首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Profilin-1 (Pfn1) is an important actin-regulatory protein that is downregulated in human breast cancer and when forcibly elevated, it suppresses the tumor-initiating ability of triple-negative breast cancer cells. In this study, we demonstrate that Pfn1 overexpression reduces the stem-like phenotype (a key biologic feature associated with higher tumor-initiating potential) of MDA-MB-231 (MDA-231) triple-negative breast cancer cells. Interestingly, the stem-like trait of MDA-231 cells is also attenuated upon depletion of Pfn1. A comparison of cancer stem cell gene (CSC) gene expression signatures between depleted and elevated conditions of Pfn1 further suggest that Pfn1 may be somehow involved in regulating the expression of a few CSC-related genes including MUC1, STAT3, FZD7, and ITGB1. Consistent with the reduced stem-like phenotype associated with loss-of-function of Pfn1, xenograft studies showed lower tumor-initiating frequency of Pfn1-depleted MDA-231 cells compared to their control counterparts. In MMTV:PyMT mouse model, homozygous but not heterozygous deletion of Pfn1 gene leads to severe genetic mosaicism and positive selection of Pfn1-proficient tumor cells further supporting the contention that a complete lack of Pfn1 is likely not conducive for efficient tumor initiation capability of breast cancer cells. In summary, these findings suggest that the maintenance of optimal stemness and tumor-initiating ability of breast cancer cells requires a balanced expression of Pfn1.  相似文献   

2.
3.
目的 本研究旨在明确精氨酸甲基转移酶(PRMT)7在人骨髓间充质干细胞(hBMSCs)成脂分化过程中的变化以及是否调控hBMSCs成脂分化,进而探索相应的调控机制。方法 通过定量反转录PCR(qRT-PCR)和蛋白质印迹(Western blot)检测hBMSCs成脂分化过程中PRMT7的变化;通过qRT-PCR和Western blot实验证明PRMT7稳定敲低细胞系构建成功。进行油红O染色和定量分析,以及qRT-PCR和Western blot实验检测PRMT7稳定敲低细胞系成脂分化水平的变化;通过裸鼠体内异位成脂实验,油红O染色检测PRMT7稳定敲低细胞系体内异位成脂的效果;通过qRT-PCR和Western blot证明PRMT7稳定过表达细胞系构建成功。进行油红O染色和定量分析以及qRT-PCR和Western blot实验检测PRMT7稳定过表达细胞系成脂分化水平的变化;通过qRT-PCR和Western blot实验检测敲低PRMT7和过表达PRMT7的细胞中IGF-1表达水平的变化。在PRMT7稳定敲低细胞系中转染siIGF-1并通过qRT-PCR和Western blot检测IGF-1的表达水平验证敲低效率。通过油红O染色和定量分析,qRT-PCR实验检测转染siIGF-1的敲低组hBMSCs成脂分化水平的变化。结果 本文发现:在hBMSCs成脂过程中,PRMT7表达水平明显降低(P<0.01);敲低PRMT7后hBMSCs的成脂分化能力增强(P<0.001);敲低PRMT7后hBMSCs的体内异位成脂分化能力增强;过表达PRMT7后hBMSCs的成脂分化能力减弱(P<0.01);PRMT7敲低后IGF-1表达水平增加(P<0.000 1);PRMT7过表达后IGF-1表达水平降低(P<0.000 1);转染siIGF-1后,各细胞系IGF-1表达水平明显降低(P<0.001);敲低组转染siIGF-1后成脂分化能力明显降低(P<0.01)。结论 本研究通过细胞水平和裸鼠皮下移植实验发现PRMT7显著抑制hBMSCs成脂分化,机制研究发现PRMT7对hBMSCs成脂分化的调控作用依赖IGF-1信号通路。上述研究表明,PRMT7可能是治疗相关疾病的潜在分子靶点,为PRMT7和hBMSCs应用于相关疾病治疗提供了新思路。  相似文献   

4.
NSCs (neural stem cells) are undifferentiated neural cells endowed with a high potential for proliferation and a capacity for self-renewal with retention of multipotency to differentiate into neurons and glial cells. It has been recently reported that GD3, a b-series ganglioside, is a marker molecule for identifying and isolating mouse NSCs. However, the expression of gangliosides in human NSCs is largely unknown. In the present study, we analysed the expression of gangliosides, GD2 and GD3, in human NSCs that were isolated from human brains at gestational week 17 in the form of neurospheres, which are floating clonal aggregates formed by NSCs in vitro. Employing immunocytochemistry, we found that human NSCs were strongly reactive to anti-GD2 antibody and relatively weakly reactive to anti-GD3 antibody. Treatment of these cells with an organic solvent such as 100% methanol, which selectively removes glycolipids from plasma membrane, abolished the immunoreactivity with those antibodies, indicating that the reactivity was due to GD2 and GD3, but not to GD2-/GD3-like glycoproteins or proteoglycans. The immunoreactivity of human NSCs to antibody against SSEA-1 (stage-specific embryonic antigen-1), a well-known carbohydrate antigen of NSCs, was not decreased by the treatment with 100% methanol, indicating that SSEA-1 is mainly carried by glycoproteins and/or proteoglycans in human NSCs. Our study suggests that GD2 and GD3 can be marker gangliosides for identifying human NSCs.  相似文献   

5.
原发性肝癌是一种发生在肝脏的侵袭性肿瘤,具有极易发生转移和复发的特点.原发性肝癌主要包括肝细胞癌、肝内胆管癌、混合肝细胞胆管癌和纤维板层型肝细胞癌等.目前,手术切除、放射性和化学治疗仍是肝癌治疗的主要手段,但其特异性差、临床效果有限,肝癌患者5年总生存率仅为18%.肝癌干细胞是存在于肝癌组织中特定的细胞亚群,具有自我更...  相似文献   

6.
CDR1as is a well-identified circular RNA with regulatory roles in a variety of physiological processes. However, the effects of CDR1as on stemness of periodontal ligament stem cells (PDLSCs) and the underlying mechanisms remain unclear. In this study, we detect CDR1as in human PDLSCs, and subsequently demonstrate that CDR1as maintains PDLSC stemness. Knockdown of CDR1as decreases the expression levels of stemness-related genes and impairs the cell's multi-differentiation and cell migration abilities, while overexpression of CDR1as increases the expression levels of stemness-related genes and enhances these abilities. Furthermore, our results indicate that the RNA-binding protein hnRNPM directly interacts with CDR1as and regulates its expression in PDLSCs. In addition, we show that CDR1as promotes the expression of stemness-related genes in PDLSCs by inhibiting miR-7-mediated suppression of KLF4 expression. Collectively, our results demonstrate that CDR1as participates in the molecular circuitry that regulates PDLSC stemness.  相似文献   

7.
Arginine methylation is catalyzed by a family of enzymes called protein arginine methyltransferases (PRMTs). The PRMT1 gene generates at least seven distinct alternatively spliced isoforms (PRMT v1–v7), which together contribute a significant portion of the cellular arginine methylome. The distinct biochemical and biological functions of these PRMT1 isoforms have not been well characterized. Previously we have shown that while both PRMT1v1 and PRMT1v2 are overexpressed in breast cancer cells, PRMT1v2 specifically promotes breast cancer cell survival and invasion. These isoforms also have distinct subcellular localizations, PRMT1v1 is mainly nuclear and PRMT1v2 cytosolic. To gain further knowledge into their isoform‐specific roles within cells we used a SILAC‐based quantitative affinity purification/MS approach to identify their individual protein interactomes in breast cancer cells. This analysis has uncovered distinct interactomes for PRMT1v1 and PRMT1v2. Consistent with their distinct subcellular localizations, PRMT1v1 enriched a mainly nuclear protein interactome, while PRMT1v2 enriched predominantly cytoplasmic interactors from whole‐cell extracts. Furthermore, these interactomes revealed that PRMT1v1 has a role in regulating gene expression, while PRMT1v2 functions in cytoskeletal dynamics. These results highlight the unique functions of these isoforms and the distinct roles they may play within cells, with potential implications for breast cancer and other diseases.  相似文献   

8.
9.
Valproate (VPA), an effective clinical approved anti‐epileptic drug and mood stabilizer, has been believed to induce neuronal differentiation at the expense of inhibiting astrocytic and oligodendrocytic differentiation. Nevertheless, the involving mechanisms of it remain unclear yet. In the present study, we explored the global gene expression changes of fetus rat hippocampal neural stem cells following VPA treatment by high‐throughput microarray. We obtained 874 significantly upregulated genes and 258 obviously downregulated genes (fold change > 2 and P < 0.05). Then, we performed gene ontology and pathway analyses of these differentially expressed genes and chose several genes associated with nervous system according to gene ontology analysis to conduct expression analysis to validate the reliability of the array results as well as reveal possible mechanisms of VPA. To get a better comprehension of the differentially regulated genes by VPA, we conducted protein–protein association analysis of these genes, which offered a source for further studies. In addition, we made the overlap between the VPA‐downregulated genes and the predicted target genes of VPA‐upregulated microRNAs (miRNAs), which were previously demonstrated. These overlapped genes may provide a source to find functional VPA/miRNA/mRNA axes during neuronal differentiation. This study first constructed a comprehensive potential downstream gene map of VPA in the process of neuronal differentiation.  相似文献   

10.
11.
Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature, differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF, NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases.  相似文献   

12.
Lin T  Islam O  Heese K 《Cell research》2006,16(11):857-871
Stem cells intrigue. They have the ability to divide exponentially, recreate the stem cell compartment, as well as create differentiated cells to generate tissues. Therefore, they should be natural candidates to provide a renewable source of cells for transplantation applied in regenerative medicine. Stem cells have the capacity to generate specific tissues or even whole organs like the blood, heart, or bones. A subgroup of stem cells, the neural stem cells (NSCs), is characterized as a self-renewing population that generates neurons and glia of the developing brain. They can be isolated, genetically manipulated and differentiated in vitro and reintroduced into a developing, adult or a pathologically altered central nervous system. NSCs have been considered for use in cell replacement therapies in various neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Characterization of genes with tightly controlled expression patterns during differentiation represents an approach to understanding the regulation of stem cell commitment. The regulation of stem cell biology by the ATP-binding cassette (ABC) transporters has emerged as an important new field of investigation. As a major focus of stem cell research is in the manipulation of cells to enable differentiation into a targeted cell population; in this review, we discuss recent literatures on ABC transporters and stem cells, and propose an integrated view on the role of the ABC transporters, especially ABCA2, ABCA3, ABCB 1 and ABCG2, in NSCs' proliferation, differentiation and regulation, along with comparisons to that in hematopoietic and other stem cells.  相似文献   

13.
Neural stem cells (NSCs) are immature precursors of the central nervous system (CNS), with self‐renewal and multipotential differentiation abilities. Their proliferation and differentiation are dynamically regulated by hormonal and local factors. Alteration in neurogenesis is associated with many neurological disorders. Increasing evidence suggests that modulation of NSCs can be a promising therapeutic approach for neural injury and neurodegenerative disorders. Melatonin, a pineal gland‐derived hormone, regulates the neuroimmuno‐endocrine axis and is functionally important to the circadian rhythm, tumour suppression and immunity. In the CNS, melatonin exerts neuroprotective effects in many diseases, such as Parkinson's disease, Alzheimer's disease and ischaemic brain injury. Emerging evidence suggests that it might also mediate such protective action by influencing proliferation and differentiation of NSCs. In this article, we review the current literature concerned with effects of melatonin on NSCs in different physiological and pathological conditions.  相似文献   

14.
15.
Msi1 (Musashi 1) is regarded as a marker for neural and intestinal epithelial stem cells. However, it is still unclear whether Msi1‐positive cells derived from mouse embryonic stem cells have the ability to differentiate into neural or intestinal epithelial cells. A pMsi1–GFP (green fluorescent protein) reporter plasmid was constructed in order to sort Msi1‐positive cells out of the differentiated cell population. The GFP‐positive cells (i.e. Msi1‐positive cells) were sorted by FACS and were hypodermically engrafted into the backs of NOD/SCID (non‐obese diabetic/severe combined immunodeficient) mice. The presence of neural and intestinal epithelial cells in the grafts was detected. Msi1 was highly expressed in the GFP‐positive cells, but not in the GFP‐negative cells. The markers for neural cells (Nestin and Tubulin β III) and intestinal epithelial cells [FABP2 (fatty acid binding protein 2), Lyz (lysozyme) and ChA (chromogranin A)] were more highly expressed in the grafts from Msi1‐positive cells than those from Msi1‐negative cells (P<0.05). The grafts from the Msi1‐negative cells contained more mesodermal‐like tissues than those from the Msi1‐positive cells. The pMsi1–GFP vector can be used to sort Msi1‐positive cells from a cell population derived from mouse embryonic stem cells. The Msi1‐positive cells can differentiate into neural and intestinal epithelial‐like cells in vivo.  相似文献   

16.
17.
Gastric cancer is the third dominating cause of cancer-associated death. MiroRNAs are potential clinical tools for cancer diagnosis and therapy. In this project, we demonstrated significant overexpression of ONECUT2 and down-regulation of hsa-miR-15a-5p in gastric cancer via bioinformatics analysis and in vitro assays. Meanwhile, ONECUT2 expression is related to clinical prognosis in gastric cancer and inversely proportional to the differentiation degree of gastric adenocarcinoma according to immunohistochemistry results. Then, we separated CD133+/CD44+ MKN45 by flow cytometry and found that, compared with parental MKN45, CD133+/CD44+ MKN45 gastric cancer stem cells (GCSCs) had higher levels of ONECUT2 and lower levels of hsa-miR-15a-5p. In addition, we applied both in vivo and ex vivo assays to demonstrate hsa-miR-15a-5p regulates the stemness maintenance, epithelial–mesenchymal transition, and chemosensitivity of GCSCs through targeting ONECUT2. Also, hsa-miR-15a-5p inhibits G0 phase block of GCSCs by regulating ONECUT2/β-catenin signaling pathway. However, this study has provided novel perspective into the dynamic control of cancer stem cells for advanced gastric cancer treatment.  相似文献   

18.
Small cell lung cancer (SCLC) accounts for nearly 15% of human lung cancers and is one of the most aggressive solid tumors. The SCLC cells are thought to derive from self-renewing pulmonary neuroendocrine cells by oncogenic transformation. However, whether the SCLC cells possess stemness and plasticity for differentiation as normal stem cells has not been well understood thus far. In this study, we investigated the expressions of multilineage stem cell markers in the cancer cells of SCLC cell line (NCI-H446) and analyzed their clonogenicity, tumorigenicity, and plasticity for inducing differentiation. It has been found that most cancer cells of the cell line expressed multilineage stem cell markers under the routine culture conditions and generated single-cell clones in anchorage-dependent or -independent conditions. These cancer cells could form subcutaneous xenograft tumors and orthotopic lung xenograft tumors in BALB/C-nude mice. Most cells in xenograft tumors expressed stem cell markers and proliferation cell nuclear antigen Ki67, suggesting that these cancer cells remained stemness and highly proliferative ability in vivo. Intriguingly, the cancer cells could be induced to differentiate into neurons, adipocytes, and osteocytes, respectively, in vitro. During the processes of cellular phenotype-conversions, autophagy and apoptosis were two main metabolic events. There is cross-talking between autophagy and apoptosis in the differentiated cancer cells. In addition, the effects of the inhibitor and agonist for Sirtuin1/2 on the inducing osteogenic differentiation indicated that Sirtuin1/2 had an important role in this process. Taken together, these results indicate that most cancer cells of NCI-H446 cell line possess stemness and plasticity for multilineage differentiation. These findings have potentially some translational applications in treatments of SCLC with inducing differentiation therapy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号