首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
S A Moyer  A K Banerjee 《Cell》1975,4(1):37-43
The virion-associated RNA-dependent RNA polymerase of vesicular stomatitis virus (VSV) synthesizes in vitro two size classes of RNA products similar to those observed in VSV-infected cells. One RNA product sediments at 31S with an approximate molecular weight of 2.1 X 106. The smaller products consist of at least three classes of RNA sedimenting at 17S, 14.5S, and 12S with molecular weights of 0.7 X 106, 0.52 X 106, and 0.37 X 106, respectively. Hybridization experiments show that both the 31S and 12-18S RNA products are complementary to the genome RNA, and that each class is transcribed from different nucleotide sequences. From the molecular weights of the RNA species and the hybridization experiments, it seems that almost the entire VSV genome RNA is transcribed in vitro.  相似文献   

4.
Vaughan R  Fan B  You JS  Kao CC 《RNA (New York, N.Y.)》2012,18(8):1541-1552
Understanding how the hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) interacts with nascent RNA would provide valuable insight into the virus's mechanism for RNA synthesis. Using a peptide mass fingerprinting method and affinity capture of peptides reversibly cross-linked to an alkyn-labeled nascent RNA, we identified a region below the Δ1 loop in the fingers domain of the HCV RdRp that contacts the nascent RNA. A modification protection assay was used to confirm the assignment. Several mutations within the putative nascent RNA binding region were generated and analyzed for RNA synthesis in vitro and in the HCV subgenomic replicon. All mutations tested within this region showed a decrease in primer-dependent RNA synthesis and decreased stabilization of the ternary complex. The results from this study advance our understanding of the structure and function of the HCV RdRp and the requirements for HCV RNA synthesis. In addition, a model of nascent RNA interaction is compared with results from structural studies.  相似文献   

5.
The hepatitis C virus (HCV) NS5B protein encodes an RNA-dependent RNA polymerase (RdRp), the primary catalytic enzyme of the HCV replicase complex. We established a biochemical RNA synthesis assay, using purified recombinant NS5B lacking the C-terminal 21 amino acid residues, to identify potential polymerase inhibitors from a high throughput screen of the GlaxoSmithKline proprietary compound collection. The benzo-1,2,4-thiadiazine compound 1 was found to be a potent, highly specific inhibitor of NS5B. This agent interacts directly with the viral polymerase and inhibits RNA synthesis in a manner noncompetitive with respect to GTP. Furthermore, in the absence of an in vitro-reconstituted HCV replicase assay employing viral and host proteins, the ability of compound 1 to inhibit NS5B-directed viral RNA replication was determined using the Huh7 cell-based HCV replicon system. Compound 1 reduced viral RNA in replicon cells with an IC(50) of approximately 0.5 microm, suggesting that the inhibitor was able to access the perinuclear membrane and inhibit the polymerase activity in the context of a replicase complex. Preliminary structure-activity studies on compound 1 led to the identification of a modified inhibitor, compound 4, showing an improvement in both biochemical and cell-based potency. Lastly, data are presented suggesting that these compounds interfere with the formation of negative and positive strand progeny RNA by a similar mode of action. Investigations are ongoing to assess the potential utility of such agents in the treatment of chronic HCV disease.  相似文献   

6.
Identification and characterization of small RNAs involved in RNA silencing   总被引:22,自引:0,他引:22  
Aravin A  Tuschl T 《FEBS letters》2005,579(26):5830-5840
Double-stranded RNA (dsRNA) is a potent trigger of sequence-specific gene silencing mechanisms known as RNA silencing or RNA interference. The recognition of the target sequences is mediated by ribonucleoprotein complexes that contain 21- to 28-nucleotide (nt) guide RNAs derived from processing of the trigger dsRNA. Here, we review the experimental and bioinformatic approaches that were used to identify and characterize these small RNAs isolated from cells and tissues. The identification and characterization of small RNAs and their expression patterns is important for elucidating gene regulatory networks.  相似文献   

7.
8.
9.
10.
11.
Endogenous short RNAs (esRNAs) play diverse roles in eukaryotes and usually are produced from double-stranded RNA (dsRNA) by Dicer. esRNAs are grouped into different classes based on biogenesis and function but not all classes are present in all three eukaryotic kingdoms. The esRNA register of fungi is poorly described compared to other eukaryotes and it is not clear what esRNA classes are present in this kingdom and whether they regulate the expression of protein coding genes. However, evidence that some dicer mutant fungi display altered phenotypes suggests that esRNAs play an important role in fungi. Here, we show that the basal fungus Mucor circinelloides produces new classes of esRNAs that map to exons and regulate the expression of many protein coding genes. The largest class of these exonic-siRNAs (ex-siRNAs) are generated by RNA-dependent RNA Polymerase 1 (RdRP1) and dicer-like 2 (DCL2) and target the mRNAs of protein coding genes from which they were produced. Our results expand the range of esRNAs in eukaryotes and reveal a new role for esRNAs in fungi.  相似文献   

12.
13.
Foot-and-mouth disease virus causes a highly contagious disease of agricultural livestock and is of enormous economic importance. Replication of the RNA genome of the virus, via negative strand intermediates, involves an RNA-dependent RNA polymerase (3Dpol). RNA aptamers specific to this enzyme have been selected and characterized. Some of these molecules inhibit enzymatic activity in vitro, with IC50 values of <20 nM and Ki values of 18-75 nM. Two of these show similarity, both with each other and with regions of the viral genome. Furthermore, truncated versions of one of the aptamers have been used to define the parts of the molecule responsible for its inhibitory activity.  相似文献   

14.
15.
16.
17.
18.
M M Konarska  P A Sharp 《Cell》1990,63(3):609-618
The DNA-dependent RNA polymerase of bacteriophage T7 efficiently and specifically replicates two structurally related RNAs, termed X and Y RNAs. Replication of both RNAs involves synthesis of complementary strands initiated with pppC and pppG. RNAs transcribed from DNA template containing the established sequences of X and Y RNAs were efficiently replicated by T7 RNA polymerase. Both RNAs possess palindromic sequences with a dual axis of symmetry, permitting formation of hairpin-, dumbbell-, or cloverleaf-type structures. The template must consist of RNA and not DNA sequence, and the terminal unpaired dinucleotides of the RNA are necessary for replication. Nucleotidyl transferase activity of E. coli adenylates the unpaired CCOH dinucleotide at the 3' end of a C strand of X RNA. This feature, as well as the length (64 nucleotides) and compact structure of X and Y RNAs, suggests that they may resemble tRNA molecules and tRNA-like structures at the 3' termini of many plant viral RNA genomes.  相似文献   

19.
20.
Hepatitis C virus (HCV) is the major etiological agent of non-A, non-B post-transfusion hepatitis. Its genome, a (+)-stranded RNA molecule of approximately 9.4 kb, encodes a large polyprotein that is processed by viral and cellular proteases into at least nine different viral polypeptides. As with other (+)-strand RNA viruses, the replication of HCV is thought to proceed via the initial synthesis of a complementary (-) RNA strand, which serves, in turn, as a template for the production of progeny (+)-strand RNA molecules. An RNA-dependent RNA polymerase has been postulated to be involved in both of these steps. Using the heterologous expression of viral proteins in insect cells, we present experimental evidence that an RNA-dependent RNA polymerase is encoded by HCV and that this enzymatic activity is the function of the 65 kDa non-structural protein 5B (NS5B). The characterization of the HCV RNA-dependent RNA polymerase product revealed that dimer-sized hairpin-like RNA molecules are generated in vitro, indicating that NS5B-mediated RNA polymerization proceeds by priming on the template via a 'copy-back' mechanism. In addition, the purified HCV NS5B protein was shown to perform RNA- or DNA oligonucleotide primer-dependent RNA synthesis on templates with a blocked 3' end or on homopolymeric templates. These results represent a first important step towards a better understanding of the life cycle of the HCV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号