首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The stump and root systems of Scots pine (Pinus sylvestris) and field-layer vegetation were sampled before (1984) and three growing seasons after drainage and fertilization (1987) of a low-shrub pine bog. Average below-ground biomass of the field layer was 548 gDW m–2 in 1984, with no significant treatment effects during experimentation. The stump-plus-root biomass of the pine stands was 1464 gDW m–2 in the virgin state, and had increased to 1854 gDW m–2 three years after the NPK-fertilizer treatment. The distribution over fractions also changed with this treatment. The fraction of fine roots ( < 1 mm) in stump-root biomass increased from 4% (56 gDW m–2) to 11% (196 gDW m–2), while the other compartments changed less. Total pine root length was 729 mm–2 in 1984. Root length increased by 94% to 1380 mm–2 on NPK-fertilized plots. Most of the fine pine roots were in the surface layer (0–10 cm), 79% in 1984 and 88% in 1987, and few pine roots were deeper than 20 cm. Maximum root length of fine pine roots ( < 1 mm) was estimated to be 2710 mm–2 at about 800 gDW m–2 (NPK treatment), and the corresponding maximum for small pine roots (=1–10 mm) was 227 mm–2 at 809 gDW m–2. Drainage stimulated net growth of fine roots, but this treatment also caused higher mortality rates of small roots. The fine roots responded to fertilization with higher net growth rate, and secondary growth of the large roots ( > 10 mm) was improved. The observed changes in root biomass and structure are explained as strategic adaptations to altered hydrological and nutritional circumstances in the root zone after drainage and fertilization.  相似文献   

2.
Guo DL  Mitchell RJ  Hendricks JJ 《Oecologia》2004,140(3):450-457
Fine roots are a key component of carbon (C) flow and nitrogen (N) cycling in forest ecosystems. However, the complexity and heterogeneity of the fine root branching system have hampered the assessment and prediction of C and N dynamics at ecosystem scales. We examined how root morphology, biomass, and chemistry differed with root branch orders (1–5 with root tips classified as first order roots) and how different root orders responded to increased C sink strength (via N fertilization) and reduced carbon source strength (via canopy scorching) in a longleaf pine (Pinus palustris L.) ecosystem. With increasing root order, the diameter and length of individual roots increased, whereas the specific root length decreased. Total root biomass on an areal basis was similar among the first four orders but increased for the fifth order roots. Consequently, total root length and total root surface area decreased systematically with increasing root order. Fine root N and lignin concentrations decreased, while total non-structural carbohydrate (TNC) and cellulose concentrations increased with increasing root order. N addition and canopy disturbance did not alter root morphology, but they did influence root chemistry. N fertilization increased fine root N concentration and content per unit area in all five orders, while canopy scorching decreased root N concentration. Moreover, TNC concentration and content in fifth order roots were also reduced by canopy scorching. Our results indicate that the small, fragile, and more easily overlooked first and second order roots may be disproportionately important in ecosystem scale C and N fluxes due to their large proportions of fine root biomass, high N concentrations, relatively short lifespans, and potentially high decomposition rates.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

3.
中龄林的马尾松受松材线虫侵染后,林木生长、生理生化指标、群落多样性等会发生异质性变化,但是,针对患病林木地下细根的响应尚不清楚。本研究以松材线虫疫区患病马尾松和健康马尾松为研究对象,采用土柱法,分0-15 cm和15-30 cm土层,对细根进行分级研究,定量分析1-5级细根的形态、生物量以及养分元素,探讨松材线虫侵染的马尾松人工林细根形态、生物量以及养分元素的分异特征。结果表明:(1)患病马尾松人工林细根的健康状态与根长密度、生物量呈极显著正相关(P<0.01),低级根(如1级根)患病后,响应会更加强烈。(2)马尾松人工林患病后,细根有效磷、速效钾浓度会显著降低(P<0.05),而全氮、钙浓度会显著升高(P<0.05)。(3)松材线虫病使林分的土壤有机质含量显著高于健康林分(P<0.05),而土壤速效钾含量会显著低于健康林分(P<0.05)。以上结果表明,松材线虫侵染的马尾松人工林会在细根形态、细根养分和土壤养分上会发生特异性响应,揭示了松材线虫病对马尾松人工林地下细根的影响,旨在为松材线虫病防治提供一定参考。  相似文献   

4.
This experiment was designed to examine the effects of aluminium (Al) on the growth of Pinus radiata (D. Don) and Eucalyptus mannifera subsp. mannifera (Mudie) seedlings in culture solutions in a glasshouse to help explain the failure of radiata pine trees on some acid, low fertility soils in Australia on which the native eucalypts flourish. Aluminium (Al) in culture solution increased the growth of roots and shoots of seedlings of both species but while growth of the eucalypt continued to increase with increases in Al to 2.222 μM, growth of the pine was largest at 370 μM Al. In addition to total root length, specific root length (length per unit dry weight), a measure of fineness of the root, increased in the eucalypt seedlings as the substrate Al increased. Growth of the shoots and roots of the pine in the absence of any added Al was extremely poor suggesting that Al, in low concentrations, may be an essential element or ameliorate some other factors in solution culture at low pH. Root and shoot concentrations of K increased with increasing Al, whilst Ca and Mg Concentrations decreased and Mn concentrations were unaffected in both species. Tissue Ca and Mg concentrations were 2 to 3 times higher in the eucalypt seedlings than the pine at all levels of added Al due to greater uptake of these elements by the eucalypt. In contrast, at the highest concentration of Al in the medium, shoot Al concentrations were lower in the cucalypt than in the pine due to a greater proportion of Al being retained in the eucalypt roots. These differences between the seedlings in terms of root growth and tissue cation concentrations may help explain the ability of eucalypt species to maintain vigorous growth on acid soils high in Al and low in Ca and P, where growth of the pines failed.  相似文献   

5.
Development of below-ground biomass and biomass allocation were studied in two different stands of young grey alder stands growing on a peat bog. Both stands were given the same fertilization and irrigation treatment. The roots were investigated from 1) open plastic tubes enclosing the complete root systems in 1982, and 2) root cores 1984–86. Coarse roots (diameter>1 mm) were mainly found close to the trunk of the trees while fine roots (≤1 mm) were more evenly distributed in the stands. Root nodules were intermediate in distribution. The root systems were shallow, with more than 90% of the biomass in the uppermost 9–10 cm of the soil, probably because of low oxygen availability in the peat soil. The biomass allocation to the above-ground parts increased during the study period.  相似文献   

6.
Questions: What are the effects of repeated disturbance and N‐fertilization on plant community structure in a mountain birch forest? What is the role of enhanced nutrient availability in recovery of understorey vegetation after repeated disturbance? How are responses of soil micro‐organisms to disturbance and N‐fertilization reflected in nutrient allocation patterns and recovery of understorey vegetation after disturbance? Location: Subarctic mountain birch forest, Finland. Methods: We conducted a fully factorial experiment with annual treatments of disturbance (two levels) and N‐fertilization (four levels) during 1998–2002. We monitored treatment effects on above‐ground plant biomass, plant community structure and plant and soil nutrient concentrations. Results: Both disturbance and N‐fertilization increased the relative biomass of graminoids. The increase of relative biomass of graminoids in the disturbance treatment was over twice that of the highest N‐fertilization level, and N‐fertilization further increased their relative biomass after disturbance. As repeated disturbance broke the dominance of evergreen dwarf shrubs, it resulted in a situation where deciduous species, graminoids and herbs dominated the plant community. Although relative biomass of deciduous dwarf shrubs declined with N‐fertilization, it did not cause a shift in plant community structure, as evergreen dwarf shrubs remained dominant. Both disturbance and N‐fertilization increased the N concentration in vascular plants, whereas microbial biomass N and C were not affected by the treatments. Concentrations of NH4+, dissolved organic N (DON) and dissolved organic C (DOC) increased in the soil after N‐fertilization, whereas concentrations of NH4+ and DON decreased after disturbance. Conclusions: Disturbances caused by e.g. humans or herbivores contribute more to changes in the understorey vegetation structure than increased levels of N in subarctic vegetation. Fertilization accelerated the recovery potential after repeated disturbance in graminoids. Microbial activities did not limit plant growth.  相似文献   

7.
Abstract Forest soil ecology was studied in Fennoscandinavian dry Scots pine forests grazed by reindeer to varying extents (ungrazed, lichen-dominated-sites; grazed sites; and bryophyte-dominated sites). We hypothesized that the productivity parameters of the site (i.e., tree growth and soil nutrient concentrations), the vegetation composition, and the microbial activities are directly correlated. Since the productivity of the lichen-dominated ecosystem is low, microbial activities are assumed to be naturally low. Grazing was expected to decrease both the amount of Scots pine fine roots and the soil microbial activities. Several variables on the characteristics of the soil microbial community, Scots pine fine roots, soil nutrients, and tree growth were studied in relation to vegetation composition by using non-metric multidimensional scaling (NMDS). Basal respiration (Bas), metabolic quotient of the microbial community (qCO2), and pine fine root parameters increased toward the ungrazed, nutrient-poor, lichen-dominated sites, which were grouped at one end of the first axis in the NMDS ordination. Soil nutrient and tree growth parameters and thickness of the humus layer increased toward bryophyte-dominated sites, which were grouped at the other end of the first axis in the ordination. The grazed sites fell between them. These were characterized by lower Bas and qCO2 values and longer lag, compared to ungrazed lichen- or bryophyte-dominated sites, probably due to decreased carbon input and microclimatic change (the soil without lichen carpet is exposed to direct sunlight and wind). Microbial biomass (Cmic), fungal biomass (ergosterol concentration), and the specific growth rate (μCO2) were not related to vegetation ordination. The high fine root production is the most plausible explanation for the high microbial activities at nutrient-poor, lichen-dominated sites, which produce qualitatively poor and slowly decomposing litter, as fine roots secrete considerable amounts of organic substances. At bryophyte-dominated sites, the higher soil nutrient concentrations and the higher production of easily decomposable substrates are likely to maintain the microbial activities.  相似文献   

8.
Mark Coleman 《Plant and Soil》2007,299(1-2):195-213
In forest trees, roots mediate such significant carbon fluxes as primary production and soil CO2 efflux. Despite the central role of roots in these critical processes, information on root distribution during stand establishment is limited, yet must be described to accurately predict how various forest types, which are growing with a range of resource limitations, might respond to environmental change. This study reports root length density and biomass development in young stands of eastern cottonwood (Populus deltoidies Bartr.) and American sycamore (Platanus occidentalis L.) that have narrow, high resource site requirements, and compares them with sweetgum (Liquidambar styraciflua L.) and loblolly pine (Pinus taeda L.), which have more robust site requirements. Fine roots (<1 mm), medium roots (1 to 5 mm) and coarse roots (>5 mm) were sampled to determine spatial distribution in response to fertilizer and irrigation treatments delivered through drip irrigation tubes. Root length density and biomass were predominately controlled by stand development, depth and proximity to drip tubes. After accounting for this spatial and temporal variation, there was a significant increase in RLD with fertilization and irrigation for all genotypes. The response to fertilization was greater than that of irrigation. Both fine and coarse roots responded positively to resources delivered through the drip tube, indicating a whole-root-system response to resource enrichment and not just a feeder root response. The plastic response to drip tube water and nutrient enrichment demonstrate the capability of root systems to respond to supply heterogeneity by increasing acquisition surface. Fine-root biomass, root density and specific root length were greater for broadleaved species than pine. Roots of all genotypes explored the rooting volume within 2 years, but this occurred faster and to higher root length densities in broadleaved species, indicating they had greater initial opportunity for resource acquisition than pine. Sweetgum’s root characteristics and its response to resource availability were similar to the other broadleaved species, despite its functional resemblance to pine regarding robust site requirements. It was concluded that genotypes, irrigation and fertilization significantly influenced tree root system development, which varied spatially in response to resource-supply heterogeneity created by drip tubes. Knowledge of spatial and temporal patterns of root distribution in these stands will be used to interpret nutrient acquisition and soil respiration measurements. The US Government has the right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper. Mention of a commercial or proprietary product does not constitute endorsement or recommendation by the USDA Forest Service.  相似文献   

9.
Van de Vijver  C. A. D. M.  Poot  P.  Prins  H. H. T. 《Plant and Soil》1999,214(1-2):173-185
The aim of the present study was to investigate the causes of increased macronutrient concentrations in above-ground post-fire regrowth in an East African savanna (Northern Tanzania). Experiments were set up to discriminate between the following possible causes: (1) increased soil nutrient supply after fire, (2) relocation of nutrients from the roots to the new shoots, (3) rejuvenation and related changes in plant tissue composition and (4) changes in nutrient uptake in relation to above-ground carbon gains. N, P, K, Ca and Mg concentrations in post-burn graminoid vegetation were compared with clipped and with unburned, control vegetation during the post-burn growth season. One month after burning and clipping, nutrient concentrations in live grass shoots in the burned and clipped treatments were significantly higher than in the control. This effect, however, declined in the course of the season and, except for Ca, disappeared three months after onset of the treatments. There were no significant differences in live grass shoot nutrient concentrations between burned and clipped treatments which suggests that the increased nutrient concentration in post-fire regrowth is not due to increased soil nutrient supply via ash deposition. The relatively low input of nutrients through ash deposition, compared to the amount of nutrients released through mineralisation during the first month after burning and to the total nutrient pools, supports this suggestion. There was no difference between burned and unburned vegetation in total root biomass and root nutrient concentrations. Relocation of nutrients from the roots to the new shoots did not, therefore, appear to be a cause of higher post-fire shoot nutrient concentrations. The present study shows that in this relatively nutrient-rich savanna, the increased nutrient concentration in above-ground post-fire regrowth is primarily due to increased leaf:stem ratios, rejuvenation of plant material and the distribution of a similar amount of nutrients over less above-ground biomass. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
To develop sources of renewable energy and to reduce greenhouse gas emissions, increasing attention has been given to the extraction of forest biomass, especially in the form of harvest residues. However, increasing the removal of biomass, and hence nutrients, has raised concerns about the sustainability of site fertility and forest productivity. The environmental cost of harvesting belowground biomass is still not fully understood. The objectives of this study were to (i) estimate the stocks of belowground biomass that potentially can be collected; (ii) measure the nutrient (N, P, K, Ca, Mg) concentrations of the different root compartments (stumps, coarse and thin roots); and to (iii) quantify the biomass and nutrient exports under different scenarios, including harvests of above and belowground compartments. The study was carried out on Pinus pinaster stands located in south‐western France. Results showed that roots could be a significant fuelwood resource, particularly at forest clear cutting. Negative relationships between root diameter and root nutrient concentration were observed, independently of root function or tree age. Such relationships can be used to accurately simulate nutrient concentrations in roots as well as nutrient exports. Combining our original results on roots with previously published data on the aboveground compartments showed that nutrient losses were higher in canopy harvest scenarios than in root harvest scenarios. This was mainly due to high nutrient concentrations of needles. We concluded that stump and root harvest could be sustainable in our study context, conversely to foliage harvest. Because thin roots have higher nutrient concentrations than coarse roots and the proportion of thin roots increased with an increase in the distance from the tree, collecting roots only in the close vicinity of the stumps should limit nutrient exports (particularly N) without unnecessarily reducing fuelwood biomass.  相似文献   

11.
Question: How do N fertilization and disturbance affect the understorey vegetation, microbial properties and soil nutrient concentration in boreal forests? Location: Kuusamo (66°22′N; 29°18′E) and Oulu (65°02′N; 25°47′E) in northern Finland. Methods: We conducted a fully factorial experiment with three factors: site (two levels), N fertilization (four levels) and disturbance (two levels). We measured treatment effects on understorey biomass, vegetation structure, and plant, soil and microbial N and C concentrations. Results: The understorey biomass was not affected by fertilization either in the control or in the disturbance treatment. Fertilization reduced the biomass of deciduous Vaccinium myrtillus. Disturbance had a negative effect on the biomass of V. myrtillus and evergreen Vaccinium vitis‐idaea and decreased the relative proportion of evergreen species. Fertilization and disturbance increased the biomass of grass Deschampsia flexuosa and the relative proportion of graminoids. The amount of NH4+ increased in soil after fertilization, and microbial C decreased after disturbance. Conclusions: Our results suggest that the growth of slow‐growing Vaccinium species and soil microbes in boreal forests are not limited by N availability. However, significant changes in the proportion of dwarf shrubs to graminoids and a decrease in the biomass of V. myrtillus demonstrate the susceptibility of understorey vegetation to N enrichment. N enrichment and disturbance seem to have similar effects on understorey vegetation. Consequently, increasing N does not affect the rate or the direction of recovery after disturbance. Moreover, our study demonstrates the importance of understorey vegetation as a C source for soil microbes in boreal forests.  相似文献   

12.
We determined the effects of wood ash fertilization, given together with nitrogen (WAN), and nitrogen given together with P, B and Cu (SSF), on soil and foliage nutrients and fine root biomass in a 45-year-old Norway spruce stand in southern Finland. Fine roots were sampled 9 years, and the soil 10 years after ash (3 t/ha) and nitrogen (150 kg/ha) application. Fine root biomass tended to be lower, the necromass higher, and the fine root distribution relatively deeper on the WAN than on the control and SSF plots. The response of fine root biomass to WAN was probably related to changes in soil acidity. pH, base saturation, total and extractable concentrations of Ca, K, Mg and P, and total B, Cd, Mn, Ni and Zn concentrations in the organic layer were significantly higher on the WAN plots than on the SSF and the control plots with no ash and nutrient addition. On the WAN plots, the pH was 1.2 pH-units higher, the exchangeable Ca concentrations fourfold and those of Mg over twofold compared to the control plots. WAN increased the concentrations of K but decreased those of Mn and Ni in the needles compared to the control and SSF treatment. Even though ash and nitrogen fertilisation tended to decrease the fine root biomass, this decrease was not likely to affect tree growth during a 10-year period.  相似文献   

13.
In this study, we surveyed the long term effects of liming and fertilizing in old Scots pine stands on the ectomycorrhiza (ECM) colonization, tree growth and needle nutrient concentration 35 years later. Four mature stands of Scots pine on low productive mineral soil were limed in 1959 and 1964 with total doses of limestone ranging from 3 to 15 Mg ha?1 and fertilized with nitrogen (N) in 1970. Thirty-five years after the first liming treatment, all stands were analysed for tree growth and needle nutrient concentrations and two of the stands were also analysed for ECM colonization. ECM colonization increased significantly with liming from 61.5% in the control plots to 88% in the plot with the highest limestone dose. ECM colonization increased with increasing pH in the humus layer from 62% colonization at pH?=?3.5 to 90% at pH?=?6.5 and decreased with increasing amount of extractable phosphorus (P) in the humus. Liming did not affect the frequencies of different ECM morphotypes or dead short root tips, the fine root biomass or necromass. ECM colonization was uncorrelated with needle nutrient concentrations or tree increment. Liming did not significantly affect tree growth. However, nutrient concentrations of current-year needles were affected by prior liming. Ca concentrations in current-year needles increased from approximately 15 mg g?1 in control treatments to more than 30 mg g?1 in limed plots, whereas concentrations of Mn, Al, Fe, and in two stands, B, decreased due to liming. In conclusion, liming with doses up to 15 Mg ha?1 was detectable in stands 35 years after treatment. The liming significantly increased the ECM colonization of Scots pine fine roots, increased the needle nutrient concentration of Ca and decreased the needle concentrations of Mn, Al, and Fe.  相似文献   

14.
Aluminium (Al), mobilized by acidic deposition, has been claimed to be a major threat to forest vitality. Fine root mortality, decreased root growth and reduced nutrient uptake have been observed in controlled laboratory experiments where roots of tree seedlings were exposed to elevated concentrations of Al. Yet, evidence for Al-induced root damage from forest stands is scarcely reported. Nevertheless, Al dissolved in soil water has received a key role in the critical load concept for forests. Here, we present effects of artificially elevated concentrations of Al in the soil solution on fine roots in a middle-aged stand of Norway spruce (Picea abies (L.) Karst.). Although the inorganic Al concentrations about 200 µM and Ca:Al ratio about 0.7 that were established in the soil solution within this experiment have been associated with reduction of root growth and root mortality for spruce seedlings in hydroponic studies, no acute damage on fine roots was observed. Three years of treatment did not cause visual root damage, nor were effects on fine root necromass observed. Fine root necromass made up about 10% of fine root biomass for all treatments. However, significantly lower molar Ca:Al and Mg:Al ratios in living and dead fine roots were found in the plots where Al concentrations were highest and ratios of Ca to Al in the soil solution were lowest. The lack of response on fine root biomass suggests that forest stands tolerate higher Al levels than results from laboratory experiments indicate. We conclude that effect studies in the laboratory have limited value for field conditions. The key role of Al toxicity, expressed as the Ca/Al ratio, in critical load calculations for forests may have to be reconsidered.  相似文献   

15.
Wood ash was applied to a forest ecosystem with the aim to recycle nutrients taken from the forest and to mitigate the negative effects of intensive harvesting. After two years, the application of 8,000 kg ha−1 of wood ash increased soil exchangeable Ca and Mg. Similarly, an increase in Ca and Mg in the Norway spruce fine roots was recorded, leading to significant linear correlations between soil and root Ca and soil and root Mg. In contrast to these macronutrients, the micronutrients Fe and Zn and the toxic element Al decreased in the soil exchangeable fraction with the addition of wood ash, but not in the fine roots. Only Mn decreased in soil and in fine roots leading to a significant linear correlation between soil and root Mn. In soil, as well as in fine roots, strong positive correlations were found between the elements Ca and Mg and between Fe and Al. This indicates that the uptake of Mg resembles that of Ca and that of Al that of Fe. With the wood ash application, the pH increased from 3.2 to 4.8, the base saturation from 30% to 86%, the molar basic cations/Al ratio (BC/Al) of the soil solution from 1.5 to 5.5, and the molar Ca/Al ratio of the fine roots from 1.3 to 3.7. Overall, all below-ground indicators of soil acidification responded positively to the wood ash application within two years. Nitrate concentrations increased only slightly in the soil solution at a soil depth of 75–80 cm, and no signs of increased heavy metal concentrations in the soils or in the fine roots were apparent. This suggests that the recycling of wood ash could be an integral part of sustainable forest management because it closes the nutrient cycle and reverses soil acidification.  相似文献   

16.
The effects of aluminium chloride (AICI3) treatments (50 and 150 mg/l) on 3-year-old Scots pine (Pinus sylvestris L.) seedlings were studied in a sand culture during 2 growing periods in an open field experiment. Even by the end of the first growing period, a decline was observed in the concentrations of Ca, Mg and P within the needles, and of Ca and Mg in the roots. After the second growing period, increased N and K concentrations were observed in the needles of Al-treated seedlings. Both the needles and roots of Al-treated seedlings showed, after the second growing period, a decline in growth and increased concentrations of AI as the amount of AICI3 in the nutrient solution increased. Al-induced changes in needle structure were found to be symptomatic of a nutrient imbalance, particularly of Mg and P. Al-stress did not result in any observable changes in root anatomy or in the number of mycorrhizas. Scots pine proved to be rather resistant to Al-stress, indicating that direct Al-injuries are not likely in the field, though Al-stress may be a contributing factor in the formation of nutrient imbalances.  相似文献   

17.
We examined the ectomycorrhizal (ECM) fungal community across a bog-forest ecotone in southeastern Alaska. The bog and edge were both characterized by poorly drained Histosols and a continuous layer of Sphagnum species, ericaceous shrubs, Carex species, and shore pine [Pinus contorta Dougl. ex Loud. var. contorta]. The forest had better-drained Inceptisols and Spodosols, a tree community comprised of western hemlock [Tsuga heterophylla (Raf.) Sarg.], yellow cedar (Thuja plicata Donn ex D. Don.), Sitka spruce [Picea sitchensis (Bong.) Carr.] and shore pine, and an understorey of ericaceous shrubs and herbs. ECM root tip density (tips cm–3 soil) was significantly greater in the forest than the edge or bog and ECM colonization was significantly different in all three plant communities. The below ground ECM fungal taxa were analyzed using molecular techniques (PCR-RFLP and DNA sequencing). Three ECM fungal taxa, Suillus tomentosus (Kauffman) Singer, Cenococcum geophilum Fr.:Fr, and a Russula species, differed in relative frequency, yet were among the four most frequent in all three plant communities. Although differences in ECM fungal richness were observed across plant communities, unequal sampling of ECM roots due to root density and colonization differences confounded richness comparisons. Using resampling procedures for creating taxon-accumulation curves as a function of sampled ECM roots revealed similarities in cumulative ECM fungal taxa richness across the ecotone.  相似文献   

18.
To study growth responses of the roots of Panicum miliaceum L. to heterogeneous supply of nutrients. The authors analyzed the effects of the nutrient levels in both original patches (O) and destination patches (D) on the root growth of P. miliaceum when its roots were allowed to extend from original patch into destination patch. When the nutrient levels in the original patches were low, coarse root biomass ratio (coarse root biomass in the D/total coarse root biomass), coarse root length ratio (coarse root length in the D/total coarse root length), coarse root surface area ratio (coarse root surface area in the D/total coarse root surface area) and fine root length ratio (fine root length in the D/total fine root length) were greater in the destination patches with lower nutrient levels than in the destination patches with higher nutrient levels, while fine root length, fine root length density, fine root surface index, and fine root surface area density were smaller in the former than in the latter. When the nutrient levels in the original patches were high, fine root length, fine root length density, fine root surface area index and fine root surface density were greater in the destination patches with lower nutrient levels than in the destination patches with higher nutrient levels, coarse roots did not respond to the nutrient levels in the destination patches significantly. When the roots extended from the original patches with the same nutrient level into the destination patches with contrasting nutrient levels, fine root biomass and its percentage allocation did not respond to the nutrient levels in the destination patches significantly, whereas both root length and root surface area did. This indicates that the fine roots of P. miliaceum responded to difference in nutrient supply by plasticity in their length and surface area, rather than in their root biomass.  相似文献   

19.
The effects of two substrates and several strains of mycorrhizal fungi on the content of soluble phenolics in roots and growth of Scots pine seedlings was investigated. The first substrate was fertile and contaminated with copper, zinc and lead, whereas the second one displayed nutrient deficiency. The dry weights of needles, trunks, roots and the total biomass were higher in groups of seedlings inoculated with mycorrhizal fungi on fertile and polluted substrate. Inoculation of pine seedlings on this substrate resulted in a decrease in concentration of phenolics in roots and except for seedlings inoculated with Laccaria laccata negatively influenced the above-ground part: root ratio.  相似文献   

20.
异质养分环境中一年生分蘖草本黍根系的生长特征   总被引:3,自引:0,他引:3  
为揭示黍(Panicum miliaceum L.)根系对异质养分环境的生长反应,作研究了黍根系从起始斑块向目标斑块水平生长时,时始斑块和目标斑块养分水平根生长的影响,就低养分起始珏块而言,粗根生物量,粗根长度,粗根表面积和细极长度在高养分目标斑块中的分配比例均小于其在低养分目标斑块中的分配比例,而细根长度及其密度,细根表面积指及其密度的变化恰好相反,就高养分起始斑块而言,高养分目标斑块的细根长度,细根长度密度,细根表面积指数和细根表面积密均不于低养分目标斑块,而粗根对目标斑块中养分状的反应不明显。当黍根系从桢的起始斑块进入不同的目标斑块后,目标斑块的养分状况对细根生物量及其分配无影响,而显影响细根长度和表现积,这指示细根是通过长度和表面积可塑性而不是生物量变化响应目标斑块中的养分差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号