首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rotatore C  Colman B 《Plant physiology》1990,93(4):1597-1600
Chloroplasts, isolated from protoplasts of the green alga, Chlorella ellipsoidea, were estimated to be 99% intact by the ferricyanide-reduction assay, and gave CO2 and PGA-dependent rates of O2 evolution of 64.5 to 150 micromoles per milligram of chlorophyll per hour, that is 30 to 70% of the photosynthetic activity of the parent cells. Intact chloroplasts showed no carbonic anhydrase activity, but it was detected in preparations of ruptured organelles. Rates of photosynthesis, measured in a closed system at pH 7.5, were twice the calculated rate of CO2 supply from the uncatalyzed dehydration of HCO3 indicating a direct uptake of bicarbonate by the intact chloroplasts. Mass spectrometric measurements of CO2 depletion from the medium on the illumination of chloroplasts indicate the lack of an active CO2 transport across the chloroplast envelope.  相似文献   

2.
A mass spectrometric method combining 16O/18O and 12C/13C isotopes was used to quantify the unidirectional fluxes of O2 and CO2 during a dark to light transition for guard cell protoplasts and mesophyll cell protoplasts of Commelina communis L. In darkness, O2 uptake and CO2 evolution were similar on a protein basis. Under light, guard cell protoplasts evolved O2 (61 micromoles of O2 per milligram of chlorophyll per hour) almost at the same rate as mesophyll cell protoplasts (73 micromoles of O2 per milligram of chlorophyll per hour). However, carbon assimilation was totally different. In contrast with mesophyll cell protoplasts, guard cell protoplasts were able to fix CO2 in darkness at a rate of 27 micromoles of CO2 per milligram of chlorophyll per hour, which was increased by 50% in light. At the onset of light, a delay observed for guard cell protoplasts between O2 evolution and CO2 fixation and a time lag before the rate of saturation suggested a carbon metabolism based on phosphoenolpyruvate carboxylase activity. Under light, CO2 evolution by guard cell protoplasts was sharply decreased (37%), while O2 uptake was slowly inhibited (14%). A control of mitochondrial activity by guard cell chloroplasts under light via redox equivalents and ATP transfer in the cytosol is discussed. From this study on protoplasts, we conclude that the energy produced at the chloroplast level under light is not totally used for CO2 assimilation and may be dissipated for other purposes such as ion uptake.  相似文献   

3.
A system has been developed for the isolation of photosynthetically active chloroplasts from leaves of Populus deltoides. A high proportion of the chloroplasts appeared intact. The maximum rates of different photosynthetic processes were as follows: CO2 fixation 3.5 micromoles per milligram chlorophyll per hour, noncyclic ATP synthesis 10 micromoles per milligram chlorophyll per hour, and cyclic ATP synthesis 300 micromoles per milligram chlorophyll per hour.  相似文献   

4.
Young expanding spinach leaves exposed to 14CO2 under physiological conditions for up to 20 minutes assimilated CO2 into lipids at a mean rate of 7.6 micromoles per milligram chlorophyll per hour following a lag period of 5 minutes. Label entered into all parts of the lipid molecule and only 28% of the 14C fixed into lipids was found in the fatty acid moieties, i.e. fatty acids were synthesized from CO2in vivo at a mean rate of 2.1 micromoles per milligram chlorophyll per hour. Intact spinach chloroplasts isolated from these leaves incorporated H14CO3 into fatty acids at a maximal rate of 0.6 micromole per milligram chlorophyll per hour, but were unable to synthesize either the polar moieties of their lipids or polyunsaturated fatty acids. Since isolated chloroplasts will only synthesize fatty acids at rates similar to the one obtained with intact leaves in vivo if acetate is used as a precursor, it is suggested that acetate derived from leaf mitochondria is the physiological fatty acid precursor.  相似文献   

5.
Diffusion of inorganic carbon into isolated bundle sheath cells from a variety of C4 species was characterized by coupling inward diffusion of CO2 to photosynthetic carbon assimilation. The average permeability coefficient for CO2 (PCO2) for five representatives from the three decarboxylation types was approximately 20 micromoles per minute per milligram chlorophyll per millimolar, on a leaf chlorophyll basis. The average value for the NAD-ME species Panicum miliaceum (10 determinations) was 26 with a standard deviation of 6 micromoles per minute per milligram chlorophyll per millimolar, on a leaf chlorophyll basis. A PCO2 of at least 500 micromoles per minute per milligram chlorophyll per millimolar was determined for cells isolated from the C3 plant Xanthium strumarium. It is concluded that bundle sheath cells are one to two orders of magnitude less permeable to CO2 than C3 photosynthetic cells. These data also suggest that CO2 diffusion in bundle sheath cells may be made up of two components, one involving an apoplastic path and the other a symplastic (plasmodesmatal) path, each contributing approximately equally.  相似文献   

6.
Mesophyll cells and bundle sheath strands were isolated rapidly from leaves of the C4 species Digitaria pentzii Stent. (slenderstem digitgrass) by a chopping and differential filtration technique. Rates of CO2 fixation in the light by mesophyll and bundle sheath cells without added exogenous substrates were 6.3 and 54.2 micromoles of CO2 per milligram of chlorophyll per hour, respectively. The addition of pyruvate or phosphoenolpyruvate to the mesophyll cells increased the rates to 15.2 and 824.6 micromoles of CO2 per milligram of chlorophyll per hour, respectively. The addition of ribose 5-phosphate increased the rate for bundle sheath cells to 106.8 micromoles of CO2 per milligram of chlorophyll per hour. These rates are comparable to those reported for cells isolated by other methods. The Km(HCO3) for mesophyll cells was 0.9 mm; for bundle sheath cells it was 1.3 mm at low, and 40 mm at higher HCO3 concentrations. After 2 hours of photosynthesis by mesophyll cells in 14CO2 and phosphoenolpyruvate, 88% of the incorporated 14C was found in organic acids and 0.8% in carbohydrates; for bundle sheath cells incubated in ribose 5-phosphate and ATP, more than 58% of incorporated 14C was found in carbohydrates, mainly starch, and 32% in organic acids. These findings, together with the stimulation of CO2 fixation by phosphoenolpyruvate for mesophyll cells and by ribose 5-phosphate plus ATP for bundle sheath cells, and the location of phosphoenolpyruvate and ribulose bisphosphate carboxylases in mesophyll and bundle sheath cells, respectively, are in accord with the scheme of C4 photosynthesis which places the Calvin cycle in the bundle sheath and C4 acid formation in mesophyll cells.  相似文献   

7.
Aerobic and anaerobic respiration in the intact spinach chloroplast   总被引:3,自引:3,他引:0       下载免费PDF全文
Aerobic and anaerobic chloroplastic respiration was monitored by measuring 14CO2 evolution from [14C]glucose in the darkened spinach (Spinacia oleracea) chloroplast and by estimating the conversion of fructose 1,6-bisphosphate to glycerate 3-phosphate in the darkened spinach chloroplast in air with O2 or in N2 with nitrite or oxaloacetate as electron acceptors. The pathway of 14CO2 evolution from labeled glucose in the absence and presence of the inhibitors iodoacetamide and glycolate 2-phosphate under air or N2 were those expected from the oxidative pentose phosphate cycle and glycolysis. Of the electron acceptors, O2 was the best (2.4 nanomoles CO2 per milligram chlorophyll per hour), followed by nitrite and oxaloacetate. With respect to glycerate 3-phosphate formation from fructose 1,6-bisphosphate, methylene blue increased the aerobic rate from 3.7 to 5.4 micromoles per milligram chlorophyll per hour. A rate of 4.8 micromoles per milligram chlorophyll per hour was observed under N2 with nitrite and oxaloacetate.  相似文献   

8.
Previously, C Baysdorfer and JM Robinson (1985 Plant Physiol 77: 318-320) demonstrated that, in a reconstituted spinach chloroplast system, NADP photoreduction functioning at most maximal rate and reductant demand, was the successful competitor with NO2 photoreduction for reduced ferredoxin. This resulted in a repression of NO2 reduction until all NADP available had been almost totally reduced. Further experiments, employing isolated, intact spinach leaf plastids and soybean leaf mesophyll cells, were conducted to examine competition for reductant between CO2 and NO2 photoassimilation, in situ. In isolated, intact plastid preparations, regardless of whether the demand for reductant by CO2 photoassimilation was high (5 millimolar `CO2') with rates of CO2 fixation in the range 40 to 90 micromoles CO2 fixed per hour per milligram chlorophyll, low (0.5 millimolar `CO2') with rates in the range 5 to 8 micromoles CO2 per hour per milligram chlorophyll, or zero (no `CO2'), NO2 photoreduction displayed equal rates in the range of 8 to 22 micromoles per hour per milligram chlorophyll. In the absence of `CO2', but in the presence of saturating white light, 3-phosphoglycerate photoreduction at rates of 82 to 127 micromoles per hour per milligram chlorophyll did not repress, and occasionally stimulated concomitant rates of NO2 reduction which ranged from 23.4 to 38.5. Conversely, in plastid preparations, NO2 at levels of 50 to 100 micromolar, stimulated plastid CO2 fixation when `CO2' was saturating with respect to carboxylation. Further, levels of NO2 in the range 250 to 2500 micromolar, stimulated soybean leaf mesophyll cell net CO2 fixation as much as 1.5-fold if `CO2' was saturating with respect to CO2 fixation. It appeared likely that, in high light in vivo, CO2 and NO2 photoassimilatory processes are not forced to intercompete for reduced ferredoxin in the intact chloroplast.  相似文献   

9.
The effects of nitrate and ammonium addition on net and gross photosynthesis, CO2 efflux and the dissolved inorganic carbon compensation point of nitrogen-limited Selenastrum minutum Naeg. Collins (Chlorophyta) were studied. Cultures pulsed with nitrate or ammonium exhibited a marked decrease in both net and gross photosynthetic carbon fixation. During this period of suppression the specific activity of exogenous dissolved inorganic carbon decreased rapidly in comparison to control cells indicating an increase in the rate of CO2 efflux in the light. The nitrate and ammmonium induced rates of CO2 efflux were 31.0 and 33.8 micromoles CO2 per milligram chlorophyll per hour, respectively, and represented 49 and 48% of the rate of gross photosynthesis. Nitrate addition to cells at dissolved inorganic carbon compensation point caused an increase in compensation point while ammonium had no effect. In the presence of the tricarboxylic acid cycle inhibitor fluoroacetate, the nitrate-induced change in compensation point was greatly reduced suggesting the source of this CO2 was the tricarboxylic acid cycle. These results are consistent with the mechanism of N-induced photosynthetic suppression outlined by Elrifi and Turpin (1986 Plant Physiol 81: 273-279).  相似文献   

10.
By measuring 18O exchange from doubly labeled CO2 (13C18O18O), intracellular carbonic anhydrase activity was studied with protoplasts and chloroplasts isolated from Chlamydomonas reinhardtii grown either on air (low inorganic carbon [Ci]) or air enriched with 5% CO2 (high Ci). Intact low Ci protoplasts had a 10-fold higher carbonic anhydrase activity than did high Ci protoplasts. Application of dextran-bound inhibitor and quaternary ammonium sulfanilamide, both known as membrane impermeable inhibitors of carbonic anhydrase, had no influence on the catalysis of 18O exchange, indicating that cross-contamination with extracellular carbonic anhydrase was not responsible for the observed activity. This intracellular in vivo activity from protoplasts was inhibited by acetazolamide and ethoxyzolamide. Intracellular carbonic anhydrase activity was partly associated with intact chloroplasts isolated from high and low Ci cells, and the latter had a sixfold greater rate of catalysis. The presence of dextran-bound inhibitor had no effect on chloroplast-associated carbonic anhydrase, whereas 150 micromolar ethoxyzolamide caused a 61 to 67% inhibition of activity. These results indicate that chloroplastic carbonic anhydrase was located within the plastid and that it was relatively insensitive to ethoxyzolamide. Carbonic anhydrase activity in crude homogenates of protoplasts and chloroplasts was about six times higher in the low Ci than in high Ci preparations. Further separation into soluble and insoluble fractions together with inhibitor studies revealed that there are at least two different forms of intracellular carbonic anhydrase. One enzyme, which was rather insoluble and relatively insensitive to ethoxyzolamide, is likely an intrachloroplastic carbonic anhydrase. The second carbonic anhydrase, which was soluble and sensitive to ethoxyzolamide, is most probably located in an extrachloroplastic compartment.  相似文献   

11.
Mass spectrometry was used to investigate the uptake of CO2 in Eremosphaera viridis DeBary. Upon illumination, cells preincubated at pH 7.5 with 100 M dissolved inorganic carbon (DIC) rapidly depleted almost all the free CO2 from the medium. Rapid equilibrium between HCO 3 - and CO2 occurred upon addition of bovine carbonic anhydrase (CA) to the medium, showing that CO2 depletion resulted from a selective uptake of CO2 rather than an uptake of all inorganic carbon species. Glycolaldehyde (10 mM) completely inhibited CO2 fixation but had little effect on CO2 transport. Transfer of glycolaldehyde-treated cells to the dark caused a rapid efflux of CO2 from the unfixed intracellular DIC pool which was found to be at least threeto sixfold higher in concentration than that of the external medium. These results indicate that E. viridis actively transports CO2 against a concentration gradient. No external CA was detected in these cells either by potentiometric or mass-spectrometric assay. In the absence of external CA, the rate of photosynthetic O2 evolution in the pH range 7.5 to 8.0 did not exceed the calculated rate of CO2 supply, indicating a limited capacity for HCO2 uptake in these cells. Electrophysiological measurements indicate that CO2 uptake is electrically silent and thus is not a consequence of H+-CO2 symport activity. Microsomal membranes isolated from Eremosphaera showed ATPase activity which was enhanced by CO2. These results indicate that active CO2 uptake is mediated by an ATPase.Abbreviations BTP 1,3-bis[tris(hydroximethyl)-methylamino]-propane - CA carbonic anhydrase - Chl chlorophyll - DIC dissolved inorganic carbon - [14C]DMO 5,5-dimethyl-[2-14C]-oxaz-didine-2,4-dione - WA Wilbur-Anderson units This work was supported by grants to B.C. and R.R.L. from the Natural Sciences and Engineering Research Council of Canada. We thank the Department of Biology, Queen's University, Kingston, Ontario for the use of the mass-spectrometer facility. We are indebted to A.G. Miller for his expert advice on operating the mass spectrometer and to Ms. Shahebina Samji for running the Bradford assays.  相似文献   

12.
At concentrations of 100–200 M, ethoxyzolamide, a lipophilic inhibitor of carbonic anhydrase, considerably (by 60%) inhibited light-induced CO2-dependent oxygen evolution in pea protoplasts at the optimum concentration of inorganic carbon (100 M CO2) in the medium. At the same concentrations of the inhibitor, electron transport in isolated pea thylakoids was inhibited only by 6–9%. Acetazolamide, a water-soluble inhibitor of carbonic anhydrase, affected neither the rate of CO2-dependent O2evolution in protoplasts nor electron transport in thylakoid membranes. A light-dependent proton uptake by protoplasts was demonstrated. At pH 7.2, the induction kinetics and the rate of proton uptake were similar to those for CO2-dependent O2evolution. The rate of proton uptake was decreased twofold by 1 mM acetazolamide. This fact agrees with the notion that a membrane-bound carbonic anhydrase is operative in the plasma membrane of higher plant cells. A mechanism of its functioning is suggested. Possible functions of carbonic anhydrases in the cells of C3-plants are discussed.  相似文献   

13.
Intact protoplasts and chloroplasts have been isolated from mature flag leaves of wheat (Triticum aestivum L.). Both showed high rates of photosynthesis, the best of which equaled those observed in the parent tissue (greater than 150 micromoles O2 per milligram chlorophyll per hour). The presence of ethylenediaminetetraacetate and an alkaline medium (pH 8.4) were required in the isolation and assay for the achievement of maximum rates of photosynthesis by chloroplasts. Photosynthesis by isolated chloroplasts was inhibited at very low concentrations of external orthophosphate.  相似文献   

14.
Robinson JM  Gibbs M 《Plant physiology》1982,70(5):1249-1254
Light-dependent O2 reduction concomitant with O2 evolution, ATP formation, and NADP reduction were determined in isolated spinach (Spinacia oleracea L. var. America) chloroplast lamellae fortified with NADP and ferredoxin. These reactions were investigated in the presence or absence of catalase, providing a tool to estimate the reduction of O2 to H2O2 (Mehler reaction) concomitant with NADP reduction. In the presence of 250 micromolar O2, O2 photoreduction, simultaneous with NADP photoreduction, was dependent upon light intensity, ferredoxin, Mn2+, NADP, and the extent of coupling of phosphorylation to electron flow.

In the presence of an uncoupling concentration of NH4+, saturating light intensity (>500 watts/square meter), saturating ferredoxin (10 micromolarity) rate-limiting to saturating NADP (0.2-0.9 millimolarity), and Mn2+ (50-1000 micromolarity), the maxium rates of O2 reduction were 13-25 micromoles/milligram chlorophyll per hour, while concomitant rates of O2 evolution and NADP reduction were 69 to 96 and 134 to 192 micromoles/milligram chlorophyll per hour, respectively. Catalase did not affect the rate of NADPH or ATP formation but decreased the NADPH:O2 ratios from 2.3-2.8 to 1.9-2.1 in the presence of rate-limiting as well as saturating concentrations of NADP.

Photosynthetic electron flow at a rate of 31 micromoles O2 evolved/milligram chlorophyll per hour was coupled to the synthesis of 91 micromoles ATP/milligram chlorophyll per hour, while the concomitant rate of O2 reduction was 0.6 micromoles/milligram chlorophyll per hour and was calculated to be associated with an apparent ATP formation of only 2 micromoles/milligram chlorophyll per hour. Thus, electron flow from H2O to O2 did not result in ATP formation significantly above that produced during NADP reduction.

  相似文献   

15.
Isolated spinach (Spinacia oleracea L. var. Bloomsdale) leaf protoplasts reduced nitrate at rates of 9 micromoles per milligram chlorophyll per hour in light with a 3- to 4-fold stimulation in the presence of HCO3. A similar stimulation of nitrate reduction in the absence of CO2 fixation was obtained by the addition of malate, oxaloacetate (OAA), phospho-3-glyceric acid (PGA), or dihydroxyacetone phosphate (DHAP). Stimulation by malate and DHAP was light-independent, while the PGA and OAA effect was light-dependent. Nitrate reduction was found to be coupled to the cytoplasmic oxidation of DHAP or malate. The PGA/DHAP and OAA/malate shuttle across the chloroplast envelope has been demonstrated to support CO2 fixation and/or nitrate reduction. The leaf protoplasts readily assimilated nitrate into amino-N in a stoichiometric relationship.  相似文献   

16.
Isolation of mesophyll protoplasts from mature leaves of soybeans   总被引:3,自引:2,他引:1       下载免费PDF全文
Lin W 《Plant physiology》1983,73(4):1067-1069
A procedure based on a combined cellulase-Pectolyase Y-23 enzyme digestion and metrizamide-sorbitol gradient purification protocol was developed for isolating mesophyll protoplasts from mature leaves of soybean (Glycine max L. Merr.). Based on chlorophyll content, this procedure results in a 10 to 15% protoplast yield from fully expanded mature leaves and a 20 to 30% yield from young (expanding) leaves within 3 hours. Isolated protoplasts displayed high rates of HCO3-dependent photosynthesis; greater than 75 micromoles O2 evolved per milligram chlorophyll per hour at 25°C. This photosynthetic rate is comparable to that of mesophyll cells isolated mechanically from the same leaves.  相似文献   

17.
Glycolate Metabolism and Excretion by Chlamydomonas reinhardtii   总被引:1,自引:1,他引:0  
The flux of glycolate through the C2 pathway in Chlamydomonas reinhardtii was estimated after inhibition of the pathway with aminooxyacetate (AOA) or aminoacetonitrile (AAN) by measurement of the accumulation of glycolate and glycine. Cells grown photoautotrophically in air excreted little glycolate except in the presence of 2 mm AOA when they excreted 5 micromoles glycolate per hour per milligram clorophyll. Cells grown on high CO2 (1-5%) when transferred to air produced three times as much glycolate, with half of the glycolate metabolized and half excreted. The lower amount of glycolate produced by the air-grown cells reflects the presence of a CO2 concentrating mechanism which raises the internal CO2 level and decreases the ribulose-1,5-bisP oxygenase reaction for glycolate production. Despite the presence of the CO2 concentrating mechanism, there was still a significant amount of glycolate produced and metabolized by air-grown Chlamydomonas. The capacity of these cells to metabolize between 5 and 10 micromoles of glycolate per hour per milligram chlorophyll was confirmed by measuring the biphasic uptake of added labeled glycolate. The initial rapid (<10 seconds) phase represented uptake of glycolate; the slow phase represented the metabolism of glycolate. The rates of glycolate metabolism were in agreement with those determined using the C2-cycle inhibitors during CO2 fixation.  相似文献   

18.
Photosynthetic carbon metabolism of isolated corn chloroplasts   总被引:16,自引:15,他引:1       下载免费PDF全文
Chloroplasts have been isolated from 4- to 6-day-old corn (Zea mays) leaves capable of assimilating 45 micromoles CO2 per milligram chlorophyll per hour. The effects of various factors such as inorganic phosphate, reducing agents, inhibitors, intermediates of the photosynthetic carbon reduction cycle, organic acids, and oxygen on the photosynthetic rate and on the distribution of 14C within the products by these chloroplasts were determined. The photosynthetic carbon metabolism of the corn plastids appeared to be similar to that already observed in spinach and pea chloroplasts. It was concluded that the corn plastids can fix CO2 at meaningful rates via the photosynthetic carbon reduction cycle of Calvin without the operation of a cycle involving the C-4 compounds, malate and aspartate.  相似文献   

19.
Methionine sulfoximine induced release of ammonia from illuminated cells of Ankistrodesmus braunii (Naegeli) Brunnth, in normal air, but less in air enriched to 3% CO2. In normal air, methionine sulfoximine also induced glycolate release. Addition of either glutamate, glycine, or serine suppressed glycolate release, whereas glutamate and glycine at the same time stimulated ammonia release. The results indicate that inhibition of glutamine synthetase and thereby inhibition of photorespiratory nitrogen cycling restricts the sink capacity for glycolate in the photorespiratory carbon cycle. An external supply of glutamate, glycine, or serine seems to stimulate glyoxylate transamination and thus partly restores the sink capacity. Calculations of total glycolate formation rates in air from glycolate and ammonia release rates in the presence of methionine sulfoximine and glutamate revealed values of approximately 20 micromoles glycolate per milligram chlorophyll per hour on the average. Similar calculations led to an estimated rate of photorespiratory ammonia release in air, in the absence of methionine sulfoximine, of about 10 micromoles per milligram chlorophyll per hour on the average, a value comparable to the primary nitrogen assimilation rate of 8 micromoles per milligram chlorophyll per hour.  相似文献   

20.
Isolation of Intact Chloroplasts from Dunaliella tertiolecta   总被引:10,自引:7,他引:3       下载免费PDF全文
Cells of Dunaliella tertiolecta from the log phase of growth were broken by rapid extrusion at low pressure through a Yeda press and the chloroplasts were isolated by centrifugation through a Percoll gradient. Osmolarity of the growth media, the suspending media, and the Percoll gradient was kept identical to minimize change in chloroplast volume and mitochondrial entrapment. The isolated intact chloroplasts were obtained in a 30 to 50% yield based on chlorophyll and were stable to washing with buffered medium. Isolated chloroplast yield and purity was dependent on cell culture condition; a cycle of 16 hours light and 8 hours dark with continuous high CO2 was optimum. Isolated chloroplasts were about 90% intact by microscopic examination, ferricyanide-dependent O2 evolution, and the distribution of four stromal enzymes. Enzymes associated with glycolate metabolism were not in the chloroplast fraction. The isolated chloroplasts with 10 millimolar bicarbonate evolved 24 micromoles of O2 and fixed 21 micromoles of CO2 per hour per milligram of chlorophyll, which rates were about one-third of those by whole cells. The inhibition of oxygen evolution by 10 millimolar phosphate was reversed by P-glycerate. Whole chloroplasts were also isolated from cells adapted to low CO2 in air for 24 hours. On low CO2 the cells excreted more gelatinous material, which had to be removed with additional washing of the cells, before it was possible to obtain good chloroplast preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号