the more common types. 15N transfer from leaves to roots was greater when , not , was supplied. 15N transfer to roots was greater in seedlings of Q. agrifolia than in Q. douglasii and Q. garryana. Differential N transfer to ectomycorrhizal root tips suggests that ectomycorrhizal morphotypes can influence flows of N from leaves to roots and that mycorrhizal diversity may influence the total N requirement of plants.  相似文献   

3.
The effects of La3+ on the uptake of trace elements (Se, Co, V, and Tc) in cucumber plants were studied by a radioactive multitracer technique. It was observed that the uptake and distribution of these trace elements in roots, stems, and leaves are different under different La3+ treatments. Furthermore, in the control, the plant accumulates 75Se, 56Co, and 48V all in the order roots>leaves>stems, whereas 95mTc was in the order leaves>stems>roots. The accumulations of 75Se and 95mTc in plants treated with different La3+ concentration were in the same order as those in the control, but the uptakes percentages of other kinds of element changed differently. The results indicate that lanthanum treatments to a growing cucumber lead to the change of uptake of trace elements, which suggest that a rare earth element is directly or indirectly involved in the ion transport of the plant and affects plant growth by regulating the uptake and distribution of elements that influence the plant cell physiology and biochemistry.  相似文献   

4.
Influence of La3+ on the accumulation of trace elements (75Se, 56Co, 83Rb, 48V, 95mTc, and 67Ga) in chloroplasts of cucumber seedling leaves was studied by a radioactive multitracer technique. At the same time, chloroplast contents of different concentrations of La3+ treatment were calculated. It was observed that chloroplast contents peaked at 0.02 mM La3+ treatment and that the uptake and distribution of these trace elements in chloroplasts of cucumber seedling leaves are different under different La3+ treatments. With the increase of lanthanum concentrations from 0.002 to 2 mM, the uptake percentages of 75Se, 56Co, and 83Rb presented an obvious increase and then sharply decreased in contrast to the nonlanthanum treatment, whereas there appeared a sharp decrease and then restored control level in the uptake of 48V. The other two trace elements, namely 95mTc and 67Ga, were accumulated only in the presence of 0.02 mM La3+. The results indicate that lanthanum treatments to growing the cucumber lead to the change of trace element uptake in the chloroplasts of leaves, which suggest that lanthanum might influence the accumulation of trace elements in chloroplasts of cucumber seedling leaves by regulation of various ion transport mechanisms, thus affecting the photosystem of leaves.  相似文献   

5.
We correlated root growth inhibition with aluminium (Al3+) localization and toxicity symptoms in rice roots using seedlings of two genotypes (tolerant and sensitive) that were exposed to different AlCl3 concentrations. Al3+ localization was evaluated by hematoxylin in primary roots and by morin in cross-sections of the root tips. Neutral invertase enzyme activity and callose (1→3, β-d-glucan) accumulation were observed and compared with Al3+ accumulation sites. Root growth was inhibited by Al3+ in a concentration-specific manner and proportional to the increase of hematoxylin staining, being more pronounced in the sensitive genotype. Morin staining showed the presence of Al3+ deep within the roots of the sensitive genotype, indicating that the metal was able to penetrate beyond the first few cell layers. In the tolerant genotype, Al3+ penetration was restricted to the first two cell layers. Ruptures in exodermis and epidermis layers by lateral root protrusions in both genotypes allowed Al3+ to enter into the roots. More intense activity of invertase in roots of the tolerant genotype was also observed, which could be related to greater root growth of this cultivar when submitted to Al3+ stress. Moreover, Al3+-induced callose accumulation was a late response occurring in the same areas where Al3+ was present.  相似文献   

6.
以‘全年油麦菜’尖叶莴苣为试验材料,采用水培方式,研究3个浓度(0 mg·L-1、0.1 mg·L-1、1 mg·L-1)Ni2+在22.4 mg·L-1 N处理下对尖叶莴苣氮素吸收的生长及生理影响。结果显示:(1)尖叶莴苣根系和地上部生物量随处理时间的增加呈上升趋势。与对照T1(0 mg·L-1 Ni2+、112 mg·L-1 N)相比,T2处理(0 mg·L-1 Ni2+、22.4 mg·L-1 N)对尖叶莴苣根系及叶片生长具有一定抑制作用,植株鲜重、干重、根冠比、根系长度、平均直径、表面积、体积、根尖数、分根数、叶片表面积和体积在T3处理(0.1 mg·L-1 Ni2+、22.4 mg·L-1 N)下显著高于对照,T4处理(1 mg·L-1 Ni2+、22.4 mg·L-1 N)对尖叶莴苣根系及其叶片生长具有一定促进作用,但对其根尖数和分根数表现出一定抑制性。(2)随着Ni2+浓度的增加,尖叶莴苣叶片叶绿素a、叶绿素b和总叶绿素含量呈先升后降的变化规律,且均在T3处理下显著提高。(3)随着处理时间的增加,尖叶莴苣叶片的净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)逐渐上升,胞间CO2浓度(Ci)逐渐下降,且T3处理叶片的Gs显著高于对照,其Ci最低,Pn最大。(4)施加Ni2+对尖叶莴苣有机酸、可溶性蛋白和可溶性糖含量以及SOD和POD活性有显著影响,在T3处理下有机酸含量降低,可溶性糖和可溶性蛋白含量显著增加,SOD和POD活性显著提高。(5)T3处理尖叶莴苣根系中N及叶片中B和Ca含量较高;根系中Ni含量高于叶片,T3处理叶片中的Ni含量较低,Mg含量较高;植株体内Cu含量随Ni2+浓度增加而下降。研究表明,外源Ni2+处理能影响低氮条件下(22.4 mg·L-1 N)尖叶莴苣幼苗生长及生理状况,适宜浓度(0.1 mg·L-1)Ni2+可有效提高尖叶莴苣根系对氮素的吸收利用效率,减少氮素施用量,促进尖叶莴苣根系和地上部叶片生长,增加光合色素含量,并提高净光合速率,进而改善植株的产量和营养品质。  相似文献   

7.
The effects of La3+ on the antioxidant enzyme activities and the relative indices of cellular damage in cucumber seedling leaves were studied. When cucumber seedlings were treated with low concentrations of LaCl3 (0.002 and 0.02 mM), peroxidase (PO) activity increased, and catalase (CAT) activity was similar to that of control leaves at 0.002 mM La3+ and increased at 0.02 mM La3+, whereas superoxide dismutase (SOD) activity did not change significantly. The increase in the contents of chlorophyll (including chlorophylls a and b), carotenoids in parallel with the decrease in the level of malondialdehyde (MDA) suggested that low concentration of La3+ promoted plant growth. However, except the increase in SOD activity at 2 mM La3+, CAT and PO activities and the contents of pigments decreased at high concentrations of La3+ (0.2 and 2 mM), leading to the increase of MDA content and the inhibition of plant growth. It is suggested that lanthanum ion is involved in the regulation of active oxygen-scavenging enzyme activities during plant growth.__________From Fiziologiya Rastenii, Vol. 52, No. 3, 2005, pp. 338–342.Original English Text Copyright © 2005 by Shi, Chen, Huang.This article was submitted by the authors in English.  相似文献   

8.
This study investigated the accumulation of osmotic solutes in citrus (Poncirus trifoliata) seedlings colonized by Glomus versiforme subjected to drought stress or kept well watered. Development of mycorrhizae was higher under well watered than under drought-stressed conditions. Arbuscular mycorrhizal (AM) seedlings accumulated more soluble sugars, soluble starch and total non-structural carbohydrates in leaves and roots than corresponding non-AM seedlings regardless of soil-water status. Glucose and sucrose contents of well-watered and drought-stressed roots, fructose contents of well-watered roots and sucrose contents of drought-stressed leaves were notably higher in AM than in non-AM seedlings. K+ and Ca2+ levels in AM leaves and roots were greater than those in non-AM leaves and roots, while AM symbiosis did not affect the Mg2+ level. AM seedlings accumulated less proline than non-AM seedlings. AM symbiosis altered both the allocation of carbohydrate to roots and the net osmotic solute accumulations in response to drought stress. It is concluded that AM colonization enhances osmotic solute accumulation of trifoliate orange seedlings, thus providing better osmotic adjustment in AM seedlings, which did not correlate with proline but with K+, Ca2+, Mg2+, glucose, fructose and sucrose accumulation.  相似文献   

9.
Effect of lanthanum on ion absorption in cucumber seedling leaves   总被引:3,自引:0,他引:3  
Scanning electron microscope and energy-dispersive X-ray analysis were used to study the tissular distributions of elements Na, Mg, Cl, K, Ca, Mn, and Fe in leaves of cucumber seedlings in the absence or presence of La3+. The results showed that the atomic percentages of Na, Mg, Cl, K, and Ca were basically reduced and those of Mn and Fe were increased in the presence of La3+; in addition, at 0.02 mM La3+, the reduced or increased degrees were higher than those at 2.0 mM La3+. The effects of La3+ on ion absorption were similar to those of Ca2+, suggesting that the rare earth element lanthanum affects the plant physiological mechanism by regulating the Ca2+ level in plant cell.  相似文献   

10.
Liu M  Hasenstein KH 《Planta》2005,220(5):658-666
La3+ ions are known to antagonize Ca2+ and are used as a Ca2+ channel blocker but little is known on the direct effects of La3+. Micromolar La3+ concentrations promoted root growth while higher concentrations were inhibitory. The uptake of La3+ in maize root protoplasts revealed a membrane binding component (0.14 and 0.44 pmol min–1 protoplast–1 for 100 and 1,000 M La3+) followed by a slower concentration and time-dependent uptake. Uptake was reduced by Ca2+, but had no substantial effect on other ions. La3+ shifted microtubule organization from random to parallel but caused aggregation of microfilaments. Our data suggest that La3+ is taken up into plant cells and affects growth via stabilization of the cytoskeleton.  相似文献   

11.
采用植物水培方法,以乌拉尔甘草为研究材料,用不同浓度(0、80、160、320mmol·L~(-1))NaCl溶液胁迫处理乌拉尔甘草幼苗3周后,分析其叶片表面盐离子(K~+、Ca~(2+)、Na+)分泌速率的差异,并采集盐化低地草甸重盐土生境中2年生乌拉尔甘草植株,应用ICP-AES测定其不同部位(根、根状茎、茎、老叶和幼叶)中的盐离子(K~+、Na~+、Ga~(2+)、Mg~(2+))含量,探究盐离子在乌拉尔甘草叶片上的分泌格局以及盐离子在植株体内的积存格局,为完善甘草耐盐机理的研究提供依据。结果显示:(1)随着盐胁迫浓度的升高,乌拉尔甘草叶片上K~+、Ca~(2+)、Na+的分泌速率均呈增加趋势,且Na~+的分泌速率远远大于Ca~(2+)和K+的分泌速率。(2)在乌拉尔甘草各部位中,K+的积存量从大到小依次为:幼叶根根状茎茎老叶;Na~+在各个部位的积存量都十分有限,且无论地下部分还是地上部分,差异均不大;Ca~(2+)积存量由大到小依次为:老叶幼叶茎根状茎根,且老叶中Ca~(2+)的积存量显著高于其它部位。研究认为,在重盐碱地生境中,K+主要积存在幼叶中,Ga~(2+)主要积存在老叶中,植株体内各个部位Na~+的积存量很低,乌拉尔甘草表现出明显的拒Na现象;叶片分泌的主要盐离子为Na~+;乌拉尔甘草通过泌盐的方式将Na+排出体外,从而有效降低Na~+在体内的积存,这是其能够在重盐碱地生存生长的重要原因。  相似文献   

12.
Aluminum (Al3+) toxicity in acidic soils limits crop productivity worldwide. In this study, we found that putrescine (PUT) significantly alleviates Al toxicity in rice roots. The addition of 0.1 mM PUT promoted root elongation and reduced the Al content in the root apices of Nipponbare (Nip) and Kasalath (Kas) rice under Al toxicity conditions. Exogenous treatment with PUT reduced the cell wall Al content by reducing polysaccharide (pectin and hemicellulose) levels and pectin methylesterase (PME) activity in roots and decreased the translocation of Al from the external environment to the cytoplasm by downregulating the expression of OsNRAT1, which responsible to encode an Al transporter protein Nrat1 (Nramp aluminum transporter 1). The addition of PUT under Al toxicity conditions significantly inhibited ethylene emissions and suppressed the expression of genes involved in ethylene biosynthesis. Treatment with the ethylene precursor 1‐aminocylopropane‐1‐carboxylic acid (ACC) significantly improved ethylene emission, inhibited root elongation, increased the Al accumulation in root tips and the root cell wall, and increased cell wall pectin and hemicellulose contents in both rice cultivars under Al toxicity conditions. The ethylene biosynthesis antagonist aminoethoxyvinylglycine (AVG, inhibitor of the ACC synthase) had the opposite effect and reduced PME activity. Together, our results show that PUT decreases the cell wall Al contents by suppressing ethylene emissions and decreases the symplastic Al levels by downregulating OsNRAT1 in rice.  相似文献   

13.
Cadmium accumulation, the relative content of different chemical forms of Cd, as well as the toxic effect of Cd on nutrient element uptake, physiological parameters, and ultrastructure of Sagittaria sagittifolia L. seedlings were determined after the seedlings were exposed to different Cd concentrations for 4 days. The results showed that S. sagittifolia had the ability to accumulate large amounts of Cd. In the root, stem, and bulb, the predominant chemical Cd forms were NaCl extractable. With an increase in the Cd2+ concentration, the chlorophyll content, the relative membrane penetrability (RMP) of root cells, peroxidase (POD) activity, superoxide dismutase (SOD) activity in leaves, malondiadehyde (MDA) content and the superoxide anion (O2) generation rate in roots all decreased following an initial increase. On the other hand, catalase (CAT) activity, SOD activity in roots, MDA content, and the generation rate of O2 in leaves all increased gradually. The toxic effect of Cd2+ was more severe on roots than on leaves at the same concentration. Cadmium affected the mineral nutrition balance; mainly, it promoted the uptake of Ca, Cu, Mn, and Fe, while inhibited Mg, Na, and K uptake. The physiological toxic effect of Cd2+ was close to the ultrastructural damage induced by Cd contamination. A significant correspondence was observed between the Cd dose and its toxic effect. Cadmium could destroy the normal ultrastructure, disturb the ion balance, and interfere with cell metabolism.  相似文献   

14.
通过室内水培试验,研究了不同浓度Pb2+(0、0.25、0.50、1.00和2.00mmol·L-1)胁迫对东方香蒲根和叶中Pb含量、叶绿素含量、丙二醛(MDA)含量、抗氧化酶(SOD、CAT和POD)活性以及亚细胞结构的影响。结果显示:(1)随着外源Pb2+浓度的增加,Pb在香蒲根和叶中的积累量均显著高于对照,且Pb在根中的含量明显高于叶中,并与外源Pb2+浓度呈显著正相关关系。(2)香蒲叶片中的叶绿素a和叶绿素b含量随着外源Pb2+浓度的增加呈先升后降趋势,均在处理浓度为0.50mmol·L-1时达到峰值。(3)胁迫处理叶片的MDA含量与对照相比变化不显著,但根中MDA含量呈显著下降趋势。(4)叶片中SOD活性在1.00mmol·L-1 Pb2+处理时达到峰值,然后下降,但始终高于对照,CAT和POD活性则均低于对照组;根中SOD活性除1.00mmol·L-1 Pb2+处理组外均显著低于对照组,CAT和POD活性分别在0.25和0.50mmol·L-1 Pb2+处理时达到峰值,然后随处理Pb2+浓度升高而下降。(5)电镜观察发现,Pb2+胁迫使香蒲叶细胞中叶绿体被膜破裂,类囊体膨胀、破损;根和叶细胞中的线粒体被膜均破裂、内腔空泡化,细胞核核膜破损、核仁消失、染色质凝集。研究表明,Pb2+胁迫致使东方香蒲根、叶生理代谢失衡,亚细胞结构出现不可逆的损伤,这为从分子水平研究Pb2+作用的具体机理以及香蒲在重金属污染修复中的应用提供了依据。  相似文献   

15.
The interaction of La3+ with phosphatidylserine vesicles is elucidated by binding studies, differential scanning calorimetry, X-ray diffraction, freeze fracture electron microscopy, and release of vesicle contents. La3+ effectively competes with Ca2+ for phosphatidylserine binding sites. The saturation level is close to a La/lipid ratio of 1:3. A concentration of 0.1 mM of La3+ is sufficient to induce fusion between sonicated vesicles.  相似文献   

16.
The interaction of La3+ with phosphatidylserine vesicles is elucidated by binding studies, differential scanning calorimetry, X-ray diffraction, freeze fracture electron microscopy, and release of vesicle contents. La3+ effectively competes with Ca2+ for phosphatidylserine binding sites. The saturation level is close to a La/lipid ratio of 1:3. A concentration of 0.1 mM of La3+ is sufficient to induce fusion between sonicated vesicles.  相似文献   

17.
The mechanisms of growth inhibition and antioxidative response were investigated in wheat roots exposed to 300 μM iron together with different zinc concentrations (0, 50, and 250 μM). All Zn concentrations decreased Fe content but increased Zn content in the roots and leaves of Fe-treated seedlings. Compared with Fe stress alone, 50 or 250 μM Zn + Fe treatment stimulated root growth, and increased cell viability but decreased malondialdehyde content, which were correlated with the decreases of total and apoplastic hydrogen peroxide and superoxide anion radical (O2 ·?) content along with apoplastic hydroxyl radical content. Generation of O2 ·? in response to 10 μM diphenylene iodonium suggested that NADPH oxidase activity was lower in Zn + Fe-treated roots than in other roots. In addition, cell wallbound peroxidase, diamine oxidase, and polyamine oxidase in Fe-treated roots were insensitive to Zn addition. Further study showed the stimulation of total superoxide dismutase and glutathione reductase (GR) activities as well as apoplastic catalase, ascorbate peroxidase, and GR in Zn + Fe-stressed roots in comparison with Fe-alone-treated ones. Taken together, Zn could alleviate iron-inhibitory effect on root growth, which might be associated with the decrease of lipid peroxidation, the increase of cell viability and the reductions of reactive oxygen species generation.  相似文献   

18.
Trace element contamination of lands is a serious environmental problem that limits yield and threatens human health. To study the combined effect of high salinity and toxic levels of trace elements on halophytes, the performance of two marsh species, Atriplex halimus and Suaeda fruticosa, grown for 1 month with an irrigation solution supplemented with 200 mM NaCl and 400 μM Cd2+ or 400 μM Cu2+ was evaluated. The effect of the combined stress conditions on hormone signaling was also assessed. Biomass production and chlorophyll content decreased under Cd2+ stress in both species, whereas Cu2+ had a lower impact on plant performance. The different plant sensibilities to the two trace elements assayed indicate that each metal has a different effect on plants. Furthermore, the deleterious effect of metal toxicity was alleviated when NaCl was added to the irrigation solution, demonstrating that NaCl improves plant performance and tolerance of halophytic species to cope with trace element intoxication. Results show that both species accumulated important quantities of Cd2+ and Cu2+ in roots (Cd2+: 2,690–3,130 μg g?1 DW and Cu2+: 2,070–2,770 μg g?1 DW); this finding allows us to classify these species among the hyperaccumulator plants. Cd2+ and Cu2+ differently affected endogenous phytohormone contents in both species. Data suggest an essential involvement of roots on the regulation of tolerance to trace elements. Therefore, indole-3-acetic acid levels increased in roots of both species irrigated with high levels of Cd2+, which suggests that the auxin may stimulate root promotion and growth under these stress conditions. Other compounds, classically considered as “stress hormones” showed very different patterns of accumulation. Whereas, salicylic acid (SA) levels in roots and leaves increased in response to Cd2+, root contents of jasmonic acid (JA), and abscisic acid (ABA) decreased. In leaves, the rambling pattern of accumulation observed for JA and ABA suggested the lack of a specific role in regulation against trace element toxicity. Together, data suggest that SA could act as a specific signal that detects trace element toxicity, whereas JA and ABA promote general responses against abiotic stress.  相似文献   

19.
The pollution of the environment by rare earth elements (REEs) causes deleterious effects on plants. Peroxidase plays important roles in plant response to various environmental stresses. Here, to further understand the overall roles of peroxidase in response to REE stress, the effects of the REE terbium ion (Tb3+) on the peroxidase activity and H2O2 and lignin contents in the leaves and roots of horseradish during different growth stages were simultaneously investigated. The results showed that after 24 and 48 h of Tb3+ treatment, the peroxidase activity in horseradish leaves decreased, while the H2O2 and lignin contents increased. After a long-term (8 and 16 days) treatment with Tb3+, these effects were also observed in the roots. The analysis of the changes in peroxidase activity and H2O2 and lignin contents revealed that peroxidase plays important roles in not only reactive oxygen species scavenging but also cell wall lignification in horseradish under Tb3+ stress. These roles were closely related to the dose of Tb3+, duration of stress, and growth stages of horseradish.  相似文献   

20.
Cadmium (Cd) originating from atmospheric deposits, from industrial residues and from the application of phosphate fertilizers may accumulate in high concentrations in soil, water and food, thus becoming highly toxic to plants, animals and human beings. Once accumulated in an organism, Cd discharges and sets off a sequence of biochemical reactions and morphophysiological changes which may cause cell death in several tissues and organs. In order to test the hypothesis that Cd interferes in the metabolism of G. americana, a greenhouse experiment was conducted to measure eventual morphophysiological responses and cell death induced by Cd in this species. The plants were exposed to Cd concentrations ranging from 0 to 16 mg l−1, in a nutritive solution. In TUNEL reaction, it was shown that Cd caused morphological changes in the cell nucleus of root tip and leaf tissues, which are typical for apoptosis. Cadmium induced anatomical changes in roots and leaves, such as the lignification of cell walls in root tissues and leaf main vein. In addition, the leaf mesophyll showed increase of the intercellular spaces. On the other hand, Cd caused reductions in the net photosynthetic rate, stomatal conductance and leaf transpiration, while the maximum potential quantum efficiency of PS2 (Fv/Fm) was unchanged. Cadmium accumulated in the root system in high concentrations, with low translocation for the shoot, and promoted an increase of Ca and Zn levels in the roots and a decrease of K level in the leaves. High concentrations of Cd promoted morphophysiological changes and caused cell death in roots and leaves tissues of G. americana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号