首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genome-wide association studies (GWAS) linking polymorphisms in ATG16L1 with susceptibility to inflammatory bowel disease (IBD) have prompted mucosal immunologists to investigate the functional roles of macroautophagy/autophagy in different cell types in the gut. Here we present a recent study that addressed 2 key questions: in which cell type is autophagy deficiency most detrimental during chronic colitis and what is the functional role of autophagy in those cells? We report that autophagy in intestinal epithelial cells (IECs) acts to limit intestinal inflammation by protecting them from TNF-induced apoptosis and we discuss the potential implications for IBD treatment.  相似文献   

2.
Dysregulation of autophagy and circular RNAs (circRNAs) are involved in the pancreatic cancer (PC) progression. However, the regulatory network between circRNAs, autophagy, and PC progression remains unknown. Herein, we demonstrated that autophagy-associated circRNA circ-autophagy related 7 (circATG7) was elevated in PC tissues compared to adjacent tissues, and in PC cells treated with EBSS and hypoxia. circATG7 expression was positively associated with tumor diameter and lymph node invasion in patients with PC. circATG7 overexpression promoted PC cell proliferation, mobility, and autophagy in vitro, while circATG7 knockdown induced the opposite effects. ATG7 inhibition attenuated the effects of circATG7 on the biological functions of PC cells. CircATG7 is located in the cell cytoplasm and nucleus. Cytoplasmic circATG7 sponged miR-766-5p and decreased its expression, and increased the expression of ATG7, a target gene of miR-766-5p. Nuclear circATG7 acted as a scaffold to increase the interaction between the human antigen R protein and ATG7 mRNA and enhanced ATG mRNA stability. Furthermore, we demonstrated that circATG7 regulates PC cell proliferation and metastasis in vivo via ATG7-dependent autophagy. In conclusion, our results demonstrated that circATG7 accelerates PC progression via miR-766-5p/ATG7 and that HUR/ATG7 depends on autophagic flux. Thus, circATG7 may be a potential therapeutic target for PC.Subject terms: Pancreatic cancer, Pancreatic cancer  相似文献   

3.
Previously, we have shown that hydrogen sulphide (H2S) might be pro‐inflammatory during acute pancreatitis (AP) through inhibiting apoptosis and subsequently favouring a predominance of necrosis over apoptosis. In this study, we sought to investigate the detrimental effects of H2S during AP specifically with regard to its regulation on the impaired autophagy. The incubated levels of H2S were artificially intervened by an administration of sodium hydrosulphide (NaHS) or DL‐propargylglycine (PAG) after AP induction. Accumulation of autophagic vacuoles and pre‐mature activation of trypsinogen within acini, which indicate the impairment of autophagy during AP, were both exacerbated by treatment with NaHS but attenuated by treatment with PAG. The regulation that H2S exerted on the impaired autophagy during AP was further attributed to over‐activation of autophagy rather than hampered autophagosome–lysosome fusion. To elucidate the molecular mechanism that underlies H2S‐mediated over‐activation of autophagy during AP, we evaluated phosphorylations of AMP‐activated protein kinase (AMPK), AKT and mammalian target of rapamycin (mTOR). Furthermore, Compound C (CC) was introduced to determine the involvement of mTOR signalling by evaluating phosphorylations of downstream effecters including p70 S6 kinase (P70S6k) and UNC‐51‐Like kinase 1 (ULK1). Our findings suggested that H2S exacerbated taurocholate‐induced AP by over‐activating autophagy via activation of AMPK and subsequently, inhibition of mTOR. Thus, an active suppression of H2S to restore over‐activated autophagy might be a promising therapeutic approach against AP‐related injuries.  相似文献   

4.
The activation of pancreatic stellate cells (PSCs) plays a critical role in the progression of pancreatic fibrosis. Nuclear factor-kappa B ( NF-κB) is associated with chronic pancreatitis (CP). Previous evidence indicated that NF-κB in acinar cells played a double-edged role upon pancreatic injury, whereas NF-κB in inflammatory cells promoted the progression of CP. However, the effects of NF-κB in PSCs have not been studied. In the present study, using two CP models and RNAi strategy of p65 in cultured PSCs, we found that the macrophage infiltration and MCP-1 expression were increased, and the NF-κBp65 protein level was elevated. NF-κBp65 was co-expressed with PSCs. In vitro, TGF-β1 induced overexpression of the TGF-β receptor 1, phosphorylated TGF-β1–activated kinase 1 (p-TAK1) and NF-κB in the PSCs. Moreover, the concentration of MCP-1 in the supernatant of activated PSCs was elevated. The migration of BMDMs was promoted by the supernatant of activated PSCs. Further knockdown of NF-κBp65 in PSCs resulted in a decline of BMDM migration, accompanied by a lower production of MCP-1. These findings indicate that TGF-β1 can induce the activation of NF-κB pathway in PSCs by regulating p-TAK1, and the NF-κB pathway in PSCs may be a target of chronic inflammation and fibrosis.  相似文献   

5.
Chronic pancreatitis and pancreatic adenocarcinoma represent two pathologic phenomena with marked production of connective tissue stroma containing numerous small blood vessels. The aim of this study was to characterise quantitatively the vascular supply of pancreatic adenocarcinoma and fragments of the periductal tissue collected from patients with chronic pancreatitis. The study material included 18 cases of pancreatitis and 22 cases of pancreatic ductal adenocarcinoma. Microvessels were marked using monoclonal anti-CD34 antibodies. The number of blood vessels in the fibrous stroma was significantly higher in the chronic pancreatitis samples compared to the pancreatic carcinoma group (mean vessel count 298 and 194 vessel/mm2; median 251 and 187 vessel/mm2 respectively; p<0.01). Distributions of the vascular diameter in both studied groups were very similar. The obtained results suggest that the development of vascular network accompanying chronic pancreatitis is more effective in some parts of pancreas compared to angiogenic intensity in pancreatic adenocarcinoma.  相似文献   

6.
7.
Chronic pancreatitis and pancreatic adenocarcinoma are extensively studied as common and potentially lethal disorders. However, their causes and genetic background in most cases remain unclear. The C677T polymorphism in 5',10'-methylenetetrahydrofolate reductase (MTHFR) gene may modulate the risk of pancreatic disorders. In this study, we tested whether MTHFR C677T polymorphism is associated with chronic pancreatitis and pancreatic adenocarcinoma in the Serbian population. DNA was extracted from blood samples of 51 chronic pancreatitis patients, 21 pancreatic adenocarcinoma patients, and a control group consisting of 50 healthy smokers. The MTHFR C677T polymorphism was analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Although, no statistically significant differences were observed in the distribution of MTHFR genotype or allele frequencies between patients and control groups, the results showed an increased frequency of homozygotes for MTHFR C677T polymorphism in chronic pancreatitis patients (14%) and a decreased frequency in pancreatic adenocarcinoma patients (5%) in comparison to the control group (8%). We speculate that the MTHFR C677T polymorphism could act as a possible risk factor for chronic pancreatitis and a possible protective factor in pancreatic adenocarcinoma. This observation needs further investigation in prospective studies on a larger number of patients, in which the effect of other genetic and environmental factors should also be taken into consideration.  相似文献   

8.
Fader CM  Colombo MI 《Autophagy》2006,2(2):122-125
During reticulocyte maturation, hematopoietic progenitors undergo numerous changes to reach the final functional stage which concludes with the release of reticulocytes and erythrocytes into circulation. During this process some proteins, which are not required in the mature stage, are sequestered in the internal vesicles present in multivesicular bodies (MVBs). These small vesicles are known as exosomes because they are released into the extracellular medium by fusion of the MVB with the plasma membrane. Interestingly, during this maturation process some organelles, such as mitochondria and endoplasmic reticulum, are wrapped in double membrane vacuoles and degraded via autophagy. We have demonstrated in human leukemic K562 cells a role for calcium and Rab11 in the biogenesis of MVBs and exosome release. Here we discuss evidence indicating that K562 cells present a high basal level of autophagy, and that there is an association between MVBs and autophagosomes, suggesting a role for the autophagic pathway in the maturation process of this cell type.  相似文献   

9.
The present study was performed to explore whether and how impaired autophagy could modulate calcium/calmodulin-dependent protein kinase II (CAMKII)-regulated necrosis in the pathogenesis of acute pancreatitis (AP). Wistar rats and AR42J cells were used for AP modeling. When indicated, genetic regulation of CAMKII or ATG7 was performed prior to AP induction. AP-related necrotic injury was positively regulated by the incubation level of CAMKII. ATG7 positively modulated the level of CAMKII and necrosis following AP induction, indicating that there might be a connection between impaired autophagy and CAMKII-regulated necrosis in the pathogenesis of AP. microRNA (miR)-30b-5p was predicted and then verified as the upstream regulator of CAMKII mRNA in our setting of AP. Given that the level of miR-30b-5p was negatively correlated with the incubation levels of ATG7 after AP induction, a rescue experiment was performed and indicated that the miR-30b-5p mimic compromised ATG7 overexpression-induced upregulation of CAMKII-regulated necrosis after AP induction. In conclusion, our results indicate that ATG7-enhanced impaired autophagy exacerbates AP by promoting regulated necrosis via the miR-30b-5p/CAMKII pathway.Subject terms: Cytokines, Acute inflammation  相似文献   

10.
Human chronic pancreatitis is characterized by irreversible fibrosis, whereas pancreatic fibrosis in animal models is reversible. In this study, we compare the development of pancreatic fibrosis in the dibutyltin dichloride (DBTC) model, WBN/Kob rats and bile duct-ligated (BDL) rats. DBTC (8 mg/kg) was administered to LEW rats, and the pancreas was histopathologically investigated sequentially. Male and female WBN/Kob rats aged 4, 6 and 8 months were also examined. BDL rats were prepared by ligation of the bile duct at the duodenal portion and sacrificed at 3 or 7 days after ligation. Fibrosis in the DBTC model peaked after 1 week and was limited to the areas around the pancreatic ducts after 2 weeks, and was composed of both type I and type III collagen. In contrast, fibrosis in male WBN/Kob rats peaked at age 4 months, expanded into intralobular area, and was composed of type III collagen. It exhibited almost no type I collagen and a marked tendency to regress. Pancreatic fibrosis in BDL rats was somewhat difficult to induce and required increased stimulation. This suggests that fibrosis in human biliary pancreatitis may gradually form based on weak, continuous stimulation. We conclude that type I collagen may be involved in the progression of irreversible fibrosis. The imbalance between synthesis and degradation of extracellular matrix molecules or degree of stimulation over a certain period may lead to pancreatic fibrosis. Gene expressions of prolyl hydroxylase and tissue inhibitors of matrix metalloproteinase-2 were elevated.  相似文献   

11.
A solid process for diagnosis could have a substantial impact on the successful treatment of pancreatic cancer, for which currently mortality is nearly identical to incidence. Variations in the abundance of all microRNA molecules from peripheral blood cells and pancreas tissues were analyzed on microarrays and in part validated by real-time PCR assays. In total, 245 samples from two clinical centers were studied that were obtained from patients with pancreatic ductal adenocarcinoma or chronic pancreatitis and from healthy donors. Utilizing the minimally invasive blood test, receiver operating characteristic (ROC) curves and the corresponding area under the curve (AUC) analysis demonstrated very high sensitivity and specificity of a distinction between healthy people and patients with either cancer or chronic pancreatitis; respective AUC values of 0.973 and 0.950 were obtained. Confirmative and partly even more discriminative diagnosis could be performed on tissue samples with AUC values of 1.0 and 0.937, respectively. In addition, discrimination between cancer and chronic pancreatitis was achieved (AUC = 0.875). Also, several miRNAs were identified that exhibited abundance variations in both tissue and blood samples. The results could have an immediate diagnostic value for the evaluation of tumor reoccurrence in patients, who have undergone curative surgical resection, and for people with a familial risk of pancreatic cancer.  相似文献   

12.
In order to evaluate the renal metabolism of amylase and immunoreactive trypsin (IRT) in chronic pancreatic disease, we assayed amylase, IRT and creatinine in serum and urine and gamma-glutamyl transferase (GGT) in dialyzed urine as well as alpha-glucosidase (AGL) and ribonuclease (RNase) in 24 control subjects, 34 patients with pancreatic cancer, 52 with chronic pancreatitis and 32 with extra-pancreatic diseases. Urinary amylase and IRT outputs were found to be more elevated in chronic pancreatitis than in control subjects. The levels of serum amylase, its renal inputs and outputs were correlated with the corresponding IRT values. Multiple regression analyses (dependent on amylase or IRT urinary outputs, circulating levels of the two enzymes, creatinine clearance and the excretion of GGT, AGL and RNase predictor variables) showed significant correlations. The standardized partial regression coefficients found to be significant were: GGT, RNase and serum amylase for amylase, and GGT and RNase for IRT. No difference was found between amylase and IRT outputs in patients with chronic pancreatitis, taking the presence or the absence of alcohol abuse, exocrine insufficiency and pancreatic pseudocysts into consideration. Urinary GGT excretion correlated with serum amylase and IRT levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
As a widely acknowledged FDA-approved dietary supplement or over-the-counter medicines, dehydroepiandrosterone (DHEA) exerts anti-inflammatory and immunomodulatory function. Pyroptosis is an important form of programmed cell death (PCD), and which acts a key role in the body’s anti-infection and inflammatory responses. But the effects and mechanisms of DHEA on pyroptosis remain unclear. Here, we found that DHEA inhibited the NLRP3 inflammasome components expression by blocking inflammatory signals in lipopolysaccharide (LPS)-primed macrophages, and prevented the bacterial toxin nigericin (Nig)-induced NLRP3 inflammasome assembly. However, DHEA exacerbated NLRP3-independent cell death in Nig-treated inflammatory macrophages. During this process, DHEA induced the abnormal autophagy, which reflected as the blocking of autophagic flux and the accumulation of autophagy receptor p62 (SQSTM1) protein. In addition, DHEA caused a burst of reactive oxygen species (ROS) and activated extracellular signal-regulated kinase (ERK) phosphorylation in LPS plus Nig-stimulated macrophages but not in LPS-treated macrophages. Mechanistically, the present study certified that the activation of G protein-coupled estrogen receptor (GPER) signal mediated the cell death induced by DHEA in Nig-stimulated inflammatory macrophages, as GPER specific inhibitor G15 alleviated the abnormal autophagy and ultimately prevented the gasdermin D (GSDMD)-mediated pyroptosis induced by DHEA. Collectively, DHEA can exacerbate Nig-induced abnormal autophagy and pyroptosis via activation of GPER in LPS-primed macrophages, which prompts us the potential application value of DHEA in anti-infection or anti-tumor immunity.Subject terms: Cell death and immune response, Immune cell death  相似文献   

15.
The effects of docosahexaenoic acid (DHA; 22:6 n-3), a major omega-3 PUFA in the mammalian brain, on the structure and function of astrocytes were studied using primary cultures from rat cerebra. Gas-liquid chromatography of methyl esters of FAs isolated from cultures exposed to individual FAs, namely, stearic acid, linoleic acid, arachidonic acid, and DHA, showed alterations in the lipid profiles of the membranes, with a preferential incorporation of the FA to which the cells were exposed. Immunofluorescence studies demonstrated that unlike treatment with other FAs, after which the astrocytes remained as immature radial forms, DHA-treated astrocytes showed distinct differentiation, having morphology comparable to those grown in normal serum-containing medium. Receptor binding studies to determine the concentration of various neurotransmitter receptors showed that DHA selectively increased the number of beta-adrenergic receptors (beta-ARs) compared with FA-untreated controls, suggesting a greater role of DHA on beta-AR expression in membranes. This was also reflected by an increase in downstream events of the beta-AR pathways, such as the induction of protein kinase A and glycogen turnover by isoproterenol (ISP), a beta-AR agonist in DHA-treated cells. Moreover, ISP completely transformed DHA-treated cells into mature astrocytes bearing long processes, as in cells grown under normal conditions. Together, our observations suggest that DHA plays a unique role in facilitating some of the vital functions of astrocytes in the developing brain.  相似文献   

16.
Systemic lupus erythematosus and its preclinical lupus-prone mouse models are autoimmune disorders involving the production of pathogenic autoantibodies. Genetic predisposition to systemic lupus erythematosus results in B cell hyperactivity, survival of self-reactive B cells, and differentiation to autoantibody-secreting plasma cells (PCs). These corrupt B cell responses are, in part, controlled by excess levels of the cytokine BAFF that normally maintains B cell homeostasis and self-tolerance through limited production. B cell maturation Ag (BCMA) is a receptor for BAFF that, under nonautoimmune conditions, is important for sustaining enduring Ab protection by mediating survival of long-lived PCs but is not required for B cell maturation and homeostasis. Through analysis of two different lupus-prone mouse models deficient in BCMA, we identify BCMA as an important factor in regulating peripheral B cell expansion, differentiation, and survival. We demonstrate that a BCMA deficiency combined with the lpr mutation or the murine lupus susceptibility locus Nba2 causes dramatic B cell and PC lymphoproliferation, accelerated autoantibody production, and early lethality. This study unexpectedly reveals that BCMA works to control B cell homeostasis and self-tolerance in systemic autoimmunity.  相似文献   

17.
18.
Chronic pancreatitis is now thought to have a multifactorial etiology. New concepts integrating cellular, molecular and genetic knowledge of the disease have been proposed to explain its pathogenesis. However, the mechanisms responsible for early exocrine parenchymal destruction and preservation of endocrine islets were unexplored until recently. In the course of chronic inflammation, pancreatic acini lose their "immunoprotective" status by neo-expressing death receptors. Therefore, they become susceptible to apoptosis that is triggered by their respective ligands expressed on lymphocytes and released by pancreatic stellate cells. By contrast, islets retain their immunoprotective status and activate nuclear factor-kappaB (NF-kappaB)-induced anti-apoptotic factors, thus enabling survival. This knowledge might be exploited for devising therapeutic approaches to retard acinar loss and to prolong islet survival.  相似文献   

19.

Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the fifth most common cause of cancer-related death in Europe with a 5-year survival rate of <5%. Chronic pancreatitis (CP) is a risk factor for PDAC development, but in the majority of cases malignancy is discovered too late for curative treatment. There is at present no reliable diagnostic marker for PDAC available.

Objectives

The aim of the study was to identify single blood-based metabolites or a panel of metabolites discriminating PDAC and CP using liquid chromatography-mass spectrometry (LC-MS).

Methods

A discovery cohort comprising PDAC (n?=?44) and CP (n?=?23) samples was analyzed by LC-MS followed by univariate (Student’s t test) and multivariate (orthogonal partial least squares-discriminant analysis (OPLS-DA)) statistics. Discriminative metabolite features were subject to raw data examination and identification to ensure high feature quality. Their discriminatory power was then confirmed in an independent validation cohort including PDAC (n?=?20) and CP (n?=?31) samples.

Results

Glycocholic acid, N-palmitoyl glutamic acid and hexanoylcarnitine were identified as single markers discriminating PDAC and CP by univariate analysis. OPLS-DA resulted in a panel of five metabolites including the aforementioned three metabolites as well as phenylacetylglutamine (PAGN) and chenodeoxyglycocholate.

Conclusion

Using LC-MS-based metabolomics we identified three single metabolites and a five-metabolite panel discriminating PDAC and CP in two independent cohorts. Although further study is needed in larger cohorts, the metabolites identified are potentially of use in PDAC diagnostics.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号