首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Mammalian cells require a constant supply of oxygen in order to maintain adequate energy production, which is essential for maintaining normal function and for ensuring cell survival. Sustained hypoxia can result in cell death. Sophisticated mechanisms have therefore evolved which allow cells to respond and adapt to hypoxia. Specialized oxygen-sensing cells have the ability to detect changes in oxygen tension and transduce this signal into organ system functions that enhance the delivery of oxygen to tissue in a wide variety of different organisms. An increase in intracellular calcium levels is a primary response of many cell types to hypoxia/ischemia. The response to hypoxia is complex and involves the regulation of multiple signaling pathways and coordinated expression of perhaps hundreds of genes. This review discusses the role of calcium in hypoxia-induced regulation of signal transduction pathways and gene expression. An understanding of the molecular events initiated by changes in intracellular calcium will lead to the development of therapeutic approaches toward the treatment of hypoxic/ischemic diseases and tumors.  相似文献   

4.
5.
谷胱甘肽硫转移酶基因表达的调控   总被引:4,自引:0,他引:4  
催化内源性或外源性亲电子化合物与谷胱甘肽(GSH)结合的谷胱甘肽硫转移酶(GST)超基因家族是一族解毒功能蛋白.其基因的表达通过不同的机制受多种物质的调控.根据最近文献资料,对调控谷胱甘肽硫转移酶基因表达的基因结构、调控机制及氧化应激对谷胱甘肽硫转移酶基因表达的调控作用等作一简要综述.  相似文献   

6.
7.
During development, it is essential for gene expression to occur in a very precise spatial and temporal manner. There are many levels at which regulation of gene expression can occur, and recent evidence demonstrates the importance of mRNA stability in governing the amount of mRNA that can be translated into functional protein. One of the most important discoveries in this field has been miRNAs (microRNAs) and their function in targeting specific mRNAs for repression. The wing imaginal discs of Drosophila are an excellent model system to study the roles of miRNAs during development and illustrate their importance in gene regulation. This review aims at discussing the developmental processes where control of gene expression by miRNAs is required, together with the known mechanisms of this regulation. These developmental processes include Hox gene regulation, developmental timing, growth control, specification of SOPs (sensory organ precursors) and the regulation of signalling pathways.  相似文献   

8.
A new field of gene expression regulation research is emerging that has previously been overlooked. This new area is concerned with distinguishing the expression of a single gene from the averaged expression of many gene copies within the cell population. This paper reviews research focused on individual genes in inducible gene expression systems. The main experimental strategy is to measure the gene expression level of a single cell containing a single reporter gene molecule. In contrast to the commonly held belief, gene induction is found to be stochastic under certain conditions. The possible mechanisms and implications are discussed.  相似文献   

9.
Nitrogen fixation by aerobic prokaryotes appears paradoxical: the nitrogen-fixing enzymes—nitrogenases—are notoriously oxygen-labile, yet many bacteria fix nitrogen aerobically. This review summarises the evidence that cytochrome bd, a terminal oxidase unrelated to the mitochondrial and many other bacterial oxidases, plays a crucial role in aerotolerant nitrogen fixation in Azotobacter vinelandii and other bacteria by rapidly consuming oxygen during uncoupled respiration. We review the pertinent properties of this oxidase, particularly its complement of redox centres, the catalytic cycle of oxygen reduction, the affinity of the oxidase for oxygen, and the regulation of cytochrome bd gene expression. The roles of other oxidases and other mechanisms for limiting damage to nitrogenase are assessed.  相似文献   

10.
转录因子与microRNA在基因表达调控中的功能联系及差异   总被引:1,自引:0,他引:1  
转录因子和微RNA(microRNA)是最大的两类反式作用因子,它们是基因表达调控的重要调控因子.它们协调发挥调控作用,精细调控基因的表达,在细胞分化和动物生长发育过程中发挥重要的作用.随着对转录因子和microRNA研究的深入,人们发现转录因子和microRNA在基因表达调控网络中关系紧密,它们的分子作用机制有许多相似之处,两者都通过各自的顺式作用元件调控基因表达,且作用的方式类似.但转录因子和microRNA也存在不同之处,转录因子既可以激活基因表达,也可抑制基因表达,而microRNA主要是抑制基因表达.另外,转录因子调控区的复杂性一般高于microRNA的调控区域.本文综述了转录因子和microRNA的异同点,并提出了未来转录因子和microRNA的研究方向.  相似文献   

11.
魏宗波  苗向阳  杨鸣琦  罗绪刚 《遗传》2008,30(7):831-837
MnSOD是生物体内重要的氧自由基清除剂, 具有抗氧化和抗肿瘤作用。MnSOD基因的表达调控是一个复杂的过程, 多种转录因子、细胞信号分子和细胞信号通路参与其中。MnSOD基因的表达调控包括转录调控、转录后调控和翻译调控3个方面。转录调控是MnSOD基因表达调控的第一个层次, 在MnSOD基因表达的过程中起重要作用。它主要是通过调节与MnSOD基因转录相关的转录因子活性来实现的, 例如特异蛋白-1 (SP-1)、激活蛋白-2(AP-2)、激活蛋白-1(AP-1)、核因子-卡巴B(NF-κB)等。药物和金属离子就是通过改变这些转录因子的活性来调控MnSOD基因表达的, 另外某些基因的突变和缺失也能改变这些转录因子的活性。转录后调控主要体现在改变mRNA的稳定性或mRNA的翻译上。翻译调控则是对MnSOD多肽的编辑、修饰并与相应的金属离子结合及定位的调控。近年来发现了一种线粒体MnSOD的锰转运因子, 它对MnSOD活性的调控起重要作用。文章综述了这一研究领域的一些进展, 着重讨论了MnSOD基因的转录调控和翻译调控, 并展望了MnSOD基因表达调控的研究方向。  相似文献   

12.
13.
Changes in plant gene expression during stress   总被引:5,自引:0,他引:5  
Changes in gene expression which occur during periods of environmentally induced stress provide models for the study of gene regulation. Several types of stress have been shown to elicit a specific and reproducible pattern of gene expression in various plant species. These stress factors include heat shock, anaerobiosis, plant pathogens, oxygen free radicals, heavy metals, water stress, and chilling. In some cases, changes in specific genes have been identified, such as increases in the expression of the gene encoding the phytoalexin-synthesizing enzyme in pathogen elicitor-treated cells. However, in most cases, the functional identity of stress-induced genes is unknown. The alterations in gene expression during stress usually are rapid and repeatable, making these genetic systems ideal for examination of factors and mechanisms involved in gene regulation.  相似文献   

14.
15.
16.
17.
18.
19.
Reactive oxygen species (ROS) act as subcellular messengers in such complex cellular processes as mitogenic signal transduction, gene expression, regulation of cell proliferation, replicative senescence, and apoptosis. They serve to maintain cellular homeostasis and their production is under strict control. However, the mechanisms whereby ROS act are still obscure. Here we review recent advances in our understanding of signaling mechanisms and recent data about the involvement of ROS in: (i) the regulation of the mitogenic transduction elements, particularly protein kinases and phosphatases; (ii) the regulation of gene expression; and (iii) the induction of replicative senescence and the role, if any, in aging and age-related disorders.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号