首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A fast and simple procedure to screen target sites for RNA interference by using RNA in a cell-free system of Hela cells, and then evaluating the efficiency by Northern blotting, is described. This procedure produces results with an identical reliability compared to those described previously but which are more time-consuming than this present method.  相似文献   

3.
PURPOSE OF REVIEW: This review focuses on proof-of-principle experiments providing validation of new targets for the development of RNA interference-based therapeutics for dyslipidemia. RECENT FINDINGS: Over the past few years, RNA interference has become an accepted approach to manipulate gene expression in mammalian systems. Advantage has been taken of the relative tissue specificity of adenovirus for liver, and the genetic specificity of short hairpin RNA-mediated RNA interference to create liver-specific downregulation of different genes. A different approach to target liver has been through the administration of chemically modified short interfering RNAs. For example, apolipoprotein B messenger RNA has been silenced in liver and jejunum resulting in decreased plasma levels of apolipoprotein B and total cholesterol. SUMMARY: RNA interference has aroused great interest as a powerful experimental tool and a potential therapeutic strategy. Successful animal studies indicate that RNA interference might be useful for the treatment of various human diseases. Clinical studies will soon begin to assess the use of this new class of therapeutics to treat dyslipidemia.  相似文献   

4.
BL Davidson  AM Monteys 《Cell》2012,150(5):873-875
Single-stranded RNAs interact with components of the RNA interference pathway to reduce the expression of target mRNAs. Now, Lima et?al. and Yu et?al. show that, with extensive chemical modifications, small single-stranded RNAs can robustly induce gene silencing with efficacy similar to their double-stranded counterparts.  相似文献   

5.
哺乳动物Hippo信号通路:肿瘤治疗的新标靶   总被引:1,自引:0,他引:1  
Xu CM  Wan FS 《遗传》2012,34(3):269-280
Hippo信号通路是首次在果蝇中发现具有调节细胞增殖与凋亡作用的信号通路。最近发现果蝇Hippo信号通路的组成、分子作用机制和生物学功能在进化过程中高度保守。Hippo信号通路在胚胎发育中对细胞的生长分化、组织器官形成以及成体干细胞的维持和自稳态的保持等方面具有重要作用。同时,Hippo信号通路与Wnt信号通路、Notch信号通路等相互作用、密切联系,在肿瘤的发生、发展过程中也起到关键作用。文章综述了哺乳动物Hippo信号通路的作用机理、与其他信号通路和蛋白质因子的相互联系及与肿瘤的关系,对于肿瘤的诊断、预防和治疗具有一定的参考价值。  相似文献   

6.
7.
In contrast to damage of genomic DNA and despite its potential to affect cell physiology, RNA damage is a poorly examined field in biomedical research. Potential triggers of RNA damage as well as its pathophysiological implications remain largely unknown. While less lethal than mutations in genome, such non-acutely lethal insults to cells have been recently associated with underlying mechanisms of several human chronic diseases. We investigated whether RNA damage could be related to the exposure of particular xenobiotics by testing the RNA-damaging activity of a series of chemicals with different mechanisms of action. Cultured human T-lymphoblastoid cells were treated with ethyl methanesulfonate (EMS), H(2)O(2), doxorubicin, spermine, or S-nitroso-N-acetylpenicillamine (SNAP). Furthermore, we studied the potential protective activity of a pomegranate extract against RNA damage induced by different chemicals. Special attention has been paid to the protective mechanisms of the extract. The protective effect of pomegranate can be mediated by alterations of the rates of toxic agent absorption and uptake, by trapping of electrophiles as well as free radicals, and protection of nucleophilic sites in RNA. We used two different treatment protocols (pre- and co-treatment) for understanding the mechanism of the inhibitory activity of pomegranate. We demonstrated that total RNA is susceptible to chemical attack. A degradation of total RNA could be accomplished with doxorubicin, H(2)O(2), spermine and SNAP. However, EMS, a well-known DNA-damaging agent, was devoid of RNA-damaging properties, while spermine and SNAP, although lacking of DNA-damaging properties, were able to damage RNA. Pomegranate reduced the RNA-damaging effect of doxorubicin, H(2)O(2), and spermine. Its inhibitory activity could be related with its ability to forms complexes with doxorubicin and H(2)O(2), or interacts with the intracellular formation of reactive species mediating their toxicity. For spermine, an alteration of the rates of spermine absorption and uptake can also be involved.  相似文献   

8.
Anticancer chemotherapy is strongly hampered by the low therapeutic index of most anticancer drugs and the development of chemoresistance. Therefore, there is a continued need for the identification of new molecular targets in order to selectively hit cancer cells. RNA has been recently validated as a cancer target by the use of different specific ligands and/or by different agents able to destroy its diverse forms. The ability of synthetic polyamines to interact and to alter the RNA structure has been already reported. In the present paper the interaction and the ability to damage RNA structure by several synthetic polyamines were evaluated and quantified by microfluid capillary electrophoresis. This technique allowed us to visualize both the RNA impairment through different electropherograms and to assess the RNA integrity number. Finally, the ability to discriminate between RNA and DNA by these synthetic polyamines was also evaluated.  相似文献   

9.
RNA interference: it's a small RNA world   总被引:4,自引:0,他引:4  
Moss EG 《Current biology : CB》2001,11(19):R772-R775
Short RNAs regulate gene expression in many species. Some are generated from any double-stranded RNA and degrade complementary RNAs; others are encoded by genes and repress specific mRNAs. Both, it turns out, are processed and handled by similar proteins. These pathways offer a glimpse into a world of small RNAs.  相似文献   

10.
11.
Andrew Fire and Craig Mello have won the Nobel Prize in Medicine or Physiology for their discovery of RNA interference. Mary K. Montgomery, then a postdoc in the Fire laboratory, participated in some of the key experiments.  相似文献   

12.
RNAi efficiency is influenced by local RNA structure of the target sequence. We studied this structure-based resistance in detail by targeting a perfect RNA hairpin and subsequently destabilized its tight structure by mutation, thereby gradually exposing the target sequence. Although the tightest RNA hairpins were completely resistant to RNAi, we observed an inverse correlation between the overall target hairpin stability and RNAi efficiency within a specific thermodynamic stability (ΔG) range. Increased RNAi efficiency was shown to be caused by improved binding of the siRNA to the destabilized target RNA hairpins. The mutational effects vary for different target regions. We find an accessible target 3′ end to be most important for RNAi-mediated inhibition. However, these 3′ end effects cannot be reproduced in siRNA-target RNA-binding studies in vitro, indicating the important role of RISC components in the in vivo RNAi reaction. The results provide a more detailed insight into the impact of target RNA structure on RNAi and we discuss several possible implications. With respect to lentiviral-mediated delivery of shRNA expression cassettes, we present a ΔG window to destabilize the shRNA insert for vector improvement, while avoiding RNAi-mediated self-targeting during lentiviral vector production.  相似文献   

13.
Dicing and slicing: the core machinery of the RNA interference pathway   总被引:26,自引:0,他引:26  
Hammond SM 《FEBS letters》2005,579(26):5822-5829
RNA interference (RNAi) is broadly defined as a gene silencing pathway that is triggered by double-stranded RNA (dsRNA). Many variations have been described on this theme. The dsRNA trigger can be supplied exogenously, as an experimental tool, or can derive from the genome in the form of microRNAs. Gene silencing can be the result of nucleolytic degradation of the mRNA, or by translational suppression. At the heart of the pathway are two ribonuclease machines. The ribonuclease III enzyme Dicer initiates the RNAi pathway by generating the active short interfering RNA trigger. Silencing is effected by the RNA-induced silencing complex and its RNaseH core enzyme Argonaute. This review describes the discovery of these machines and discusses future lines of work on this amazing biochemical pathway.  相似文献   

14.
RNA interference: The molecular immune system   总被引:2,自引:0,他引:2  
Introduction of double-stranded RNA (dsRNA) into cells expressing a homologous gene triggers RNA interference (RNAi), or RNA-based gene silencing (RBGS). The dsRNA degrades corresponding host mRNA into small interfering RNAs (siRNAs) by a protein complex containing Dicer. siRNAs in turn are incorporated into the RNA-induced silencing complex (RISC) that includes helicase, RecA, and exo- and endo-nucleases as well as other proteins. Following its assembly, the RISC guides the RNA degradation machinery to the target RNAs and cleaves the cognate target RNA in a sequence-specific, siRNA-dependent manner. RNAi has now been documented in a wide variety of organisms, including plants, fungi, flies, worms, and more recently, higher mammals. In eukaryotes, dsRNA directed against a range of viruses (i.e., HIV-1, RSV, HPV, poliovirus and others) and endogenous genes can induce sequence-specific inhibition of gene expression. In invertebrates, RNAi can be efficiently triggered by either long dsRNAs or 21- to 23-nt-long siRNAs. However, in jawed vertebrates, dsRNA longer than 30 bp can induce interferon and thus trigger undesirable side effects instead of initiating RNAi. siRNAs have been shown to act as potent inducers of RNAi in cultured mammalian cells. Many investigators have suggested that siRNAs may have evolved as a normal defense against endogenous and exogenous transposons and retroelements. Through a combination of genetic and biochemical approaches, some of the mechanisms underlying RNAi have been described. Recent data in C. elegans shows that two homologs of siRNAs, microRNAs (miRNAs) and tiny noncoding RNAs (tncRNAs) are endogenously expressed. However, many aspects of RNAi-induced gene silencing, including its origins and the selective pressures which maintain it, remain undefined. Its evolutionary history may pass through the more primitive immune functions of prokaryotes involving restriction enzymes that degrade plasmid DNA molecules that enter bacterial cells. RNAi has evolved further among eukaryotes, in which its wide distribution suggests early origins. RNAi seems to be involved in a variety of regulatory and immune functions that may differ among various kingdoms and phyla. We present here proposed mechanisms by which RBGS protects the host against endogenous and exogenous transposons and retroelements. The potential for therapeutic application of RBGS technology in treating viral infections such as HIV is also discussed.  相似文献   

15.
A Nyk?nen  B Haley  P D Zamore 《Cell》2001,107(3):309-321
We examined the role of ATP in the RNA interference (RNAi) pathway. Our data reveal two ATP-dependent steps and suggest that the RNAi reaction comprises at least four sequential steps: ATP-dependent processing of double-stranded RNA into small interfering RNAs (siRNAs), incorporation of siRNAs into an inactive approximately 360 kDa protein/RNA complex, ATP-dependent unwinding of the siRNA duplex to generate an active complex, and ATP-independent recognition and cleavage of the RNA target. Furthermore, ATP is used to maintain 5' phosphates on siRNAs. A 5' phosphate on the target-complementary strand of the siRNA duplex is required for siRNA function, suggesting that cells check the authenticity of siRNAs and license only bona fide siRNAs to direct target RNA destruction.  相似文献   

16.
RNA interference (RNAi) has emerged as one of the most important discoveries of the last years in the field of molecular biology. Following clarification of this highly conserved endogenous gene silencing mechanism, RNAi has largely been exploited as a powerful tool to uncover the function of specific genes and to understand the effects of selective gene silencing in mammalian cells both in vitro and in vivo. RNAi can be induced by direct introduction of chemically synthesized siRNAs into the cell or by the use of plasmid and viral vectors encoding for siRNA allowing a more stable RNA knockdown. Potential application of this technique both as a research tool and for therapeutic purposes has led to an extensive effort to overcome some critical constraints which may limit its successful application in vivo, including off-target and non-specific effects, as well as the relatively poor stability of siRNA. This review provides a brief overview of the RNAi mechanism and of its application in preclinical animal models of cancer.  相似文献   

17.
Complexes in the Drosophila RNA-induced silencing complex (RISC) assembly pathway can be resolved using native gel electrophoresis, revealing an initiator called R1, an intermediate called R2, and an effector called R3 (now referred to as holo-RISC). Here we show that R1 forms when the Dicer-2/R2D2 heterodimer binds short interfering RNA (siRNA) duplexes. The heterodimer alone can initiate RISC assembly, indicating that other factors are dispensable for initiation. During assembly, R2 requires Argonaute 2 to convert into holo-RISC. This requirement is reminiscent of the RISC-loading complex, which also requires Argonaute 2 for assembly into RISC. We have compared R2 to the RISC-loading complex and show that the two complexes are similar in their sensitivities to ATP and to chemical modifications on siRNA duplexes, indicating that they are likely to be identical. We have examined the requirements for RISC formation and show that the siRNA 5'-termini are repeatedly monitored during RISC assembly, first by the Dcr-2/R2D2 heterodimer and again after R2 formation, before siRNA unwinding. The 2'-position of the 5'-terminal nucleotide also affects RISC assembly, because an siRNA strand bearing a 2'-deoxyribose at this position can inhibit the cognate strand from entering holo-RISC; in contrast, the 2'-deoxyribose-modified strand has enhanced activity in the RNA interference pathway.  相似文献   

18.
19.
20.
RNA干扰作用研究进展   总被引:1,自引:0,他引:1  
RNA干扰 (RNAinterference ,RNAi)是指与内源性mRNA编码区某段序列同源的双链RNA分子 (double strandedRNA ,dsRNA)导入细胞时 ,该mRNA发生特异性的降解 ,导致基因表达的沉默。本文介绍RNAi作用的发现、机制和目前使用的产生RNAi的方法  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号