首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
R. S. Pearce  I. McDonald 《Planta》1977,134(2):159-168
Tillers of Festuca arundinacea Schreb. were subjected to-8°C in a bath of methylated spirits for three-quarters of an hour. They were thawed at room temperature and some material taken from the shoot apical meristem and leaf blade for electron microscopy. Similar material was taken from control plants for electron microscopy. Nine tillers subjected to-8°C and thawed subsequently failed to regrow. Nine control tillers regrew. All the treated meristem cells and about half the treated leaf mesophyll cells were extensively altered. Their nuclei were contracted, organelles were swollen or partly disrupted, plasmalemma and nuclear membranes were broken or absent and vacuoles were sometimes disrupted. Strongly osmiophilic material accumulated in the vicinity of membranes. About half the leaf mesophyll cells differed from the control mesophyll cells only in having more spherosomes and narrower thylakoids. Parallels with other ultrastructural studies of stress damage and the indications the results give of possible primary damaging events are discussed.Abbreviations ER endoplasmic reticulum - G golgi body - M mitochondrion - Mb microbody - N nucleus - NM nuclear membrane - No nucleolus - P plasmatemma - Pg plastoglobuli - Pp proplastid - Pr polysomes - S spherosome - SOM strongly osmiophilic material - T tonoplast - Th thylakoids - V vacuole  相似文献   

2.
The fungal elicitor prepared fromBotrytis cinerea affected sanguinarine alkaloid formation and accumulation in callus cells ofPapaver somniferum L. Ultrastructural changes have been observed in association with the accumulation and secretion of sanguinarine in elicitor-treated cells. Alkaloid content in elicited cells was showed as a electrondense material (osmiophilic aggregations), which occurred on the tonoplast and in freely floating bodies in the vacuole. A 30-times increasing of sanguinarine content was observed in elicitor-treated cultures.  相似文献   

3.
Summary Cells of poppy (Papaver somniferum L.) which had been grownin vitro, treated with autoclavedBotrytis homogenate for 24 hours, and which had responded with browning and drastic sanguinarine accumulation, did not show lysis but presented an ultra-structure as known for parenchyma cells. The only change observed was the occurrence of electron-dense droplets in vacuoles dotting the tonoplast, stacking of the ER, and dilation of cisternae. At places where the cisternae were dilated the membranes were free of ribosomes. Sanguinarine accumulation appears not to require structural cell differentiation.NRCC #24164.  相似文献   

4.
The ultrastructure of nonarticulated laticifers in the seedlings ofEuphorbia maculata was studied at various developmental stages. The apical regions of the seedling laticifers growing intrusively contained large nuclei with mainly euchromatin and dense cytoplasm possessing various and many organelles such as rich ribosomes, several small vacuoles, giant mitochondria with dense matrices, rough endoplasmic reticulum, dictyosomes, and proplastids. This result suggested that the apical regions of laticifers were metabolically very active. Laticifers in seedlings at the first-leaf developmental stage did not contain latex particle. In seedlings at second-leaf growth stage, the laticifer cells contained numerous and elongated small vacuoles. These vacuoles appeared to arise by dilation of the endoplasmic reticulum and frequently possessed osmiophilic or electron-dense latex particles. The small vacuoles fused with the large vacuole occupying the central portion of the subapical region of laticifers, and then the latex particles were released into the large central vacuole. The latex particles varied in size and were lightly or darkly stained. Proplastids with a dense matrix and a few osmiophilic plastoglobuli were filled with an elongated starch grain and thus were transformed into amyloplasts. Latex particles were initially produced in the laticifers after seedlings had developed their second young leaves. In seedlings at forth-leaf stage, latex particles with an alveolated rim were found in the laticifers.  相似文献   

5.
Discontinuous sucrose gradient fractionations indicate that the high-affinity auxin binding protein which can be solubilized from the microsomes of coleoptiles and primary leaves of Zea mays L. seedlings is probably located in the endoplasmic reticulum (ER). Since aromatic hydroxylations are enzymatic activities typical of the ER of plant cells, we have examined the effects of several electron-transport inhibitors on the binding of 1-naphthylacetic acid (NAA). NaN3 strongly inhibits this binding, but KCN and CO do not. Trans-cinnamic acid and trans-p-coumaric acid, which are the substrates of ER hydroxylase activities in plants (but which are themselves not auxins), also inhibit this binding. Supernatant fractions from corn shoots contain factors inhibitory to the binding of NAA to the intact membranes and solubilized Site I auxin-binding protein. Here we show that these factors are competitive inhibitors of the binding of [14C]NAA but do not change the apparent affinity of the protein for indoleacetic acid, 2,4-dichlorophenoxyacetic acid or naphthoxyacetic acid. Several tissues were assayed for factors inhibitory to auxin binding to the solubilized protein, but only supernants from corn shoots were markedly inhibitory at low concentrations.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - ER endoplasmic reticulum - IAA 3-indolylacetic acid - nKP n x 100 x g pellet - NAA 1-naphthylacetic acid C.I.W.-D.P.B. Publication No. 656  相似文献   

6.
Cotyledon mcsophyll cells in maturing seeds of Gossypium hirsutum from aleurone grains by accumulation of protein and other materials in vacuoles. Globoids and unidentified, electron-dense particles can be found in the matrix of amorphous protein. As revealed by electron microscopy, the vacuoles appear to communicate with cisternae of endoplasmic reticulum in early stages of development. This paper and many reports in the literature cast doubt on the reported plastid nature of certain aleurone grains.  相似文献   

7.
Summary Electron microscopic studies revealed that major cytological changes in the cortical cells of poplar (Populus euramericana cv. gelrica) began to occur in early September in conjunction with the metabolic transition from the growing to the wintering stage. During this transition, the cells became temporarily rich in endoplasmic reticulum, polysomes and vesicles. As the conspicuous formation of organelles progressed, the large vacuoles became smaller and filled with osmiophilic materials. Undefined organelles (protein-lipid bodies) also increased in number. From late October until March, organelles involved in protein synthesis were sparsely distributed in the cells, indicating that the number of these organelles is probably linked to the seasonal cycle of protein synthesis. In early February, after release from dormancy, fusion of vacuoles proceeded in the cells. The inclusion of organelles and a gradual decrease in the amount of osmiophilic materials in the vacuoles occurred at this stage. Subsequently, the structure of the cells continued to undergo changes to accommodate growth, which occurred in early May.  相似文献   

8.
An NMR method with a pulsed magnetic field gradient was applied to study changes in water permeability of the vacuolar symplast in maize (Zea mays L.) seedling roots treated with various inhibitors of cell metabolism. The results were qualitatively analogous to literature data on conductivity changes of intercellular gap junctions in animal cells exposed to similar treatments. Electron microscopy examination of root cells provided evidence for the existence of membrane contacts between the endoplasmic reticulum and the tonoplast. It is supposed that vacuoles of neighboring plant cells are interconnected through highly dynamical gap junctions between the tonoplast and the endoplasmic reticulum membrane.  相似文献   

9.
Three glucosinolate-containing species, Armoracia rusticana Gaertner, Meyer et Scherbius (Brassicaceae), Capparis cynophallophora L. (Capparaceae) and Drypetes roxburghii (Wall.) Hurusawa (Euphorbiaceae), are shown by both light and electron microscopy to contain protein-accumulating cells (PAC). The PAC of Armoracia and Copparis (former myrosin cells) occur as idioblasts. The PAC of Drypetes are usual members among axial phloem parenchyma cells rather than idioblasts. In Drypetes the vacuoles of the PAC are shown ultrastructurally to contain finely fibrillar material and to originate from local dilatations of the endoplasmic reticulum. The vacuoles in PAC of Armoracia and Capparis seem to originate in the same way; but ultrastructurally, their content is finely granular. In addition, Armoracia and Capparis are shown by both light and electron microscopy to contain dilated cisternae (DC) of the endoplasmic reticulum in normal parenchyma cells, in accord with previous findings for several species within Brassicaceae. The relationship of PAC and DC to glucosinolates and the enzyme myrosinase is discussed.Abbreviations ABB aniline blue black - DC dilated cisternae - EM electron microscopy - ER endoplasmic reticulum - GMA glycolmethacrylate - LM light microscopy - MBB mercuric bromphenol blue - PAC protein-accumulating cells - PAS periodic acid-Schiff Recipient of an Alexander von Humboldt Award and in residence at the University of Heidelberg during the period when this research was carried out. Permanent address: Department of Botany and Cell Research Institute, University of Texas, Austin, Texas 78712, USA  相似文献   

10.
Anatomical and submicroscopical changes in the cotyledons and radicles of Bidens cernua L. have been studied at five developmental stages. In the subcellular structure, these two plant organs are relatively similar but each developmental stage is characterized by a distinct fine structure. Protein bodies, which occupy the bulk of the cell in dormant embryos, develop as filling products of vacuoles. Ribosomes are seen abundantly at this stage, both in the nucleus and the plasma strands. Small vesicles which are the initials of globoids can be detected in the vacuoles even of rather young cells. They later associate at the periphery of protein masses secreted in the vacuoles. Many light globoids are seen in the protein bodies of mature cells. Some amyloplasts are present in the early developmental stages but not in the dormant cells. The endoplasmic reticulum becomes filled with osmiophilic storage fat, and later many spherosomes are seen between the protein bodies. Some osmiophilic material is also found in the intercellular spaces.  相似文献   

11.
Glycoproteins extracted from microsomes of in-vitro-cultured cells of Daucus carota L. cv. US-Harumakigosun were analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and detected by peroxidase-conjugated concanavalin A. The appearance of a glycoprotein with Mr 31 000 (GP 31) was correlated with the ability of cells to form somatic embryos. GP 31 appeared in embryogenic cells cultured in 2,4-dichlorophenoxyacetic acid (2,4-D)-containing medium, but not in somatic embryos and non-embryogenic cells; it disappeared when the cultures were transferred to auxin-free medium. Another glycoprotein with Mr 32 000 (GP 32) was detected only in non-embryogenic cells, regardless of the presence or absence of 2,4-D. Both glycoproteins, GP 31 and GP 32, were associated with the rough endoplasmic reticulum and were extractable with 0.05% deoxycholate.Abbreviations Con A concanavalin A - 2,4-D 2,4-dichlorophenoxyacetic acid - ER endoplasmic reticulum - GP 31, GP 32 a glycoprotein with an apparent molecular mass of 31 or 32 kdalton - kDa kilodalton - MS Murashige and Skoog - Mr apparent molecular mass - SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis  相似文献   

12.
The lectin, concanavalin A (Con A), was localized in the cotyledon of developing jack beans (Canavalia ensiformis (L.) DC) by electron-microscope immunocytochemistry. In mature seeds, Con A was present in protein-storage vacuoles (protein bodies) of storage-parenchyma cells. Although protein bodies could be seen in other cell types, only protein bodies in storage-parenchyma cells contained Con A. During seed development, Con A was also localized on the endoplasmic reticulum and Golgi apparatus, presumably en route toward deposition within the protein bodies. The intensity of labeling of the endoplasmic reticulum was much greater during the developmental stage of protein-body filling (66% final seed weight) than in mature seeds.Abbreviations Con A concanavalin A - ER endoplasmic reticulum - IgG immunoglobulin G  相似文献   

13.
Summer and winter (July and January) samples of secondary phloem of Tilia americana were studied with the electron microscope. Parenchyma cells contain: nuclei, endoplasmic reticulum, ribosomes, plastids, mitochondria and occasional dictyosomes. Well-defined tonoplasts separate vacuoles from cytoplasmic ground substance. Vacuoles often contain tannins. Lipid droplets are common in cytoplasm. Endoplasmic reticulum–connected plasmodesmata are aggregated in primary pit fields. Companion cells differ from parenchyma cells in having numerous sieve-element connections, possibly slime, and in lacking plastids. Mature, enucleate sieve elements possess 1–4 extruded nucleoli. Numerous vesicles occupy a mostly parietal position in association with plasmalemma. The mature sieve element lacks endoplasmic reticulum, organelles (except for few mitochondria) and tonoplast. In OsO4– and glutaraldehyde-fixed elements, slime has a fine, fibrillar appearance. Normally, these fine fibrils are organized into coarser ones which form strands that traverse the cell and the plasmalemma-lined pores of sieve plates and lateral sieve areas.  相似文献   

14.
Summary During imbibition ofPhoenix dactylifera embryos, all cotyledon cells show the same changes: protein and lipid bodies degrade, smooth endoplasmic reticulum (ER) increases in amount, and dictyosomes appear. At germination, the distal portion of the cotyledon expands to form the haustorium. At this time, epithelial cells have a dense cytoplasm with many extremely small vacuoles. Many ribosomes are present along with ER, dictyosomes, and mitochondria. The parenchyma cells have large vacuoles and a small amount of peripheral cytoplasm. Between 2 and 6 weeks after germination, epithelial cells still retain the dense cytoplasm and many organelles appear: glyoxysomes, large lipid bodies, amyloplasts, large osmiophilic bodies, and abundant rough and smooth ER which appear to merge into the plasmalemma. A thin electron-transparent inner wall layer with many small internal projections is added to the cell walls. Starch grains appear first in the subsurface and internal parenchyma and subsequently in the epithelium. Lipid bodies, glyoxysomes, protein, and osmiophilic bodies occur in the epithelial and subepithelial cell layers but not in the internal parenchyma. At 8 weeks after germination, the cytoplasm becomes electron transparent, vacuolation occurs, lipid bodies and osmiophilic bodies degrade, and the endomembranes disassemble. After 10 weeks, the cells are empty. These data support the hypothesis that the major functions of the haustorium are absorption and storage.  相似文献   

15.
Xia Cai  Wei Li  Lingfang Yin 《Protoplasma》2009,238(1-4):3-10
Acid phosphatase (AcPase) activities are involved in the degeneration process of cytoplasm in plants. In this study, acid phosphatase was detected by the method of lead nitrate and cytochemical electron microscopy during the development of nonarticulated laticifers in Euphorbia kansui Liou. The most important feature in the differentiation of the laticifers in E. kansui is that the development of small vacuoles arises from endoplasmic reticulum (ER). The mature laticifers possess a thin layer of electron-dense peripheral cytoplasm in which the organelle cannot be distinguished and a large central vacuole filled with latex particles. AcPase cytochemistry studies show AcPase reaction products congregated into heaps are distributed along the tonoplast of central vacuole and around the mitochondria and plastids. Some small vacuoles which develop at later developmental stages of laticifers contain AcPase reaction products. As a result, the central vacuole is formed by cellular autophagy and fusion of small vacuoles which apparently arises from ER.  相似文献   

16.
R. D. Record  L. R. Griffing 《Planta》1988,176(4):425-432
Ultrastructural analysis of endocytosis of cationized ferritin (CF) has been combined with ultrastructural localization of acid phosphatases (AcPase) in soybean (Glycine max (L.) Merr.) protoplasts. While CF is an electron-dense marker of organelles of the endocytic pathway, ultrastructural histochemistry of AcPase identifies the organelles involved in the synthesis, transport, and storage of lytic-compartment enzymes, i.e. the lysosomal pathway. Acid phosphatases have been localized using both lead- and cerium-precipitation techniques. Protoplasts have been exposed to CF for 5 min, 30 min, or 3 h and processed for AcPase localization. At 5 min, smooth vesicles contain both CF and AcPase. By 30 min, Golgi cisternae and multivesicular bodies contain both labels. By 3 h, vacuoles become labelled with both CF and AcPase. The large central vacuoles contain intraluminal membranes which are associated with both AcPase and CF. These observations extend the analogy between plant vacuoles and animal lysosomes and demonstrate the points at which the endocytic pathway of plants converges with the lysosomal pathway.Abbreviations AcPase acid phosphatase - CF cationized ferritin - ER endoplasmic reticulum - MVB multivesicular body - PCR partially coated reticulum - PM plasma membrane  相似文献   

17.
Summary In the powdery mildew disease of barley,Erysiphe graminis f. sp.hordei forms an intimate relationship with compatible hosts, in which haustoria form in epidermal cells with no obvious detrimental effects on the host until late in the infection sequence. In incompatible interactions, by contrast, the deposition of papillae and localized host cell death have been correlated with the cessation of growth byE. g. hordei. With the advent of improved, low temperature methods of sample preparation, we felt that it was useful to reevaluate the structural details of interactions between barley andE. g. hordei by transmission electron microscopy. The haustoria that develop in susceptible barley lines appear highly metabolically active based on the occurrrence of abundant endoplasmic reticulum, Golgi-like cisternae, and vesicles. In comparison, haustoria found in the resistant barley line exhibited varying signs of degradation. A striking clearing of the matrix and loss of cristae were typical early changes in the haustorial mitochondria in incompatible interactions. The absence of distinct endoplasmic reticulum and Golgi-like cisternae, the formation of vacuoles, and the occurrence of a distended sheath were characteristic of intermediate stages of haustorial degeneration. At more advanced stages of degeneration, haustoria were dominated by large vacuoles containing membrane fragments. This process of degeneration was not observed in haustoria ofE. g. hordei developing in the susceptible barley line.Abbreviations b endoplasmic reticulum extension, blebbing - er endoplasmic reticulum - f fibrillar material - g Golgi-like structure - h haustorium - hb haustorial body - hcw haustorial cell wall - hcy haustorial cytoplasm - hf haustorial finger - hocw host cell wall - hocy host cytoplasm - 1 lipid-like droplet - m mitochondrion - mt microtubule - mve multivesicular body - n nucleus - p papilla - ph penetration site of an infection peg - pl plasma membrane - s sheath - sm extrahaustorial membrane - v vacuole - ve vesicle  相似文献   

18.
B. A. Fineran 《Protoplasma》1970,70(3-4):457-478
Summary A comparison is made of the form of vacuoles in thin sections and freeze-etch replicas of root tips. In sections, vacuoles exhibit a diversity of shapes, the greatest irregularity being found with fixation in aqueous KMnO4. Vacuoles of frozen-etched roots are mainly spherical. They are not found with narrow extensions or angular irregularities but retain a turgid appearance with a smoothly contoured tonoplast, except in some prefixed and poorly frozen fresh cells. As freeze-etching avoids artifacts of sectioning techniques it is considered that results obtained from freeze-etching give a more accurate picture of the shape of vacuoles. The irregular shapes of vacuoles in thin sections are apparently caused by shrinkage during fixation. When shrinkage is severe, portions of the tonoplast become apposed and superficially resemble profiles of endoplasmic reticulum.  相似文献   

19.
Summary Using susceptible and resistant sugar beet lines, comparative analyses of root histology and ultrastructure were made during invasion by nematodes and the induction and formation of specific feeding structures (syncytia).The resistant line carried the resistance geneHs1pro–1.Nematodes were able to invade and induce functional syncytia in roots of resistant and susceptible lines. However, syncytia in resistant roots were smaller and less hypertrophied. The vacuolar system of syncytia in susceptible plants contained many small vacuoles. In resistant plants vacuoles were larger but less numerous. Smooth endoplasmic reticulum prevailed in syncytial protoplasts of susceptible plants, whereas almost only rough endoplasmic reticulum occurred in syncytia in resistant plants. The most conspicuous and hitherto undescribed trait of syncytia in resistant roots was the initial appearance of loose, and later compact, aggregations of the endomembrane system which composed most of the endoplasmicreticulum system of syncytia at later stages. Syncytia in resistant plants usually degraded before the nematodes reached their adult stage. The appearance of membrane aggregations and the other resistance-specific features are discussed in relation to their possible effects on syncytium function and role in nematode resistance.Abreviations DAI days after inoculation - ER endoplasmic reticulum - ISC initial syncytial cell - J2 second-stage juvenile - MA membrane aggregations - RER rough endoplasmic reticulum - SER smooth endoplasmic reticulum  相似文献   

20.
Novel vesicles that accumulate large amounts of proprotein precursors of storage proteins were purified from maturing pumpkin seeds. These vesicles were designated precursor-accumulating (PAC) vesicles and had diameters of 200 to 400 nm. They contained an electron-dense core of storage proteins surrounded by an electron-translucent layer, and some vesicles also contained small vesicle-like structures. Immunocytochemical analysis revealed numerous electron-dense aggregates of storage proteins within the endoplasmic reticulum. It is likely that these aggregates develop into the electron-dense cores of the PAC vesicles and then leave the endoplasmic reticulum. Immunocytochemical analysis also showed that complex glycans are associated with the peripheral region of PAC vesicles but not the electron-dense cores, indicating that Golgi-derived glycoproteins are incorporated into the PAC vesicles. These results suggest that the unique PAC vesicles might mediate a transport pathway for insoluble aggregates of storage proteins directly to protein storage vacuoles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号