首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Translational efficiency of a minor group of mRNAs is regulated by serum levels in 3T6 fibroblasts. Included within this group is the poly(A)-binding protein (PABP) mRNA. We analyzed the distribution of PABP mRNA in polysome profiles and found a large percentage of this mRNA to be translationally repressed in both actively growing (approximately 60%) and resting cells (approximately 70%). Elevated serum levels induced a distinct bimodal distribution of this mRNA between actively translated and repressed fractions. Similarly, treatment of cells with low doses of cycloheximide also generated a partial shift of repressed PABP mRNA into the actively translated fraction. In an attempt to characterize the factors which regulate PABP mRNA translation we have identified the proteins which bind to this mRNA in vitro. Sequences within the 5' untranslated region were found to be sufficient for binding of all proteins to this mRNA. We suggest that this region and the proteins associated with it may be essential for translation control of PABP mRNA.  相似文献   

2.
3.
Binding of the chloroplast poly(A)-binding protein, RB47, to the psbA mRNA is regulated in response to light and is required for translation of this mRNA in chloroplasts. The RNA binding activity of RB47 can be modulated in vitro by oxidation and reduction. Site-directed mutations to individual cysteine residues in each of the four RNA binding domains of RB47 showed that changing single cysteines to serines in domains 2 or 3 reduced, but did not eliminate, the ability of RB47 to be redox-regulated. Simultaneously changing cysteines to serines in both domains 2 and 3 resulted in the production of RB47 protein that was insensitive to redox regulation but retained the ability to bind the psbA mRNA at high affinity. The poly(A)-binding protein from Saccharomyces cerevisiae lacks cysteine residues in RNA binding domains 2 and 3, and this poly(A)-binding protein lacks the ability to be regulated by oxidation or reduction. These data show that disulfide bond formation between RNA binding domains in a poly(A)-binding protein can be used to regulate the ability of this protein to bind mRNA and suggest that redox regulation of RNA binding activity may be used to regulate translation in organisms whose poly(A)-binding proteins contain these critical cysteine residues.  相似文献   

4.
The nuclear poly(A)-binding protein (PABPN1) is involved in the synthesis of the mRNA poly(A) tails in most eukaryotes. We report that the protein contains two RNA binding domains, a ribonucleoprotein-type RNA binding domain (RNP domain) located approximately in the middle of the protein sequence and an arginine-rich C-terminal domain. The C-terminal domain also promotes self-association of PABPN1 and moderately cooperative binding to RNA. Whereas the isolated RNP domain binds specifically to poly(A), the isolated C-terminal domain binds non-specifically to RNA and other polyanions. Despite this nonspecific RNA binding by the C-terminal domain, selection experiments show that adenosine residues throughout the entire minimal binding site of approximately 11 nucleotides are recognized specifically. UV-induced cross-links with oligo(A) carrying photoactivatable nucleotides at different positions all map to the RNP domain, suggesting that most or all of the base-specific contacts are made by the RNP domain, whereas the C-terminal domain may contribute nonspecific contacts, conceivably to the same nucleotides. Asymmetric dimethylation of 13 arginine residues in the C-terminal domain has no detectable influence on the interaction of the protein with RNA. The N-terminal domain of PABPN1 is not required for RNA binding but is essential for the stimulation of poly(A) polymerase.  相似文献   

5.
BACKGROUND INFORMATION: Maskin is a member of the TACC (transforming acidic coiled-coil) domain proteins found in Xenopus laevis oocytes and embryos. It has been implicated in the co-ordination of the spindle and has been reported to mediate translational repression of cyclin B1 mRNA. RESULTS: In the present study, we report that maskin mRNA is translationally repressed at the level of initiation in stage 4 oocytes and becomes activated in stage 6 oocytes. The translational repression of maskin mRNA correlates with the presence of a short poly(A) tail on this mRNA in stage 4 oocytes. The 3'-UTR (untranslated region) of maskin can confer the translational regulation to a reporter mRNA, and so can the 3'-UTR of human TACC3. A conserved GUCU repeat element was found to repress translation in both stage 4 and stage 6 oocytes, but deletion of this element did not abrogate repression in stage 4 oocytes. UV cross-linking experiments indicated that overlapping sets of proteins bind efficiently to both the maskin and the cyclin B1 3'-UTRs. As reported previously, CPEB [CPE (cytoplasmic polyadenylation element)-binding protein] binds to the cyclin B1 3'-UTR, but its binding to the maskin 3'-UTR is minimal. By RNA affinity chromatography and MS, we identified the EDEN-BP [EDEN (embryonic deadenylation element)-binding protein] as one of the proteins binding to both the maskin and the cyclin B1 3'-UTRs. CONCLUSIONS: Maskin mRNA is translationally regulated by at least two repressor elements and an activation element. One of the repessor elements is the evolutionarily conserved GUCU repeat. EDEN-BP binds to both the maskin and cyclin B1 3'-UTRs, indicating it may be involved in the deadenylation of these mRNAs.  相似文献   

6.
7.
Modulating the efficiency of translation plays an important role in a wide variety of cellular processes and is often mediated by trans-acting factors that interact with cis-acting sequences within the mRNA. Here we show that a cis-acting element, the Hsp83 degradation element (HDE), within the 3'-untranslated region of the Drosophila Hsp83 mRNA functions as a translational enhancer. We show that this element is bound by a multiprotein complex, and we identify components using a novel affinity-based method called tandem RNA affinity purification tagging. Three proteins (DDP1, Hrp48, and poly(A)-binding protein) are components of the HDE-binding complex and function in translational enhancement. Our data support a model whereby the HDE is composed of several cis-acting subelements that represent binding sites for trans-acting factors, and the combined action of these trans-acting factors underlies the ability of the HDE to stimulate translation.  相似文献   

8.
9.
Ribonucleoproteins of the ribosomal fraction of germinated pea embryo axes, containing translationally active mRNA, differ from analogous ribonucleoproteins of dry pea seeds, which contain stored mRNA, by the presence of a 60 kDa protein fraction showing affinity to poly(A). The above protein fraction largely affects the activity of poly(A)+ RNA translation in cell-free system. An activating effect is clearly seen at a weight ratio of poly(A)-binding proteins:poly(A)+ RNA of 3:1, whereas with an increase in the concentration of these proteins the translational activity drops. The effect of poly(A)-binding proteins containing the 60 kDa fraction on poly(A)+ RNA dependent cell-free translation can be efficiently reduced by simultaneous addition of synthetic poly(adenylic acid). It was also proved that activation of translation does not influence its products. It is concluded that poly(A)-binding proteins from the ribosomal fraction of embryo axes of pea seeds, especially the 60 kDa fraction, are involved in regulation of the translational activity of poly(A)+ RNA.  相似文献   

10.
The mRNA encoding ribosomal protein L32 redistributes from untranslated subribosomal particles into polysomes after mitogenic activation of quiescent T-lymphocytes and fibroblasts. To identify the regions of the L32 mRNA which are important in regulating its cytoplasmic location we constructed a plasmid containing the murine L32 cDNA under the control of the Rous sarcoma virus (RSV) long terminal repeat promoter and introduced this construct into murine 3T3 fibroblasts. The mRNA transcribed from the RSV-L32 construct redistributed from subribosomal particles into polysomes in response to mitogenic activation in a manner similar to endogenous L32 mRNA. A conserved polypyrimidine region present at the 5' terminus of all ribosomal protein mRNAs is required for translational regulation of L32 mRNA since deletion of this sequence resulted in a mRNA that was not sequestered in subribosomal particles in quiescent cells. A radioactive RNA probe containing the first 34 nucleotides of the L32 5'-untranslated region, including the polypyrimidine region, specifically interacted with a protein of about 56 kDa. This protein did not bind detectably to RNA probes lacking the polypyrimidine sequence. Binding activity was similar in protein extracts made from resting and activated cells, suggesting that binding of the 56-kDa protein as measured in this assay is not regulated. This protein is a member of what may be an emerging family of polyribopyrimidine-binding proteins with diverse biochemical functions.  相似文献   

11.
The binding of proteins from rabbit reticulocyte lysate to in-vitro-generated beta-globin mRNA and its defined segments was investigated using ultraviolet-cross-linking experiments as well as gel-retardation assays. Under stringent conditions, only three proteins (72, 60 and 50 kDa) were found associated with full-length beta-globin mRNA at different positions. The 72-kDa protein is most likely the poly(A)-binding protein and binds, as expected, to the poly(A) tail, whereas the 50-kDa protein exhibits affinity for the trailer region of beta-globin mRNA. The binding region of the 60-kDa protein is located at the 5' end of beta-globin mRNA. The interaction of this protein is dependent on the presence of the 5' cap structure, as indicated by competition experiments using an uncapped beta-globin-mRNA leader segment. Further competition experiments with beta-globin mRNA, deleted in part in the leader region, suggest that, besides the cap structure, certain sequence elements are necessary for the interaction of the 60-kDa protein and the beta-globin mRNA leader.  相似文献   

12.
The poly(A)-binding protein (PABP), bound to the 3' poly(A) tail of eukaryotic mRNAs, plays critical roles in mRNA translation and stability. PABP autoregulates its synthesis by binding to a conserved A-rich sequence present in the 5'-untranslated region of PABP mRNA and repressing its translation. PABP is composed of two parts: the highly conserved N terminus, containing 4 RNA recognition motifs (RRMs) responsible for poly(A) and eIF4G binding; and the more variable C terminus, which includes the recently described PABC domain, and promotes intermolecular interaction between PABP molecules as well as cooperative binding to poly(A). Here we show that, in vitro, GST-PABP represses the translation of reporter mRNAs containing 20 or more A residues in their 5'-untranslated regions and remains effective as a repressor when an A61 tract is placed at different distances from the cap, up to 126 nucleotides. Deletion of the PABP C terminus, but not the PABC domain alone, significantly reduces its ability to inhibit translation when bound to sequences distal to the cap, but not to proximal ones. Moreover, cooperative binding by multiple PABP molecules to poly(A) requires the C terminus, but not the PABC domain. Further analysis using pull-down assays shows that the interaction between PABP molecules, mediated by the C terminus, does not require the PABC domain and is enhanced by the presence of RRM 4. In vivo, fusion proteins containing parts of the PABP C terminus fused to the viral coat protein MS2 have an enhanced ability to prevent the expression of chloramphenicol acetyltransferase reporter mRNAs containing the MS2 binding site at distal distances from the cap. Altogether, our results identify a proline- and glutamine-rich linker located between the RRMs and the PABC domain as being strictly required for PABP/PABP interaction, cooperative binding to poly(A) and enhanced translational repression of reporter mRNAs in vitro and in vivo.  相似文献   

13.
14.
The alternative polyadenylation of the mRNA encoding the amyloid precursor protein (APP) involved in Alzheimer's disease generates two molecules, with the first of these containing 258 additional nucleotides in the 3' untranslated region (3'UTR). We have previously shown that these 258 nucleotides increase the translation of APP mRNA injected in Xenopus oocytes (5). Here, we demonstrate that this mechanism occurs in CHO cells as well. We also present evidence that the 3'UTR containing 8 nucleotides more than the short 3'UTR allows the recovery of an efficiency of translation similar to that of the long 3'UTR. Moreover, the two guanine residues located at the 3' ends of these 8 nucleotides play a key role in the translational control. Using gel retardation mobility shift assay, we show that proteins from Xenopus oocytes, CHO cells, and human brain specifically bind to the short 3'UTR but not to the long one. The two guanine residues involved in the translational control inhibit this specific binding by 65%. These results indicate that there is a correlation between the binding of proteins to the 3'UTR of APP mRNA and the efficiency of mRNA translation, and that a GG motif controls both binding of proteins and translation.  相似文献   

15.
Poly(C)-binding proteins (CPs) are important regulators of mRNA stability and translational regulation. They recognize C-rich RNA through their triple KH (hn RNP K homology) domain structures and are thought to carry out their function though direct protection of mRNA sites as well as through interactions with other RNA-binding proteins. We report the crystallographically derived structure of the third domain of alphaCP1 to 2.1 A resolution. alphaCP1-KH3 assumes a classical type I KH domain fold with a triple-stranded beta-sheet held against a three-helix cluster in a betaalphaalphabetabetaalpha configuration. Its binding affinity to an RNA sequence from the 3'-untranslated region (3'-UTR) of androgen receptor mRNA was determined using surface plasmon resonance, giving a K(d) of 4.37 microM, which is indicative of intermediate binding. A model of alphaCP1-KH3 with poly(C)-RNA was generated by homology to a recently reported RNA-bound KH domain structure and suggests the molecular basis for oligonucleotide binding and poly(C)-RNA specificity.  相似文献   

16.
Human translation elongation factor 1A (EF1A) is a member of a large class of mRNAs, including ribosomal proteins and other translation elongation factors, which are coordinately translationally regulated under various conditions. Each of these mRNAs contains a terminal oligopyrimidine tract (TOP) that is required for translational control. A human growth hormone (hGH) expression construct containing the promoter region and 5' untranslated region (UTR) of EF1A linked to the hGH coding region (EF1A/hGH) was translationally repressed following rapamycin treatment in similar fashion to endogenous EF1A in human B lymphocytes. Mutation of two nucleotides in the TOP motif abolished the translational regulation. Gel mobility shift assays showed that both La protein from human B lymphocyte cytoplasmic extracts as well as purified recombinant La protein specifically bind to an in vitro-synthesized RNA containing the 5' UTR of EF1A mRNA. Moreover, extracts prepared from rapamycin-treated cells showed increased binding activity to the EF1A 5' UTR RNA, which correlates with TOP mRNA translational repression. In an in vitro translation system, recombinant La dramatically decreased the expression of EF1A/hGH construct mRNA, but not mRNAs lacking an intact TOP element. These results indicate that TOP mRNA translation may be modulated through La binding to the TOP element.  相似文献   

17.
18.
YL Su  SC Wang  PY Chiang  NY Lin  YF Shen  GD Chang  CJ Chang 《PloS one》2012,7(7):e41313

Background

Tristetraprolin binds mRNA AU-rich elements and thereby facilitates the destabilization of mature mRNA in the cytosol.

Methodology/Principal Findings

To understand how tristetraprolin mechanistically functions, we biopanned with a phage-display library for proteins that interact with tristetraprolin and retrieved, among others, a fragment of poly(A)-binding protein nuclear 1, which assists in the 3''-polyadenylation of mRNA by binding to immature poly(A) tails and thereby increases the activity of poly(A) polymerase, which is directly responsible for polyadenylation. The tristetraprolin/poly(A)-binding protein nuclear 1 interaction was characterized using tristetraprolin and poly(A)-binding protein nuclear 1 deletion mutants in pull-down and co-immunoprecipitation assays. Tristetraprolin interacted with the carboxyl-terminal region of poly(A)-binding protein nuclear 1 via its tandem zinc finger domain and another region. Although tristetraprolin and poly(A)-binding protein nuclear 1 are located in both the cytoplasm and the nucleus, they interacted in vivo in only the nucleus. In vitro, tristetraprolin bound both poly(A)-binding protein nuclear 1 and poly(A) polymerase and thereby inhibited polyadenylation of AU-rich element–containing mRNAs encoding tumor necrosis factor α, GM-CSF, and interleukin-10. A tandem zinc finger domain–deleted tristetraprolin mutant was a less effective inhibitor. Expression of a tristetraprolin mutant restricted to the nucleus resulted in downregulation of an AU-rich element–containing tumor necrosis factor α/luciferase mRNA construct.

Conclusion/Significance

In addition to its known cytosolic mRNA–degrading function, tristetraprolin inhibits poly(A) tail synthesis by interacting with poly(A)-binding protein nuclear 1 in the nucleus to regulate expression of AU-rich element–containing mRNA.  相似文献   

19.
The poly(A)-binding protein (PABP) is the major mRNA-binding protein in eukaryotes, and it is essential for viability of the yeast Saccharomyces cerevisiae. The amino acid sequence of the protein indicates that it consists of four ribonucleoprotein consensus sequence-containing RNA-binding domains (RBDs I, II, III, and IV) and a proline-rich auxiliary domain at the carboxyl terminus. We produced different parts of the S. cerevisiae PABP and studied their binding to poly(A) and other ribohomopolymers in vitro. We found that none of the individual RBDs of the protein bind poly(A) specifically or efficiently. Contiguous two-domain combinations were required for efficient RNA binding, and each pairwise combination (I/II, II/III, and III/IV) had a distinct RNA-binding activity. Specific poly(A)-binding activity was found only in the two amino-terminal RBDs (I/II) which, interestingly, are dispensable for viability of yeast cells, whereas the activity that is sufficient to rescue lethality of a PABP-deleted strain is in the carboxyl-terminal RBDs (III/IV). We conclude that the PABP is a multifunctional RNA-binding protein that has at least two distinct and separable activities: RBDs I/II, which most likely function in binding the PABP to mRNA through the poly(A) tail, and RBDs III/IV, which may function through binding either to a different part of the same mRNA molecule or to other RNA(s).  相似文献   

20.
The stable globin mRNAs provide an ideal system for studying the mechanism governing mammalian mRNA turnover. alpha-Globin mRNA stability is dictated by sequences in the 3' untranslated region (3'UTR) which form a specific ribonucleoprotein complex (alpha-complex) whose presence correlates with mRNA stability. One of the major protein components within this complex is a family of two polycytidylate-binding proteins, alphaCP1 and alphaCP2. Using an in vitro-transcribed and polyadenylated alpha-globin 3'UTR, we have devised an in vitro mRNA decay assay which reproduces the alpha-complex-dependent mRNA stability observed in cells. Incubation of the RNA with erythroleukemia K562 cytosolic extract results in deadenylation with distinct intermediates containing a periodicity of approximately 30 nucleotides, which is consistent with the binding of poly(A)-binding protein (PABP) monomers. Disruption of the alpha-complex by sequestration of alphaCP1 and alphaCP2 enhances deadenylation and decay of the mRNA, while reconstitution of the alpha-complex stabilizes the mRNA. Similarly, PABP is also essential for the stability of mRNA in vitro, since rapid deadenylation resulted upon its depletion. An RNA-dependent interaction between alphaCP1 and alphaCP2 with PABP suggests that the alpha-complex can directly interact with PABP. Therefore, the alpha-complex is an mRNA stability complex in vitro which could function at least in part by interacting with PABP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号