首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Associative learning has been studied in many vertebrates and invertebrates. In social insects, the proboscis extension response conditioning of honey bees has been widely used for several decades. However, a similar paradigm has not been developed for ants, which are advanced social insects showing different morphological castes and a plethora of life histories. Here we present a novel conditioning protocol using Camponotus aethiops. When the antennae of a harnessed ant are stimulated with sucrose solution, the ant extends its maxilla-labium to absorb the sucrose. We term this the “maxilla-labium extension response” (MaLER). MaLER could be conditioned by forward pairing an odour (conditioned stimulus) with sucrose (unconditioned stimulus) in the course of six conditioning trials (absolute conditioning). In non-rewarded tests following conditioning, ants gave significantly higher specific responses to the conditioned stimulus than to a novel odour. When trained for differential conditioning, ants discriminated between the odour forward-paired with sucrose and an odour forward-paired with quinine (a putative aversive stimulus). In both absolute and differential conditioning, memory lasted for at least 1 h. MaLER conditioning allows full control of the stimulation sequence, inter-stimulus and inter-trial intervals and satiety, which is crucial for any further study on associative learning in ants.  相似文献   

5.
6.
Summary Within and between individuals hydrocarbon (HC)-circulation was studied in Pachycondyla apicalis workers, using radioactive labeling. Newly synthesized HCs occurred both in the PPG and on the epicuticle in appreciable amounts, lesser quantities were found in the crop. The front basitarsal brush contained a greater amount of radiolabeled HCs than could be predicted from its surface area, suggesting preferential secretion to these organs. We propose that the newly synthesized HCs are secreted primarily to the front basitarsal brushes and are thereafter either distributed throughout the body surface, or cleared via the PPG and the alimentary canal.Using labeled HCs as a model, we tracked the time-dependent dispersion of cuticular lipids among 11 workers, one of which was prelabeled for 24 hours. Distribution among the recipients became progressively uniform, reaching near homogenization between 5–10 days. The mean HCs transfer of P. apicalis to the PPG was substantially lower compared to that of Camponotus fellah or Aphaenogaster senilis. In contrast, transfer to the cuticle in this species was superior. We attribute the low transfer to the PPG to the inefficacy of passive body contact characteristic of P. apicalis, as opposed to trophallaxis and/or allogrooming that typify the other two species. The higher occurrence of radiolabeled HCs in P. apicalis cuticle can be attributed to their accumulation in the basitarsal brushes. The impact of cuticular lipid transfer and formation of uniform colony odour, as opposed to the maintenance of an idiosyncratic caste-specific composition, are discussed.Received 5 September 2002; revised 17 January 2003; accepted 10 February 2003.  相似文献   

7.
8.
9.
10.
Torrubiella is a genus of arthropod-pathogenic fungi that primarily attacks spiders and scale insects. Based on the morphology of the perithecia, asci, and ascospores, it is classified in Clavicipitaceae s. lat. (Hypocreales), and is considered a close relative of Cordyceps s. 1., which was recently reclassified into three families (Clavicipitaceae s. str., Cordycipitaceae, Ophiocordycipitaceae) and four genera (Cordyceps s. str, Elaphocordyceps, Metacordyceps, and Ophiocordyceps). Torrubiella is distinguished morphologically from Cordyceps s. lat. mainly by the production of superficial perithecia and the absence of a well-developed stipitate stroma. To test and refine evolutionary hypotheses regarding the placement of Torrubiella and its relationship to Cordyceps s. lat., a multi-gene phylogeny was constructed by conducting ML and Bayesian analyses. The monophyly of Torrubiella was rejected by these analyses with species of the genus present in Clavicipitaceae, Cordycipitaceae, and Ophiocordycipitaceae, and often intermixed among species of Cordyceps s. lat. The morphological characters traditionally used to define the genus are, therefore, not phylogenetically informative, with the stipitate stromata being gained and/or lost several times among clavicipitaceous fungi. Two new genera (Conoideocrella, Orbiocrella) are proposed to accommodate two separate lineages of torrubielloid fungi in the Clavicipitaceae s. str. In addition, one species is reclassified in Cordyceps s. str. and three are reclassified in Ophiocordyceps. The phylogenetic importance of anamorphic genera, host affiliation, and stipitate stromata is discussed.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
Four Old World species of Pheidole ants contain different mixtures of farnesene-type hydrocarbons in their poison apparatus, and the mixture is different between the minor and major workers within a species. A bishomofarnesene (C17H28) provides approximately half of the secretion of the Dufour glands of minor workers of Pheidole pallidula. (Z,E)-α-Farnesene constituted 96% of the Dufour secretion of major workers of P. pallidula, but only 20% of that of minors. The Dufour glands of minor workers of Pheidole sinaitica contain a mixture of farnesene homologues with (Z,E)-α-farnesene and the bishomofarnesene also found in P. pallidula predominant. The mixture in major workers was similar but had, in addition, a small amount of (E)-β-farnesene. The Dufour glands of Pheidole teneriffana minors contain chiefly the same bishomofarnesene found in P. pallidula and P. sinaitica while major workers contain (Z,E)-α-farnesene. Pheidole megacephala minor workers contained small amounts of eight farnesenes, while major workers contained essentially no farnesenes. The poison glands of minor workers of P. pallidula contain 3-ethyl-2,5-dimethylpyrazine. No pyrazine compounds were found in the major workers of P. pallidula or the minor workers of P. sinaitica. The poison glands of the major workers of P. sinaitica contained larger amounts of tetra-substituted pyrazines. No pyrazines were found in the poison reservoirs of major or minor workers of P. teneriffana or P. megacephala.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号