首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
There is now accumulating evidence that bone marrow-derived mesenchymal stem cells (MSCs) make an important contribution to postnatal vasculogenesis, especially during tissue ischaemia and tumour vascularization. Identifying mechanisms which regulate the role of MSCs in vasculogenesis is a key therapeutic objective, since while increased neovascularization can be advantageous during tissue ischaemia, it is deleterious during tumourigenesis. The potent angiogenic stimulant vascular endothelial growth factor (VEGF) is known to regulate MSC mobilization and recruitment to sites of neovascularization, as well as directing the differentiation of MSCs to a vascular cell fate. Despite the fact that MSCs did not express VEGF receptors, we have recently identified that VEGF-A can stimulate platelet-derived growth factor (PDGF) receptors, which regulates MSC migration and proliferation. This review focuses on the role of PDGF receptors in regulating the vascular cell fate of MSCs, with emphasis on the function of the novel VEGF-A/PDGF receptor signalling mechanism.  相似文献   

2.
3.
BackgroundPulmonary emphysema is characterized by loss of alveolar structures. We have found that bone marrow (BM) mesenchymal stem cell (MSC) transplantation ameliorates papain-induced pulmonary emphysema. However, the underlying mechanism is not completely understood. It has been shown that blocking the vascular endothelial growth factor (VEGF) signaling pathway leads to apoptosis of lung cells and pulmonary emphysema, and MSC are capable of secreting VEGF. We hypothesized that MSC transplantation may have a protective effect on pulmonary emphysema by increasing VEGF-A expression and inhibiting apoptosis of lung cells.MethodsWe examined the morphology and expression of VEGF-A in rat lung after papain treatment and MSC transplantation. We also used a co-culture system in which MSC and cells prepared from papain-treated lungs or control lungs were cultured together. The levels of VEGF-A in cells and culture medium were determined, and apoptosis of cultured lung cells was evaluated.ResultsVEGF-A expression in rat lungs was decreased after papain treatment, which was partly rescued by MSC transplantation. MSC production of VEGF-A was increased when MSC were co-cultured with cells prepared from papain-treated lungs. Furthermore, the apoptosis of papain-treated lung cells was inhibited when co-cultured with MSC. The induction of MSC production of VEGF-A by papain-treated lung cells was inhibited by adding anti-tumor necrosis factor (TNF)-α antibody to the medium.ConclusionsThe protective effect of MSC transplantation on pulmonary emphysema may be partly mediated by increasing VEGF-A expression and inhibiting the apoptosis of lung cells. TNF-α released from papain-treated lung cells induces MSC to secret VEGF-A.  相似文献   

4.
血管内皮细胞生长因子(vascular endothelial growth factor,VEGF或VEGF-A),又称为血管通透因子(vascular permeable factor,VPF)是一种具有多种功能的生物大分子,它是分泌性糖蛋白生长因子超家族中的一员.VEGF主要通过两个高亲和力的酪氨酸激酶受体来传递各种信号:VEGF受体1和2(VEGFR1,VEGFR2),从而引起细胞的多种生理反应.在胚胎时期,VEGF可以促进血管内皮细胞的增殖、迁移、管状形成和提高内皮细胞的存活率,对于血管新生和发育十分关键;而在成体时期,VEGF则主要参与正常血管结构的维持,并调节生理和病理性血管新生.近几年来的临床试验表明,使用多种阻断VEGF作用的抑制剂能有效促进肿瘤血管的退化和减小肿瘤的体积,但是同时在部分病人中也观察到了多方面的副作用.这些结果显示,VEGF也具有非血管新生方面的重要功能.因此,在研制基于拮抗VEGF作用的抗癌药物时,这些功能更不容忽视.研究表明,在成体的小肠、胰岛、甲状腺、肾脏和肝脏等器官组织中,VEGF都发挥着十分重要的作用,如果VEGF水平降低,这些器官组织的毛细血管网状结构将部分退化.VEGF还可以促进骨髓形成、组织修复与再生、促进卵巢囊泡成熟,并且参与血栓、炎症反应和缺氧缺血的病理过程.本文主要对VEGF在血管新生之外的功能及其分子机制进行了简要探讨.  相似文献   

5.
Interaction between integrin alphavbeta3 and extracellular matrix is crucial for endothelial cells sprouting from capillaries and for angiogenesis. Furthermore, integrin-mediated outside-in signals co-operate with growth factor receptors to promote cell proliferation and motility. To determine a potential regulation of angiogenic inducer receptors by the integrin system, we investigated the interaction between alphavbeta3 integrin and tyrosine kinase vascular endothelial growth factor receptor-2 (VEGFR-2) in human endothelial cells. We report that tyrosine-phosphorylated VEGFR-2 co-immunoprecipitated with beta3 integrin subunit, but not with beta1 or beta5, from cells stimulated with VEGF-A165. VEGFR-2 phosphorylation and mitogenicity induced by VEGF-A165 were enhanced in cells plated on the alphavbeta3 ligand, vitronectin, compared with cells plated on the alpha5beta1 ligand, fibronectin or the alpha2beta1 ligand, collagen. BV4 anti-beta3 integrin mAb, which does not interfere with endothelial cell adhesion to vitronectin, reduced (i) the tyrosine phosphorylation of VEGFR-2; (ii) the activation of downstream transductor phosphoinositide 3-OH kinase; and (iii) biological effects triggered by VEGF-A165. These results indicate a new role for alphavbeta3 integrin in the activation of an in vitro angiogenic program in endothelial cells. Besides being the most important survival system for nascent vessels by regulating cell adhesion to matrix, alphavbeta3 integrin participates in the full activation of VEGFR-2 triggered by VEGF-A, which is an important angiogenic inducer in tumors, inflammation and tissue regeneration.  相似文献   

6.
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) exerts its multiple functions by activating two receptor tyrosine kinases, Flt-1 (VEGFR-1) and KDR (VEGFR-2), both of which are selectively expressed on primary vascular endothelium. To dissect the respective signaling pathways and biological functions mediated by these receptors in primary endothelial cells with two receptors intact, we, recently developed chimeric receptors (EGDR and EGLT) in which the extracellular domain of the epidermal growth factor receptor was fused to the transmembrane domain and intracellular domain of KDR and Flt-1, respectively. With these fusion receptors, we have shown that KDR is solely responsible for VPF/VEGF-induced human umbilical vein endothelial cell (HUVEC) proliferation and migration, whereas Flt-1 showed an inhibitory effect on KDR-mediated proliferation but not migration. To further characterize the VPF/VEGF-stimulated HUVEC proliferation and migration here, we have created several EGDR mutants by site-directed mutagenesis. We show that tyrosine residues 1059 and 951 of KDR are essential for VPF/VEGF-induced HUVEC proliferation and migration, respectively. Furthermore, the mutation of tyrosine 1059 to phenylanaline results in the complete loss of KDR/EGDR-mediated intracellular Ca(2+) mobilization and MAPK phosphorylation, but the mutation of tyrosine 951 to phenylanaline did not affect these events. Our results suggest that KDR mediates different signaling pathways for HUVEC proliferation and migration and, moreover, intracellular Ca(2+) mobilization and MAPK phosphorylation are not essential for VPF/VEGF-induced HUVEC migration.  相似文献   

7.
We have reported that vascular endothelial growth factor (VEGF)-A induces the proliferation of human pulmonary valve endothelial cells (HPVECs) through nuclear factor in activated T cells (NFAT)c1 activation [1]. Here we show that VEGF-A increases the migration of HPVECs through NFATc1 activation, suggesting that VEGF-A/NFATc1 regulates the migration of HPVECs. To learn how this pathway may be involved in post-natal valvular repair, HPVECs were treated with VEGF-A, with or without cyclosporine A to selectively block VEGF-NFATc1 signaling. Down Syndrome critical region 1 (DSCR1) and heparin-binding EGF-like growth factor (HB-EGF) are two genes identified by DNA microarray as being up-regulated by VEGF-A in a cyclosporine-A-sensitive manner. DSCR1 silencing increased the migration of ovine valve endothelial cells, whereas HB-EGF silencing inhibited migration. This differential effect suggests that VEGF-A/NFATc1 signaling might be a crucial coordinator of endothelial cell migration in post-natal valves.  相似文献   

8.
The VEGF/VPF (vascular endothelial growth factor/vascular permeability factor) ligands and receptors are crucial regulators of vasculogenesis, angiogenesis, lymphangiogenesis and vascular permeability in vertebrates. VEGF-A, the prototype VEGF ligand, binds and activates two tyrosine kinase receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). VEGFR1, which occurs in transmembrane and soluble forms, negatively regulates vasculogenesis and angiogenesis during early embryogenesis, but it also acts as a positive regulator of angiogenesis and inflammatory responses, playing a role in several human diseases such as rheumatoid arthritis and cancer. The soluble VEGFR1 is overexpressed in placenta in preeclampsia patients. VEGFR2 has critical functions in physiological and pathological angiogenesis through distinct signal transduction pathways regulating proliferation and migration of endothelial cells. VEGFR3, a receptor for the lymphatic growth factors VEGF-C and VEGF-D, but not for VEGF-A, regulates vascular and lymphatic endothelial cell function during embryogenesis. Loss-of-function variants of VEGFR3 have been identified in lymphedema. Formation of tumor lymphatics may be stimulated by tumor-produced VEGF-C, allowing increased spread of tumor metastases through the lymphatics. Mapping the signaling system of these important receptors may provide the knowledge necessary to suppress specific signaling pathways in major human diseases.  相似文献   

9.
Extravillous trophoblast (EVT) cells of the human placenta invade the uterine decidua and utero-placental arteries to establish an efficient exchange of key molecules between maternal and fetal blood. Trophoblast invasion is stringently regulated in situ both positively and negatively by a variety of factors at the fetal-maternal interface to maintain a healthy utero-placental homeostasis. One such factor, decorin, a transforming growth factor (TGF)-beta binding, leucine-rich proteoglycan produced by the decidua, negatively regulates EVT proliferation, migration, and invasiveness independent of TGF-beta. We reported that these decorin actions were mediated by its binding to multiple tyrosine kinase receptors, including vascular endothelial growth factor receptor (VEGFR)-2. The present study explores the mechanisms underlying decorin antagonism of VEGF (VEGF-A) stimulation of endovascular differentiation of EVT using our EVT cell line, HTR-8/SVneo. We observe that decorin inhibits VEGF-induced EVT cell migration and endothelial-like tube formation on matrigel. VEGF activates MAPKs (p38 MAPK, MEK3/6, and ERK1/2) in EVT cells, and the activation is blocked in both cases by decorin. Employing selective MAPK inhibitors, we show that both p38 and ERK pathways contribute independently to VEGF-induced EVT migration and capillary-like tube formation. VEGF upregulates the vascular endothelial (VE) markers VE-cadherin and beta-catenin in EVT and endothelial cells, and this upregulation is blocked by decorin and MAPK inhibitors. These results suggest that decorin inhibits VEGF-A stimulation of trophoblast migration and endovascular differentiation by interfering with p38 MAPK and ERK1/2 activation. Thus decorin-mediated dual impediment of endovascular differentiation of the EVT and angiogenesis may have implications for pathogenesis of preeclampsia, a hypoinvasive trophoblast disorder in pregnancy.  相似文献   

10.
Vascular endothelial growth factors (VEGFs) are a family of secreted polypeptides with a highly conserved receptor-binding cystine-knot structure similar to that of the platelet-derived growth factors. VEGF-A, the founding member of the family, is highly conserved between animals as evolutionarily distant as fish and mammals. In vertebrates, VEGFs act through a family of cognate receptor kinases in endothelial cells to stimulate blood-vessel formation. VEGF-A has important roles in mammalian vascular development and in diseases involving abnormal growth of blood vessels; other VEGFs are also involved in the development of lymphatic vessels and disease-related angiogenesis. Invertebrate homologs of VEGFs and VEGF receptors have been identified in fly, nematode and jellyfish, where they function in developmental cell migration and neurogenesis. The existence of VEGF-like molecules and their receptors in simple invertebrates without a vascular system indicates that this family of growth factors emerged at a very early stage in the evolution of multicellular organisms to mediate primordial developmental functions.  相似文献   

11.
Vascular endothelial growth factors (VEGFs) are a family of secreted polypeptides with a highly conserved receptor-binding cystine-knot structure similar to that of the platelet-derived growth factors. VEGF-A, the founding member of the family, is highly conserved between animals as evolutionarily distant as fish and mammals. In vertebrates, VEGFs act through a family of cognate receptor kinases in endothelial cells to stimulate blood-vessel formation. VEGF-A has important roles in mammalian vascular development and in diseases involving abnormal growth of blood vessels; other VEGFs are also involved in the development of lymphatic vessels and disease-related angiogenesis. Invertebrate homologs of VEGFs and VEGF receptors have been identified in fly, nematode and jellyfish, where they function in developmental cell migration and neurogenesis. The existence of VEGF-like molecules and their receptors in simple invertebrates without a vascular system indicates that this family of growth factors emerged at a very early stage in the evolution of multicellular organisms to mediate primordial developmental functions.  相似文献   

12.
13.
Bone marrow-derived cells are recruited to sites of ischemia, where they promote tissue vascularization. This response is dependent upon the expression of vascular endothelial growth factor (VEGF) receptor 1 (VEGFR1), which mediates cell migration in response to VEGF or placental growth factor (PLGF). In this study, we found that exposure of cultured mouse bone marrow-derived mesenchymal stromal cells (MSC) to hypoxia or an adenovirus encoding a constitutively active form of hypoxia-inducible factor 1 (HIF-1) induced VEGFR1 mRNA and protein expression and promoted ex vivo migration in response to VEGF or PLGF. MSC in which HIF-1 activity was inhibited by a dominant negative or RNA interference approach expressed markedly reduced levels of VEGFR1 and failed to migrate or activate AKT in response to VEGF or PLGF. Thus, loss-of-function and gain-of-function approaches demonstrated that HIF-1 activity is necessary and sufficient for basal and hypoxia-induced VEGFR1 expression in bone marrow-derived MSC.  相似文献   

14.
人表皮生长因子是激活表皮生长因子受体的生长因子家族的典型成员,由人体的多个组织器官合成与分泌,通过结合受体激活一系列信号途径,调控细胞的增殖、分化和迁移等。近年来,有关人表皮生长因子的研究已扩展到其在人类生理和病理作用的领域,尤其在组织再生和伤口愈合方面成为研究热点。文中综述了人表皮生长因子的研究进展,简要描述了其基因和蛋白的结构与特点、作用机制与生物学效应,重点介绍该生长因子在胃肠溃疡愈合、皮肤伤口修复和肿瘤病理过程中的作用与影响,从而为相关研究提供辅助信息。  相似文献   

15.
The human endothelial vascular endothelial growth factor receptor 2 (VEGFR2/kinase domain region, KDR/fetal liver kinase-1, Flk-1) tyrosine kinase receptor is essential for VEGF-mediated physiological responses including endothelial cell proliferation, migration and survival. How VEGFR2 kinase activation and trafficking are co-coordinated in response to VEGF-A is not known. Here, we elucidate a mechanism for endothelial VEGFR2 response to VEGF-A dependent on constitutive endocytosis co-ordinated with ligand-activated ubiquitination and proteolysis. The selective VEGFR kinase inhibitor, SU5416, blocked the endosomal sorting required for VEGFR2 trafficking and degradation. Inhibition of VEGFR2 tyrosine kinase activity did not block plasma membrane internalization but led to endosomal accumulation. Lysosomal protease activity was required for ligand-stimulated VEGFR2 degradation. Activated VEGFR2 codistributed with the endosomal hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)/signal-transducing adaptor molecule (STAM) complex in a ligand and time-dependent manner, implying a role for this factor in sorting of ubiquitinated VEGFR2. Increased tyrosine phosphorylation of the Hrs subunit in response to VEGF-A links VEGFR2 activation and Hrs/STAM function. In contrast, VEGFR2 in quiescent cells was present on both the endothelial plasma membrane and early endosomes, suggesting constitutive recycling between these two compartments. This pathway was clathrin-linked and dependent on the AP2 adaptor complex as the A23 tyrphostin inhibited VEGFR2 trafficking. We propose a mechanism whereby the transition of endothelial VEGFR2 from a constitutive recycling itinerary to a degradative pathway explains ligand-activated receptor degradation in endothelial cells. This study outlines a mechanism to control the VEGF-A-mediated response within the vascular system.  相似文献   

16.
Vascular endothelial growth factor (VEGF) directly stimulates endothelial cell proliferation and migration via tyrosine kinase receptors of the split kinase domain family. It mediates vascular growth and angiogenesis in the embryo but also in the adult in a variety of physiological and pathological conditions. The potential binding site of VEGF with its receptor was identified using cellulose-bound overlapping peptides of the extracytosolic part of the human vascular endothelial growth factor receptor II (VEGFR II). Thus, a peptide originating from the third globular domain of the VEGFR II comprising residues 247RTELNVGIDFNWEYP261 was revealed as contiguous sequence stretch, which bound 125I-VEGF165. A systematic replacement with L-amino acids within the peptide representing the putative VEGF-binding site on VEGFR II indicates Asp255 as the hydrophilic key residue for binding. The dimerized peptide (RTELNVGIDFNWEYPAS)2K inhibits VEGF165 binding with an IC50 of 0.5 microM on extracellular VEGFR II fragments and 30 microM on human umbilical vein cells. VEGF165-stimulated autophosphorylation of VEGFR II as well as proliferation and migration of microvascular endothelial cells was inhibited by the monomeric peptide RTELNVGIDFNWEYPASK at a half-maximal concentration of 3-10, 0.1, and 0.1 microM, respectively. We conclude that transduction of the VEGF165 signal can be interrupted with a peptide derived from the third Ig-like domain of VEGFR II by blockade of VEGF165 binding to its receptor.  相似文献   

17.
Integrin-mediated cell attachment and growth factor stimulation often act synergistically on cell proliferation, differentiation, migration, and survival. Some of these synergistic effects depend on the physical interaction of integrins with growth factor receptors. Here we examine the nature of the physical interaction between the alpha(v)beta(3) integrin and two receptor tyrosine kinases (RTKs), the platelet-derived growth factor receptor beta (PDGF-Rbeta) and the vascular endothelial growth factor receptor 2 (VEGF-R2, also known as KDR and flk-1). Both of these RTKs associate with the alpha(v)beta(3) integrin but do not associate with beta(1) integrins. Furthermore, growth factor stimulation of these RTKs promotes increased cell proliferation and migration when cells are attached to the alpha(v)beta(3) ligand, vitronectin. We show that alpha(v)beta(3) in which the beta(3) cytoplasmic domain is deleted or replaced with the beta(1) cytoplasmic domain coimmunoprecipitates with PDGF-Rbeta and VEGF-R2. The beta(3) extracellular domain alone was sufficient for the PDGF-Rbeta association whereas the VEGF-R2 association required the presence of the alpha(v) subunit. Activation of the RTKs by their ligands was not required for them to associate with the integrin. Cell migration to PDGF was enhanced in the cells transfected with the chimeric subunit containing the beta(3) extracellular domain but not when that domain came from the beta(1) subunit. These results show that the interactions that lead to the association of the alpha(v)beta(3) integrin with PDGF-Rbeta and VEGF-R2 and enhancement of RTK activity take place outside the cell.  相似文献   

18.
Vascular endothelial growth factor (VEGF-A) is an inducer of endothelial cell (EC) proliferation, migration, and synthesis of inflammatory agents such as platelet-activating factor (PAF). Recently, neuropilin-1 (NRP-1) has been described as a coreceptor of KDR which potentiates VEGF-A activity. However, the role of NRP-1 in numerous VEGF-A activities remains unclear. To assess the contribution of NRP-1 to VEGF-A mediated EC proliferation, migration, and PAF synthesis, we used porcine aortic EC (PAEC) recombinantly expressing Flt-1, NRP-1, KDR or KDR and NRP-1. Cells were stimulated with VEGF-A, which binds to Flt-1, KDR and NRP-1, and VEGF-C, which binds to KDR only. VEGF-A was 12.4-fold more potent than VEGF-C in inducing KDR phosphorylation in PAEC-KDR. VEGF-A and VEGF-C showed similar potency to mediate PAEC-KDR proliferation, migration, and PAF synthesis. On PAEC-KDR/NRP-1, VEGF-A was 28.6-fold more potent than VEGF-C in inducing KDR phosphorylation and PAEC-KDR/NRP-1 proliferation (1.3-fold), migration (1.7-fold), and PAF synthesis (4.6-fold). These results suggest that cooperative binding of VEGF-A to KDR and NRP-1 enhances KDR phosphorylation and its biological activities. Similar results were obtained with bovine aortic EC that endogenously express both KDR and NRP-1 receptors. In contrast, stimulation of PAEC-Flt-1 and PAEC-NRP-1 with VEGF-A or VEGF-C did not induce proliferation, migration, or PAF synthesis. In conclusion, the presence of NRP-1 on EC preferentially increases KDR activation by VEGF-A as well as KDR-mediated biological activities, and may elicit novel intracellular events. On the other hand, VEGF-A and VEGF-C have equipotent biological activities on EC in absence of NRP-1.  相似文献   

19.
20.
VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia   总被引:39,自引:0,他引:39  
Vascular endothelial growth factor (VEGF-A) is a major regulator of blood vessel formation and function. It controls several processes in endothelial cells, such as proliferation, survival, and migration, but it is not known how these are coordinately regulated to result in more complex morphogenetic events, such as tubular sprouting, fusion, and network formation. We show here that VEGF-A controls angiogenic sprouting in the early postnatal retina by guiding filopodial extension from specialized endothelial cells situated at the tips of the vascular sprouts. The tip cells respond to VEGF-A only by guided migration; the proliferative response to VEGF-A occurs in the sprout stalks. These two cellular responses are both mediated by agonistic activity of VEGF-A on VEGF receptor 2. Whereas tip cell migration depends on a gradient of VEGF-A, proliferation is regulated by its concentration. Thus, vessel patterning during retinal angiogenesis depends on the balance between two different qualities of the extracellular VEGF-A distribution, which regulate distinct cellular responses in defined populations of endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号