首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Life-history traits of invasive fish in small Mediterranean streams   总被引:3,自引:3,他引:0  
We compared the life-history traits of native and invasive fish species from Catalan streams in order to identify the characters of successful invasive fish species. Most of the exotic fish species were characterized by large size, long longevity, late maturity, high fecundity, few spawnings per year, and short reproductive span, whereas Iberian native species exhibited predominantly the opposite suite of traits. Species native to the southeastern Pyrenees watershed were also significantly different from species native to the rest of the Iberian Peninsula but not native to this watershed. Iberian exotic species come predominantly from large river basins, whereas Catalan streams (and other small, coastal river basins) correspond to basins and streams of a smaller size and different hydrology, with differences in species composition and life-history traits of fish. The occurrence and spread of invasive species was not significantly related to life-history traits but to introduction date. The successful prediction of future invasive species is limited due to small differences in life-history and ecological traits between native and exotic species. Fecundity, age at maturity, water quality flexibility, tolerance to pollution and habitat seem the most discriminating life-history variables. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
  1. While fish reproduction has played a critical role in development of life-history theory, the collective effects of a marine-to-freshwater invasion on a clade's reproductive ecology have rarely been explored in a phylogenetic context. We analysed and compared a range of quantitative and qualitative components of reproductive ecology in the Australasian terapontid fishes, a family distributed widely across marine, estuarine and freshwater habitats in the Indo-Pacific region. We specifically tested hypotheses that life-history strategies such as larger egg sizes and reduced fecundities are a key characteristic of freshwater species in comparison with their close marine relatives, and also fit a range of currently available evolutionary models describing the processes of ecomorphological and macrohabitat-related diversification.
  2. Using recently developed phylogenetic comparative methods, differences in several quantitative reproductive traits were evident between marine and freshwater species, with reductions in average fecundity and increases in average egg size specifically characterising freshwater species. Evolutionary modelling of major trait axes, as well as specific traits across the family, highlighted significant increases in rates of evolutionary diversification across both freshwater lineages and within freshwater subclades. Modelling also supported the evolution of distinctive morpho-ecotype optima between marine and freshwater species over simpler models of random-walk evolution or single morphological optima.
  3. Review of life-history behaviour identified environmental stimuli related to photoperiod, temperature, and lunar-tidal cycles (and possibly combinations thereof) as playing an important role in stimulating spawning behaviour in most marine–euryhaline species. While some of these variables (temperature and photoperiod) continue to play an important role in some freshwater species, flow regime, particularly streamflow increases, appear more important in stimulating spawning responses, underlining the role of flow regime emerging as a master variable shaping evolutionary trajectories in freshwater clades.
  4. In this review and meta-analysis, we document that adaptation to an entirely freshwater existence has catalysed significant, and in several cases, relatively rapid adaptive evolution to very different life-history strategies within freshwater species. The invasion of freshwaters has had profound impacts on the trajectory of terapontid life-history evolution, driving significant changes in a range of traits relating to fecundity, egg size, spawning stimuli, and spawning substratum. Collective results suggest a distinct adaptive landscape difference between marine and freshwaters. Terapontids can provide a useful model for assessing the consistency of these outcomes with other freshwater-invading groups.
  相似文献   

3.
Abstract Mortality is a fundamental demographic rate, the nature of which has profound consequences for both the dynamics of populations and the life-history evolution of species. For example, if per capita mortality rates are age- or stage-specific, life-history traits should evolve in response to age- and stage-specific differences in selection arising from these temporally variable rates. Similarly, variation in the average mortality rate across ages and/or stages can also select for shifts in life history. Mortality rates of recently settled reef fishes can be very high and per capita mortality is commonly assumed to decrease with increasing age. A review of evidence for age-specific per capita mortality rates in reef fishes from early postsettlement up to 13 months postsettlement suggests that during this period these rates are often age invariant. The data on which these interpretations are based, however, are extremely limited both in terms of the proportion of the life cycle over which mortality rates have been sampled and the quality of these data. Nonetheless, these data do suggest that selective pressures associated with patterns of mortality may vary among species of reef fishes and that these species therefore could be more effectively used in the study of life-history evolution. At present, reef fishes are under-represented in the study of life-history evolution compared with other vertebrate taxa.  相似文献   

4.
Aims A plant has a limited amount of resources at any time and it allocates them to different structures. In spite of the large number of previous studies on allocation patterns within single species, knowledge of general patterns in species allocation is still very limited. This is because each study was done in different conditions using different methodology, making generalization difficult. We investigate intraspecific above- versus below-ground biomass allocation among individuals across a spectrum of dry-grassland plant species at two different developmental stages and ask whether allocation is age- and species specific, and whether differences among species can be explained by their life-history traits and phylogeny.Methods We collected data on above- and below-ground biomass of seedlings and adult plants of 20 species from a common garden experiment. We analysed data on shoot–root biomass allocation allometrically and studied the relationship between the allometric exponents (slopes on log–log scale), species life-history traits and phylogenetic distances.Important findings We found isometric as well as allometric patterns of biomass allocation in the studied species. Seedlings and adult individuals of more than half of the species differed in their above- versus below-ground biomass allometric exponents. Seedlings and adult individuals of the remaining species differed in their allometric coefficients (intercepts). Annual species generally allocated proportionally more to above- than below-ground biomass as seedlings than as adults, whereas perennial species showed the opposite pattern. Plant life-history traits, such as plant life span, age of first flowering, month in which the species begin flowering and specific leaf area were much more important in explaining differences in shoot–root allometry among species than were phylogenetic relationships. This suggests that allocation patterns vary greatly among closely related species but can be predicted based on species life-history traits.  相似文献   

5.
We analysed the influence of ecological factors, phylogenetic history and trade-offs between traits on the life-history variation among 10 loricariid species of the middle Paraná River. We measured eight life-history variables and classified the life-history strategies following the equilibrium–periodic–opportunistic (EPO) model. Principal-component analysis of life-history traits segregated species along a gradient from small opportunistic (low fecundity, low parental investment) to large equilibrium (low-medium fecundity, high parental investment) species. A clear periodic strategist was absent in the analysed assemblage. Variation partitioning by canonical phylogenetic ordination analysis showed both a component of variation uniquely explained by phylogenetic history (PH; 32.2%) and a component shared between PH and ecological factors (EF; 37%). The EPO model is a useful tool for predicting correlations among life-history traits and understanding potential demographic responses of species to environmental variation. Life-history patterns observed throughout Loricariidae suggests that this family has diversified across all three endpoint strategies of the EPO model. Our study indicates that evolutionary lineage affiliation at the level of subfamily can be a strong predictor of the life-history strategy used by each species.  相似文献   

6.
Multivariate analysis identified atwo-dimensional continuum of life-historyvariation among 301 fish species from Europe,North America, South America and the Atlanticand Pacific coasts of North America. The firstaxis was associated with larger body size,higher fecundity, delayed maturation, fewerreproductive events, and shorter breedingseason on one end and small size, lowfecundity, early maturity, multiplereproductive events per year, and prolongedbreeding season on the other. The second axiscontrasted fishes having larger eggs and moreparental care against fishes with the oppositesuite of traits.Phylogenetic affiliations of species wereapparent in the general patterns of ordinationof species within orders, indicatingevolutionary divergences in life-historypatterns. In fact, partitioning the variance oflife-history traits showed that taxonomic orderand latitude were the most important factorsand geographic region and habitat the least.Despite phylogenetic constraints, basiclife-history patterns showed consistencybetween distantly geographical regions,latitudinal ranges and basic adult habitats,indicating convergences in life-historypatterns. Although the basic life-historypatterns seemed repeatable among distantlyrelated taxa, geographical and latitudinalaffiliations were apparent. Species from SouthAmerica are skewed toward the opportunisticendpoint, whereas North American marine speciesare skewed toward the periodic endpoint of thetrilateral continuum model. Most of the fishspecies from South American data set came fromfluctuating environments, so an opportunisticstrategy of early maturation and continuousspawning permits efficient recolonization ofhabitats over small spatial scales. Incontrast, most species in the North Americanand European data sets came from seasonalhabitats that are nonetheless more hydrologicalstable, so a periodic strategy of delayingmaturation to attain large clutches enhancesadult survivorship during suboptimalenvironmental conditions and recruitment whenearly life stages encounter suitableenvironmental conditions. Similarly,latitudinal affiliations were also observed:opportunistic strategists more common intropical latitudes and periodic strategistsmore common in temperate and Arctic latitudes.  相似文献   

7.
The pace-of-life syndrome (POLS) hypothesis specifies that closely related species or populations experiencing different ecological conditions should differ in a suite of metabolic, hormonal and immunity traits that have coevolved with the life-history particularities related to these conditions. Surprisingly, two important dimensions of the POLS concept have been neglected: (i) despite increasing evidence for numerous connections between behavioural, physiological and life-history traits, behaviours have rarely been considered in the POLS yet; (ii) the POLS could easily be applied to the study of covariation among traits between individuals within a population. In this paper, we propose that consistent behavioural differences among individuals, or personality, covary with life history and physiological differences at the within-population, interpopulation and interspecific levels. We discuss how the POLS provides a heuristic framework in which personality studies can be integrated to address how variation in personality traits is maintained within populations.  相似文献   

8.
Island and mainland populations of animal species often differ strikingly in life-history traits such as clutch size, egg size, total reproductive effort and body size. However, despite widespread recognition of insular shifts in these life-history traits in birds, mammals and reptiles, there have been no reports of such life-history shifts in amphibians. Furthermore, most studies have focused on one specific life-history trait without explicit consideration of coordinated evolution among these intimately linked life-history traits, and thus the relationships among these traits are poorly studied. Here we provide the first evidence of insular shifts and trade-offs in a coordinated suite of life-history traits for an amphibian species, the pond frog Rana nigromaculata . Life-history data were collected from eight islands in the Zhoushan Archipelago and neighboring mainland China. We found consistent, significant shifts in all life-history traits between mainland and island populations. Island populations had smaller clutch sizes, larger egg sizes, larger female body size and invested less in total reproductive effort than mainland populations. Significant negative relationships were found between egg size and clutch size and between egg size and total reproductive effort among frog populations after controlling for the effects of body size. Therefore, decreased reproductive effort and clutch size, larger egg size and body size in pond frogs on islands were selected through trade-offs as an overall life-history strategy. Our findings contribute to the formation of a broad, repeatable ecological generality for insular shifts in life-history traits across a range of terrestrial vertebrate taxa.  相似文献   

9.
Fundamental, long-term genetic trade-offs constrain life-history evolution in wild crucifer populations. I studied patterns of genetic constraint in Brassica rapa by estimating genetic correlations among life-history components by quantitative genetic analyses among ten wild populations, and within four populations. Genetic correlations between age and size at first reproduction were always greater than +0.8 within and among all populations studied. Although quantitative genetics might provide insight about genetic constraints if genetic parameters remain approximately constant, little evidence has been available to determine the constancy of genetic correlations. I found strong and consistent estimates of genetic correlations between life-history components, which were very similar within four natural populations. Population differentiation also showed these same trade-offs, resulting from long-term genetic constraint. For some traits, evolutionary changes among populations were incompatible with a model of genetic drift. Historical patterns of natural selection were inferred from population differentiation, suggesting that correlated response to selection has caused some traits to evolve opposite to the direct forces of natural selection. Comparison with Arabidopsis suggests that these life-history trade-offs are caused by genes that regulate patterns of resource allocation to different components of fitness. Ecological and energetic models may correctly predict these trade-offs because there is little additive genetic variation for rates of resource acquisition, but resource allocation is genetically variable.  相似文献   

10.
Hamilton SL 《Oecologia》2008,158(3):449-461
Upon settlement, many fishes undergo an energetically costly metamorphic period that requires substantial nutritional reserves. Larval growth and the accumulation of lipids prior to metamorphosis are likely to influence growth and survival following this critical period. On the Caribbean island of St. Croix, I investigated relationships between larval growth, early life-history characteristics, and post-metamorphic lipid content in the bluehead wrasse Thalassoma bifasciatum. Lipid reserves remaining after metamorphosis were positively related (r2 = 0.62) to the width of the metamorphic band; thus, this otolith-derived trait may be used to estimate the condition at emergence of survivors collected at some later time. In contrast, pelagic larval duration, average larval growth, and otolith size at settlement were negatively related to post-metamorphic lipid content. Interestingly, the trend for slower growth among fish in good condition was not consistent over the entire pelagic larval duration. Analyses of daily larval growth histories indicated that fish with high lipid reserves grew rapidly in the last week prior to settlement, but relatively slowly during the early phases of larval life; those emerging with low lipid concentrations, however, displayed strikingly opposite patterns. These contrasting patterns of growth and energy storage were consistent at two sites and over three recruitment events. Otolith chemistry data suggested that differences in growth histories and body condition were consistent with the hypothesis of larval development in distinct oceanic environments (characterized by Pb concentration); but, within a water mass, differences reflected life-history trade-offs between growth and energy storage. The results have implications for understanding the processes driving juvenile survival, which may be condition dependent.  相似文献   

11.
The influence of salinity on life-history traits was tested using two adjoining West African estuaries: the Gambia with a 'normal' salinity gradient (salinity always <40 and decreasing from the mouth upstream) and the Sine Saloum (Senegal) with an inverse gradient (from 35 at the estuary mouth up to >130 in the upper reaches). The breeding seasons and subsequent fork length ( L F) at first maturity ( L F50) were estimated for different fish species reproducing both in the Sine Saloum and in the Gambia River estuaries using a database built from experimental fish samplings between 1990 and 2003 with a purse seine (30 locations in the Sine Saloum and 44 in the Gambia). The database contained 30 553 individuals belonging to 60 different species among which only 20 species reproduced in both estuaries. The breeding seasons peaked just before, or at the beginning of the rainy season (June to July), and there were almost no sexually mature fishes at the beginning of the dry season (November to December). Patterns of differences between L F50 of the two estuaries did not follow a general trend (positive or negative), but varied in the same way for females and males of a given species. The L F50 was only systematically reduced with increasing salinity in species living in high-salinity waters (>70). For species living below 70, differences in sizes at first maturity between the two estuaries did not show any clear relationship with salinity. The smallest mature individual found in an environment was a good indicator of the size at first maturity reached in a particular ecosystem because the trend of the species differences between the two ecosystems generally followed that of the differences in size at maturity.  相似文献   

12.
The characteristics of invasive fishes: what has been learned so far?   总被引:2,自引:0,他引:2  
Invasive species are increasingly recognized as one of the main threats to biodiversity and both an urgent need and a unique tool for ecological research. Although attempts to identify future invasive species are not new to ecology, rigorous quantitative analyses emanate mostly from the last decade. In 2001, quantitative studies dealing with the distinguishing ecological features of invasive species were reviewed but no papers on fish species were identified. Subsequently, several quantitative studies have addressed this issue for freshwater fishes, including those that have focused on California, Colorado, the Great Lakes of North America and the Iberian Peninsula. In the present paper, 12 such studies are reviewed and compared with regard to their conclusions and methodology. The issues of different invasion stages and comparison strategies, propagule pressure, information-theoretic analyses v . sequential techniques, use of phylogenetic comparative methods and spatial scale are discussed. Non-native fish transport and release are the least investigated although taxonomy and human interests seem key in these first initial stages. Establishment success, which has received more study, seems more multi-factorial, context-dependent and more mediated by species-specific life-history traits. The dispersal and impact phases are less understood, although the comparison of traits (and taxonomy) between native and invasive species and particularly its variability holds promise. The lack of data on propagule pressure and the use of sequential techniques for observational data sets with many intercorrelated variables could affect the conclusions of previous studies. Research on the dispersal, impact and particularly transport and introduction phases should be prioritized rather than establishment. All the studies identified were at temperate latitudes in the northern hemisphere; studies in other regions and comparison of different regions and multiple scales are lacking.  相似文献   

13.
Global change increases both the number of threatened species and the impacts of invasives. These two problems are sometimes assumed to be opposite sides of the same coin, with invasive species having the opposite characteristics of endangered species. However, the validity of this assumption has never been tested. We analysed 20 life-history and other traits of all European and North American freshwater fish and birds. For these 1813 species, we compared the determinants of invasion success and IUCN-threat status and found that traits favouring invasion are not simply the opposite of those that favour endangerment. The size and life history of species are correlated more strongly with threat status than invasiveness. On the other hand, association with humans is the best predictor of invasiveness but is not correlated with threat status. Thus, the rise of invaders is caused by different aspects of global change than the imperilment of endangered species.  相似文献   

14.
Summary Ten traits related to life history theory were measured or estimated for 71 freshwater fish species from two locations in the Venezuelan llanos. Multivariate statistics and cluster analysis revealed three basic endpoint patterns bounding a two-dimensional continuum. A suite of attributes associated with parental care and aseasonal reproduction appeared to correspond to an equilibrium strategy. A second group of small fishes was distinguished by traits associated with rapid colonizing ability: early maturation, continuous reproduction, and small clutches. The third basic pattern was associated with synchronized reproduction during the early wet season, high fecundity, absence of parental care, and breeding migrations. A subset of mostly small fishes exhibiting little or no parental care, small clutches, and two to four month reproductive seasons was intermediate between the opportunistic (rapidly colonizing) and seasonal strategies. All ten life history variables showed significant effects of phylogeny. The cluster of species corresponding to the equilibrium group was dominated by siluriform fishes and perciforms of the Cichlidae. The opportunistic cluster was dominated by cyprinodontiform and characiform fishes, whereas the seasonal cluster contained primarily characiform and siluriform fishes. Seven of nine traits were significantly correlated with body length. The three reproductive patterns are interpreted as being adaptative with respect to relative intensity and predictability of temporal and spatial variation in abiotic environmental parameters, food availability, and predation pressure.  相似文献   

15.
1. Focusing on the current environmental characteristics, the ‘habitat template’ theory proposes that life‐history strategies summarise how evolution has shaped species to cope with the temporal and spatial variability of their present environment. The hierarchical ‘landscape filters’ concept predicts that the distribution of species reflects their specific traits that allow them to pass through multiple habitat filters. Together, these theories showed the importance of identifying the functional relationships of species to selective habitat forces in order to predict the organisation and response of communities to the environment. 2. We test the relationships between life‐history traits of European freshwater fish species’ and their habitat preferences, to detect the strategies adopted by fish to cope with their current habitat. For this purpose, we use published data on species traits and habitat preferences (microhabitat hydraulics, temperature and oxygen level). We use multivariate analyses to classify fish species’ strategies and test the relationships between strategies and habitat preferences. 3. We identified a continuum of life‐history patterns between two extremes, with opportunistic and periodic species. Our study supports the idea that microhabitat hydraulics plays a more important role as a template for these species ecological strategies than temperature and oxygen level. Indeed, riffle habitats may select opportunistic species whereas weak relationships are found between species strategies and both their temperature and oxygen level preferences. In addition, the ratio between mortality and growth rate (dimensionless trait), reflecting a trade‐off between growth and survival, varied among species according to the use of their hydraulic habitat, with species using deep habitats exhibiting the highest values. 4. These general relationships between hydraulics and traits may be of importance in community ecology to develop predictive models to understand how fish communities change with the hydraulic environment.  相似文献   

16.
Spatial patterns in the combinations of biological traits of fish communities were studied in the Garonne River system (57 000 km2, south‐west France). Fish species assemblages were recorded at 554 sampling sites, and the biological traits of species were described using a fuzzy‐coding method. A co‐inertia analysis of species distributions and biological traits identified some spatial patterns of species trait combinations. Fish species richness progressively increased from up‐ to downstream sections, and the longitudinal patterns of fish assemblages partitioned the river into clear biogeographic areas, such as the brown trout Salmo trutta (headwater streams), the grayling Thymallus thymallus , the barbel Barbus barbus and the bream Abramis brama zones (most downstream sections), which fitted with Huet's well‐known zonation for western European rivers. Only a few biological traits, chiefly related to life‐history attributes, significantly influenced the observed fish distributions. Fecundity, potential size, maximum age and reproductive factor increased from headwater to plain reaches. As a theoretical framework for assessing and predicting the functional organization of stream fish communities, spatial variations in species traits can be related to habitat conditions, thus providing explicit spatial schemes that may be useful to the design of both scientific studies and river management.  相似文献   

17.
Estimates of early-life traits of fishes (e.g. pelagic larval duration (PLD) and spawning date) are essential for investigating and assessing patterns of population connectivity. Such estimates are available for a large number of both tropical and temperate fish species, but few studies have assessed their variability in space, especially across multiple scales. The present study, where a Mediterranean fish (i.e. the white seabream Diplodus sargus sargus) was used as a model, shows that spawning date and PLD are spatially more variable at a scale of kilometres than at a scale of tens to hundreds of kilometres. This study indicates the importance of considering spatial variability of early-life traits of fishes in order to properly delineate connectivity patterns at larval stages (e.g. by means of Lagrangian simulations), thus providing strategically useful information on connectivity and relevant management goals (e.g. the creation of networks of marine reserves).  相似文献   

18.
We analyse the changes in rodent regional assemblages based on 657 fossil-bearing western European localities distributed ranging from ca. 27 Ma (Late Oligocene) to ca. 3 Ma (Late Pliocene). We compare temporal and spatial patterns in order to identify the factors that drive the evolutions of communities. Regional assemblages are analysed based on the distribution of species richness among families. First, communities are temporally analysed to identify significant changes in their composition. Second, regional communities are spatially compared to indentify diversity gradients. The temporal analysis reveals that communities' evolution is marked by several breaks in their composition, related to either migration or environmental/climatic events. This evolution can be summarised in terms of shifts in the relative abundances of glirids, cricetids and murids within assemblages. In contrast, spatial analysis shows that only environmental changes induce long-lasting changes in diversity gradients. Some observations made on cricetids and murids extant relatives indicate that they have undergone a large dietary diversification enabled by a specific digestive tract (along with the diversification of other life-history traits), whereas glirids are more specialised. The opposite diversity dynamics of these groups emphasises the importance of family-level adaptive potential in diversity conservation issues when facing environmental changes.  相似文献   

19.
Aims To test the magnitude and direction of the effects of large‐scale environmental factors (latitude and habitat type: lotic or lentic) on the intraspecific variations in multiple life‐history traits, across multiple European freshwater fish species. To test the relevance of defining species traits by quantifying the magnitude of interspecific vs. intraspecific variability in traits. Location Europe. Methods We obtained estimates of 11 fish traits from published sources for 1089 populations of 25 European freshwater fish species. Traits were: longevity, maximal length, growth rate, asymptotic length, mortality rate, age and length at maturation, fecundity, egg size, gonadosomatic index, and length of breeding season. We described population habitats by latitude and habitat type (lotic or lentic), when available. For each species we tested the combined effect of latitude and habitat type on the intraspecific variation of each trait using analysis of covariance (ancova ). We compared the intraspecific variation in traits with the variation between species using an analysis of variance (anova ) for each trait, all species pooled. Results We found a consistent effect in direction of latitude on six traits, but we showed that this effect is not always significant across species. Higher‐latitude populations often grew more slowly, matured later, had a longer life span and a higher maximal and asymptotic length, and allocated more energy to reproduction than populations at lower latitudes. By contrast, we noted only a slight effect of habitat type on the intraspecific variation in traits, except for Salmo trutta. All traits varied significantly between species. However, traits such as growth rate, mortality rate and length of breeding season varied more between populations than between species, whereas fecundity and traits associated with body length varied more between species. Main conclusions Latitude, in contrast to habitat type, is an important factor influencing several traits of geographically widely dispersed populations of multiple European freshwater fish species. Species traits that vary more between species than between populations are attractive variables for understanding and predicting the responses of stream fish communities to their environment.  相似文献   

20.
The trajectory of phenotypic evolution is constrained in the short term by genetic correlations among traits. However, the extent to which genetic correlations impose a lasting constraint is generally unknown. Here, I examine the genetic architecture of life-history variation in male and female gametophytes from two populations of the moss Ceratodon purpureus, focusing on genetic correlations within and between the sexes. A significant negative correlation between allocation to vegetative and reproductive tissue was evident in males of both populations, but not females. All traits showed between-sex correlations of significantly less than one, indicating additive genetic variance for sexual dimorphism. The degree of dimorphism for traits was significantly negatively associated with the strength of the between-sex correlation. The structure of genetic correlations among life-history traits was more divergent between the two populations in females than in males. Collectively, these results suggest that genetic correlations do not impose a lasting constraint on the evolution of life-history variation in the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号