首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differential assembly of N-methyl-D-aspartate (NMDA) receptor subunits determines their functional characteristics. Using in situ hybridization, we found a selective increase of the subunits NR1 and NR2A mRNA at 24 h in ventral motor neurons (VMN) caudal to a standardized spinal cord contusion injury (SCI). Other neuronal cell populations and VMN rostral to the injury site appeared unaffected. Significant up-regulation of NR2A mRNA also was seen 1 month after SCI in thoracic and lumbar VMN. The selective effects on VMN caudal to the injury site suggest that the loss of descending innervation leads to increased NMDA receptor subunit expression in these cells after SCI, which may alter their responses to glutamate. In contrast, protein levels determined by western blot analysis show decreased levels of NR2A 1 month after SCI in whole thoracic segments of spinal cord that included the injury sites. No effects of injury were seen on subunit levels in cervical or lumbar segments. Taken together with our previous study showing alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subunit down-regulation after injury, our data suggest that glutamate receptor composition is significantly altered after SCI. These changes need to be taken into account to properly understand the function of, and potential pharmacotherapy for, the chronically injured spinal cord.  相似文献   

2.
Progesterone (PROG) provides neuroprotection to the injured central and peripheral nervous system. These effects may be due to regulation of myelin synthesis in glial cells and also to direct actions on neuronal function. Both types of cells express classical intracellular PROG receptors (PR), while neurons additionally express the PROG membrane-binding site called 25-Dx. In motoneurons from rats with spinal cord injury (SCI), PROG restores to normal the deficient levels of choline acetyl-transferase and of alpha3 subunit Na,K-ATPase mRNA, while levels of the growth associated protein GAP-43 mRNA are further stimulated. Recent studies suggest that neurotrophins are possible mediators of hormone action, and in agreement with this assumption, PROG treatment of rats with SCI increases the expression of brain-derived neurotrophic factor (BDNF) at both the mRNA and protein levels in ventral horn motoneurons. In situ hybridization (ISH) has shown that SCI reduces BDNF mRNA levels by 50% in spinal motoneurons, while PROG administration to injured rats (4mg/kg/day during 3 days, s.c.) elicits a three-fold increase in grain density. In addition to enhancement of mRNA levels, PROG increases BDNF immunoreactivity in perikaryon and cell processes of motoneurons of the lesioned spinal cord, and also prevents the lesion-induced chromatolytic degeneration of spinal cord motoneurons as determined by Nissl staining. Our findings strongly indicate that motoneurons of the spinal cord are targets of PROG, as confirmed by the expression of PR and the regulation of molecular parameters. PROG enhancement of endogenous neuronal BDNF could provide a trophic environment within the lesioned spinal cord and might be part of the PROG activated-pathways to provide neuroprotection. Thus, PROG treatment constitutes a new approach to sustain neuronal function after injury.  相似文献   

3.
Axotomy-induced neuronal death occurs in neonatal motoneurons, but not in adult rat. Here we demonstrated that during the course of postnatal development, nerve injury induced down-regulation of the glial cell line-derived neurotrophic factor (GDNF) receptor GFRalpha1 in axotomized hypoglossal motoneurons of rat are gradually converted to the adult up-regulation pattern of response. The compensatory expression of GFRalpha1 specifically in the injured motoneurons of neonates by adenovirus succeeded in rescuing the injured neurons without an application of growth factors. To the contrary, the nuclear antisense RNA for GFRalpha1 expression accelerates the axotomy-induced neuronal death in pups. These findings suggest that the receptor expression response after nerve injury is critical for the determination of injured motoneuron fate.  相似文献   

4.
Blake-Bruzzini  K. M  Borke  R. C  Anders  J. J  Potts  J. D 《Brain Cell Biology》1997,26(3):163-179
Changes in calcitonin gene-related peptide (CGRP) immunoreactivity and α-CGRP mRNA expression were determined in the hypoglossal nucleus after the nerve was crushed or transected in rats at 10, 14 and 21 days postnatal. α-CGRP mRNA expression was determined in normal, noninjured, hypoglossal nuclei at the three ages and after both injuries in 10 and 21 days postnatal rats. Reinnervation and neuronal survival were assayed. Although the three age groups expressed comparable levels of α-CGRP mRNA and its peptide in intact, hypoglossal nuclei, axonal injury produced age-dependent alterations in α-CGRP mRNA and CGRP. In the 21 days postnatal rats, changes in α-CGRP mRNA and peptide mimicked those reported in adult motoneurons after the same injuries. CGRP was elevated until reinnervation after nerve crush, whereas biphasic elevations occurred after nerve transection. In 21 days postnatal rats, increases in α-CGRP mRNA preceded elevations of the peptide but a greater increase resulted initially after nerve transection. An upregulation of α-CGRP mRNA also developed initially after both injuries in 10 days postnatal rats but subsequent elevations of α-CGRP mRNA did not materialize. In contrast, CGRP immunoreactivity did not increase after either injury in 10 days postnatal rats and, in fact decreased. Levels of CGRP immunoreactivity did not differ from normal amounts after either nerve injury in 14 days postnatal rats. Substantial neuronal cell loss occurred after each injury in 10 and 14 days postnatal rats but was not found in 21 days postnatal rats. Tongue reinnervation by surviving motoneurons was established after all injury paradigms except 10 days postnatal transection. The current findings demonstrate an age-dependent correlation between injury-induced expression of CGRP and hypoglossal motoneuron survival.  相似文献   

5.
Tropic 1808基因在大鼠损伤神经组织中的表达   总被引:1,自引:1,他引:1  
目的观察Tropic 1808基因在大鼠正常和损伤坐骨神经组织中的表达,探讨Tropic 1808基因在周围神经损伤与再生过程中的作用.方法采用地高辛标记的Tropic 1808 cDNA探针、抗大鼠S-100蛋白抗体,以原位杂交和免疫组织化学双重染色法,观察Tropic 1808基因在正常和损伤大鼠坐骨神经组织中的表达.结果免疫组化结果显示,大鼠正常坐骨神经可表达S-100蛋白,但表达量较低;神经损伤后,其远侧端S-100蛋白的表达量明显增加.原位杂交结果显示,大鼠正常坐骨神经组织未见Tropic 1808 mRNA杂交信号;损伤神经的远侧端呈现较强的阳性信号,而且在部分S-100强阳性反应区可见Tropic 1808 mRNA杂交信号.结论 Tropic 1808基因在正常坐骨神经组织中未见表达;坐骨神经损伤后,其远侧端增殖的雪旺氏细胞可表达Tropic 1808 mRNA.提示,Tropic 1808是一种周围神经损伤后特异表达的基因.  相似文献   

6.
目的:研究高糖环境对原代培养新生7天SD乳鼠视网膜Muller细胞谷氨酸转运合成系统的影响及其可能机制。方法:新生7天SD乳鼠视网膜Muller细胞原代培养并模拟高糖环境构建乳鼠视网膜muller细胞体外高糖环境模型。处理分为3组:对照组,高糖组,高糖+白藜芦醇干预组。培养时间为24h,通过westernblot等检测方法,对照观察各组Muller细胞谷氨酸转运体(GLAST)、谷氨酰胺合成酶(GS)的表达情况。结果:模拟高糖环境可以造成新生SD乳鼠视网膜Muller细胞谷氨酸转运体(GLAST)表达的降低(0.225foldVScontrol,P〈0.05),并导致其表达的谷氨酰胺合成酶(GS)表达水平的显著降低(0.653foldVScontrol,P〈0.05);而干预药物白藜芦醇作用后可明显逆转新生SD乳鼠Mu ller细胞谷氨酸转运体(GLAST)(1.133foldvSHGgroup,P〈0.05)、谷氨酰胺合成酶(GS)(1.720foldVSHGgroup,P〈0.05)等蛋白的表达水平。结论:模拟高糖环境可以影响视网膜M0ller细胞谷氨酸转运体(GLAST)、谷氨酰胺合成酶的表达,其结局可能导致视神经细胞因谷氨酸堆积而导致的兴奋性毒性,白藜芦醇能提高Mcjller细胞谷氨酸转运体(GLAST)、谷氨酰胺合成酶表达,从而保护视神经细胞。  相似文献   

7.
P Ernfors  A Henschen  L Olson  H Persson 《Neuron》1989,2(6):1605-1613
In situ hybridization histochemistry and RNA blot analysis were used to study expression of nerve growth factor receptor (NGF-R) mRNA in rat spinal cord motoneurons. The results show that NGF-R mRNA is expressed at high levels in rat spinal cord motoneurons at the time of naturally occurring cell death. This expression is sustained, but reduced, during synapse formation and is subsequently greatly reduced in the adult spinal cord. A unilateral crush lesion of the sciatic nerve resulted in an 8-fold increase in NGF-R mRNA in adult rat spinal cord motoneurons 3 days after lesion, compared with the nonlesioned side. NGF-R mRNA induction was even more pronounced 7 and 14 days after lesion, reaching levels 12 times higher than those on the nonlesioned side. However, 6 weeks after lesion, when the motor function of the leg was largely restored, NGF-R expression had decreased to levels similar to those on the contralateral side. We therefore suggest that NGF-R mediates a trophic or axonal guidance function for developing and regenerating spinal cord motoneurons.  相似文献   

8.
In this report we present immunocytochemical and in situ hybridization evidence that magnocellular vasopressin and oxytocin neurons in the hypothalamic supraoptic and paraventricular nuclei express type-2 vesicular glutamate transporter, a marker for their glutamatergic neuronal phenotype. To address the issue of whether an increase in magnocellular neuron activity coincides with the altered synthesis of the endogenous glutamate marker, we have introduced a new dual-label in situ hybridization method which combines fluorescent and autoradiographic signal detection components for vasopressin and vesicular glutamate transporter-2 mRNAs, respectively. Application of this technique provided evidence that 2% sodium chloride in the drinking water for 7 days produced a robust and significant increase of vesicular glutamate transporter-2 mRNA in vasopressin neurons of the supraoptic nucleus. The immunocytochemical labeling of pituitary sections, followed by the densitometric analysis of vesicular glutamate transporter-2 immunoreactivity in the posterior pituitary, revealed a concomitant increase in vesicular glutamate transporter-2 protein levels at the major termination site of the magnocellular axons. These data demonstrate that magnocellular oxytocin as well as vasopressin cells contain the glutamatergic marker vesicular glutamate transporter-2, similarly to most of the parvicellular neurosecretory neurons examined so far. The robust increase in vesicular glutamate transporter-2 mRNA and immunoreactivity after salt loading suggests that the cellular levels of vesicular glutamate transporter-2 in vasopressin neurons are regulated by alterations in water–electrolyte balance. In addition to the known synaptic actions of excitatory amino acids in magnocellular nuclei, the new observations suggest novel mechanisms whereby glutamate of endogenous sources can regulate magnocellular neuronal functions.  相似文献   

9.
Glycine is a critical factor in ischemia as reduced astrocytic and increased extracellular glycine levels aggravate the neurotoxic effect of glutamate and consequently, increase the extent of brain damage. Extracellular levels of glycine are primarily regulated by the plasma membrane glycine transporter 1. In the present study, we examined the effects of transient ischemia (1 h occlusion of the middle cerebral artery; followed by 0 h, 0.5 h, 1 h, 2 h, 4 h, 24 h or 48 h reperfusion) on immunoreactivity and mRNA expression of glycine transporter 1 in the rat forebrain. In control animals, glycine transporter 1-immunoreactivity was strong in diencephalic and certain telencephalic structures, moderate in the globus pallidus, and rather low in the cortex and striatum. In situ hybridization studies revealed a similar distribution pattern of glycine transporter 1 mRNA expression. One hour occlusion of the middle cerebral artery resulted in a significant decrease in ipsilateral glycine transporter 1-immunoreactivity and mRNA expression in a circumscribed region of the preoptic/hypothalamic area; both the immunoreactivity and mRNA exhibited further reductions with increasing reperfusion time. In contrast, the cerebral cortex and the globus pallidus showed an increase of glycine transporter 1-immunoreactivity after 0.5 h reperfusion; the elevation proved to be transient in the somatosensory cortex and remained sustained in the globus pallidus after longer reperfusion times. Western blot analysis of globus pallidus samples from the ipsilateral side confirmed higher glycine transporter 1 protein levels. These results suggest an elevated expression of the transporter protein facilitating the glial uptake of glycine from the extracellular space. However, glycine transporter 1 mRNA expression was not significantly different in the penumbra regions from the corresponding contralateral sites of the injury. Together, these findings indicate that post-translational mechanisms are of primary importance in elevating glycine transporter 1 protein levels following transient ischemia.  相似文献   

10.
Abstract: Subchronic treatment with haloperidol increases the number of asymmetric glutamate synapses associated with a perforated postsynaptic density in the striatum. To characterize these synaptic changes further, the effects of subchronic (28 days) administration of an atypical antipsychotic, clozapine (30 mg/kg, s.c.), or a typical antipsychotic, haloperidol (0.5 mg/kg, s.c.), on the binding of [3H]MK-801 to the NMDA receptor-linked ion channel complex and on the in situ hybridization of riboprobes for NMDAR2A and 2B subunits and splice variants of the NMDAR1 subunit were examined in striatal preparations from rats. The density of striatal glutamate immunogold labeling associated with nerve terminals of all asymmetric synapses and the immunoreactivity of those asymmetric synapses associated with a perforated postsynaptic density were also examined by electron microscopy. Subchronic neuroleptic administration had no effect on [3H]MK-801 binding to striatal membrane preparations. Both drugs increased glutamate immunogold labeling in nerve terminals of all asymmetric synapses, but only haloperidol increased the density of glutamate immunoreactivity within nerve terminals of asymmetric synapses containing a perforated postsynaptic density. Whereas subchronic administration of clozapine, but not haloperidol, resulted in a significant increase in the hybridization of a riboprobe that labels all splice variants of the NMDAR1 subunit, both drugs significantly decreased the abundance of NMDAR1 subunit mRNA containing a 63-base insert. Neither drug altered mRNA for the 2A subunit, but clozapine significantly increased hybridization of a probe for the 2B subunit. The data suggest that some neuroleptic effects may be mediated by glutamatergic systems and that typical and atypical antipsychotics can have varying effects on the density of glutamate in presynaptic terminals and on the expression of specific NMDA receptor splice variant mRNAs. Alternatively, NMDAR1 subunit splice variants may differentially respond to interactions with glutamate.  相似文献   

11.
To determine the functions of genes in distinct tissues during the development of Drosophila, it is often desirable to have genetic tools for targeted gene expression in restricted subsets of cells. Here, we report the identification of the enhancer trap line OK371-Gal4, which is expressed in a defined subset of neurons from embryonic stage 15 to adulthood. In the ventral nerve chord, it is expressed almost exclusively in motoneurons and in the brain in a limited number of neuronal clusters. The OK371 enhancer trap element is inserted in the proximity of the annotated gene CG9887, which encodes a Drosophila vesicular glutamate transporter (DVGLUT). In situ hybridization experiments using antisense probes against the mRNAs of DVGLUT and neighboring genes confirm that OK371-Gal4 detects an enhancer of DVGLUT. DVGLUT-specific antibodies detect its expression in identifiable motoneurons, which are known to be glutamatergic in Drosophila. DVGLUT initially appears in small cytoplasmic punctae in the somata of these motoneurons. As development proceeds, DVGLUT-positive particles are transported along motor axons and become concentrated at neuromuscular junctions (NMJs), where they colocalize with the synaptic vesicle marker synaptotagmin. We find that the DVGLUT-specific antibodies are valuable tools for the identification of motoneurons and other glutamatergic neurons. In addition, the OK371-Gal4 line can be used for the targeted expression of any gene in these cells. Given that vesicular glutamate transporters are essential for the uptake of the neurotransmitter glutamate into synaptic vesicles these tools provide a means to test gene function in these functionally important neurons.  相似文献   

12.
Abstract: Excess activation of NMDA receptors is felt to participate in secondary neuronal damage after traumatic brain injury (TBI). Increased extracellular glutamate is active in this process and may result from either increased release or decreased reuptake. The two high-affinity sodium-dependent glial transporters [glutamate transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST)] mediate the bulk of glutamate transport. We studied the protein levels of GLT-1 and GLAST in the brains of rats after controlled cortical impact-induced TBI. With use of subtype-specific antibodies, GLT-1 and GLAST proteins were quantitated by immunoblotting in the ipsilateral and contralateral cortex at 2, 6, 24, 72, and 168 h after the injury. Sham-operated rats served as control. TBI resulted in a significant decrease in GLT-1 (by 20–45%; p < 0.05) and GLAST (by 30–50%; p < 0.05) protein levels between 6 and 72 h after the injury. d -[3H]Aspartate binding also decreased significantly (by 30–50%; p < 0.05) between 6 and 72 h after the injury. Decreased glial glutamate transporter function may contribute to the increased extracellular glutamate that may mediate the excitotoxic neuronal damage after TBI. This is a first report showing altered levels of glutamate transporter proteins after TBI.  相似文献   

13.
14.
Abstract: Metabotropic glutamate receptors mediate their intracellular response by coupling to G proteins and may be divided into three subfamilies: mGluR1 and mGluR5, which stimulate phosphatidylinositol hydrolysis; mGluR2 and mGluR3, which are negatively coupled to cyclic AMP formation; and mGluR4 and mGluR6, which also inhibit forskolin-stimulated cyclic AMP formation. The mGluR4 subtypes may represent l -2-amino-4-phosphonobutyrate-sensitive presynaptic autoreceptors, and two alternatively spliced variants of the mGluR4 coding for two receptors with different C termini have been identified. Using in situ hybridization, we measured the levels of mGluR1–mGluR5 mRNA in regions of the rat brain 24 h after transient global ischemia, a time point when no neuronal damage can yet be observed morphologically. In the hippocampus, the mRNA levels for mGluR1, mGluR2, and mGluR5 were decreased, mGluR3 mRNA levels were unchanged, and the mGluR4 mRNA levels were strongly increased. The strongest increase appeared to be in the mRNA encoding mGluR4b. The mGluR4 mRNA was also increased in the parietal cortex, whereas the ventral posteromedial thalamic nucleus showed a small decrease in its mRNA content. These results suggest that vulnerable neurons react to an increased extracellular glutamate concentration by differential regulation of the mRNA for pre- and postsynaptically located metabotropic glutamate receptors.  相似文献   

15.
Nitric oxide is known to contribute to neuronal damage as well as to peripheral neuronal regeneration following injury. Sciatic nerve injury is a common and serious complication of intramuscular injections. In order to ascertain the role of inducible nitric oxide synthase (iNOS) in the injured sciatic nerve, we studied the expression of this enzyme by RT-PCR and immunohistochemistry, in a rat model of sciatic nerve injury. In sham-operated control rats iNOS expression was undetectable by immunohistochemistry and its mRNA level was also very low. In contrast, in the experimental group that was subjected to sciatic nerve injury, both mRNA and protein of iNOS were found to be significantly elevated. The protein level of iNOS, as revealed by positive immunostaining, peaked at 7 days post-surgery followed by a decrease. Similarly, the iNOS mRNA levels remained elevated at 1, 3, 7 days but declined to very low level by day 21, after surgery. This study indicates that the increased expression of iNOS after sciatic nerve injury in rats may contribute to nerve regeneration. Thus our results suggest that excessive expression of iNOS after nerve injury is not conducive to nerve regeneration.  相似文献   

16.
Tong  Jianxin X  Rich  Keith M 《Brain Cell Biology》1997,26(5):339-347
Immature rat facial motoneurons are very sensitive to injury with nearly 80% dying during the first week after axotomy. This motoneuron death is apoptotic, similar to that induced in neurons after tropic factor withdrawal. The diphenylpiperazines, flunarizine and cinnarizine, protect dorsal root ganglion neurons from death after withdrawal of trophic support, i.e., nerve growth factor withdrawal, in vitro. Similarly, the monoamine oxidase inhibitor, deprenyl, promotes survival of facial motoneurons after axotomy. These pharmacological agents were assessed both alone and in combination for their ability to prevent death in non-nerve growth factor dependent CNS motoneurons after facial nerve axotomy in newborn rats. Long-term experiments were done with the diphenylpiperazines to evaluate potential enhancement of regeneration. Facial nerve transection resulted in 78% neuronal loss in the injured compared with the contralateral, uninjured nucleus. Systemic administration of diphenylpiperazines for 1 week after facial nerve transection doubled the number of surviving motoneurons from 23% to 47%. Similar results were obtained with deprenyl. Combinations of diphenylpiperazines and deprenyl provide a similar degree of neuronal protection 1 week after injury as that obtained by either agent alone. We assessed the ability of diphenylpiperazines to protect facial motoneurons from death over a prolonged period and enhance subsequent regeneration. Motor neuron counts in rats treated with diphenylpiperazines for 1 month after injury and assessed 2 months later demonstrated long-term enhancement of neuronal protection with an increase of 45% in the number of horseradish peroxidase-labelled motoneurons. The diphenylpiperazines group had ~80% more regenerated myelinated axons in the distal facial nerve than the control group. Thus, diphenylpiperazine treatment during the first month after injury provides long-term protection of non-nerve growth factor dependent CNS motoneurons with subsequent potentiation of long-term facial nerve regeneration.  相似文献   

17.
The glutamate transporter inhibitor, L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) reversibly enhanced hippocampal neuronal activity in the rat and mouse dentate gyrus. The PDC action was still found in mice lacking the glial glutamate transporter GLT-1. PDC did not influence the rate of spontaneous miniature excitatory postsynaptic currents and spontaneous inhibitory postsynaptic currents, ionotropic glutamate receptor currents, or GABA-evoked currents in cultured rat hippocampal neurons. PDC increased glutamate released from cultured hippocampal astrocytes from normal rats, normal mice, and GLT-1 knock-out mice, that is not inhibited by deleting extracellular Na(+), while the drug had no effect on the release from cultured rat hippocampal neurons. The results of the present study thus suggest that PDC stimulates glial glutamate release by a mechanism independent of inhibiting glutamate transporters, which perhaps causes an increase in synaptic glutamate concentrations, in part responsible for the enhancement in hippocampal neuronal activity.  相似文献   

18.
The effect of the glutamine synthetase (GS) inhibitor, methionine sulfoximine (MSO), on glutamate levels in, and glutamate release from, rat striatal tissue was examined. Tissue levels of glutamate were unchanged 24 h after an intraventricular injection of MSO, but tissue glutamine levels were decreased 50%. Calcium-dependent, potassium-stimulated glutamate release was diminished in tissue prisms from animals pretreated with MSO compared to controls. The decreased release of glutamate correlated over time with the inhibition of GS following an intraventricular injection of MSO. The maximum diminution of calcium-dependent, potassium-stimulated glutamate release (50%) and the maximum inhibition of GS activity (51%) were observed 24 h after MSO. The addition of 0.5 mM glutamine to the perfusion medium completely reversed the effects of MSO pretreatment on calcium-dependent, potassium-stimulated glutamate release. Since GS is localized in glial cells and the measured glutamate release is presumed to occur from neurons, the data support the contention that astroglial glutamine synthesis is an important contributor to normal neuronal neurotransmitter release.  相似文献   

19.
20.
It has been shown that mature neurons in adult vertebrates can co-express glutamate and acetylcholine. Furthermore, interactions at the synaptic level have been demonstrated. In a previous study we found that also motoneurons at early embryonic stages, thus well prior to synapse formation, release acetylcholine, and that glutamate increases this release. We now report the existence of a glutamate release from embryonic motoneurons and the increase of glutamate release by acetylcholine. This effect is mediated by nicotinic and muscarinic cholinergic receptors present on embryonic motoneurons. Using conditions of partial or total depletion of calcium, we show that the glutamate release has two components: one is calcium-dependent and the other calcium-independent. Furthermore, we show that extracellular glutamate can be taken up by motoneurons, probably via the neuronal glutamate transporter EAAC1, which we find to be expressed at this stage. Monitoring of the glutamate release kinetics showed that extracellular glutamate concentration reached a steady-state level, strongly suggesting the establishment of equilibrium between glutamate release and uptake. Altogether, these results support the idea that glutamate can act as a neurotransmitter in embryonic motoneurons. We hypothesise that, glutamate acts as a regulator of motoneuron maturation and spinal cord development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号