首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
At present there is an increasing literature demonstrating heterogeneity of the CCK-B receptor. Recent reports by our laboratory have demonstrated that the Fawn-Hooded rat demonstrates atypical neurochemical responses to CCK4, in vitro. Since the ability of CCK-B receptor ligands to modulate affective state is dependent on the putative receptor subtype activated, the aim of the present study was to examine the behavioural effects of the CCK-B receptor agonist, t-boc-CCK4, and the CCK-B receptor antagonist, Ci-988 in Fawn-Hooded and Wistar Kyoto rats. Interestingly, both t-boc-CCK4 and Ci-988 produced an anxiolytic profile in FH rats as determined by an increased time spent on the open arms of an elevated plus maze, while both drugs were devoid of any behavioural effect in WKY rats, lending further support to the theory that the FH rat strain has an atypical relative proportion of these putative subtypes apparently resulting in a predominantly CCK-B2 receptor effect.  相似文献   

2.
Nakano S  Stillman B  Horvitz HR 《Cell》2011,147(7):1525-1536
Although replication-coupled chromatin assembly is known to be important for the maintenance of patterns of gene expression through sequential cell divisions, the role of replication-coupled chromatin assembly in controlling cell differentiation during animal development remains largely unexplored. Here we report that the CAF-1 protein complex, an evolutionarily conserved histone chaperone that deposits histone H3-H4 proteins onto replicating DNA, is required to generate a bilateral asymmetry in the C. elegans nervous system. A mutation in 1 of 24 C. elegans histone H3 genes specifically eliminates this aspect of neuronal asymmetry by causing a defect in the formation of a histone H3-H4 tetramer and the consequent inhibition of CAF-1-mediated nucleosome formation. Our results reveal that replication-coupled nucleosome assembly is necessary to generate a bilateral asymmetry in C. elegans neuroanatomy and suggest that left-right asymmetric epigenetic regulation can establish bilateral asymmetry in the nervous system.  相似文献   

3.
M J Smith 《DNA sequence》1992,2(4):235-240
The gene encoding a C. elegans homologue of the mammalian reticuloplasmin, calreticulin, was cloned and sequenced and the amino-acid sequence of its product deduced. The coding region of the gene comprises three exons separated by introns of 95 and 55 nucleotides, followed by either 158 or 279 bases of 3' non-coding sequence before putative polyadenylation signals. The precursor protein of 395 residues includes an N-terminal signal sequence of 13 residues. The C-terminus has the ER retention signal HDEL preceded by a polyacidic zone similar to known mammalian calreticulins. The sequence shows a 61% identity with mouse calreticulin, increasing to 82% in the proline-rich region of the molecule. Comparison of the C. elegans sequence with the calreticulin-related antigen RAL-1 of Oncocerca volvulus shows 73% identity, excluding the calreticulin C-terminal region. The sequence of this region differs markedly from RAL-1 where the parasite protein has a polybasic stretch and no ER retention signal. The C. elegans gene described here and designated crt-1 was mapped to a region towards the left-hand end of Chromosome V on the physical map of the genome. Southern blotting of genomic DNA indicates that in C. elegans the calreticulin homologue exists in only one form as the product of a single gene.  相似文献   

4.
The discovery of RNAi in Caenorhabditis elegans has generated a paradigm shift in how research is performed. Targeted gene knockdown using high throughput screening approaches is becoming a routine feature of the scientific landscape, and researchers can now evaluate the function of each gene in the genome in a relatively short period of time. This review compares and contrasts high throughput screening methodologies in C. elegans and mammalian cells and highlights the breadth of applications of this technology.  相似文献   

5.
Large-scale sequencing of selected genomic regions, coupled with in silico gene trapping, is a robust approach to identifying previously unknown genes. In this way we have found a gene (C8orf2) that is highly homologous to C. elegans C42C1.9. C8orf2 was situated on 8p11. 2 between STS markers NIB1979 (proximal) and AFMA295ZD5 (distal), oriented toward the centromere. C8orf2 consisted of 16 exons spanning more than 16.5 kb of genomic DNA, and was expressed ubiquitously in human tissues. The gene encoded 339-and 152-amino acid polypeptides by alternative splicing; the larger variant contained a region extremely rich in charged amino acids, in particular lysine and glutamic acid. C8orf2 also bore sequence homology to the human KE04p gene. Its conservation among highly divergent species suggests that C8orf2 belongs to a novel gene family.  相似文献   

6.
BACKGROUND: In many animals, the epidermis is in permanent contact with the environment and represents a first line of defense against pathogens and injury. Infection of the nematode Caenorhabditis elegans by the natural fungal pathogen Drechmeria coniospora induces the expression in the epidermis of antimicrobial peptide (AMP) genes such as nlp-29. Here, we tested the hypothesis that injury might also alter AMP gene expression and sought to characterize the mechanisms that regulate the innate immune response. RESULTS: Injury induces a wound-healing response in C. elegans that includes induction of nlp-29 in the epidermis. We find that a conserved p38-MAP kinase cascade is required in the epidermis for the response to both infection and wounding. Through a forward genetic screen, we isolated mutants that failed to induce nlp-29 expression after D. coniospora infection. We identify a kinase, NIPI-3, related to human Tribbles homolog 1, that is likely to act upstream of the MAPKK SEK-1. We find NIPI-3 is required only for nlp-29 induction after infection and not after wounding. CONCLUSIONS: Our results show that the C. elegans epidermis actively responds to wounding and infection via distinct pathways that converge on a conserved signaling cassette that controls the expression of the AMP gene nlp-29. A comparison between these results and MAP kinase signaling in yeast gives insights into the possible origin and evolution of innate immunity.  相似文献   

7.
8.
Kao G  Nordenson C  Still M  Rönnlund A  Tuck S  Naredi P 《Cell》2007,128(3):577-587
C. elegans worms hatching in the absence of food show growth arrest during the first larval stage (L1). While much has been learned about the later diapause, dauer, which worms enter under adverse conditions, much less is known about the mechanisms governing L1 arrest. Here we show that worms lacking activity of the asna-1 gene arrest growth reversibly at the L1 stage even when food is abundant. asna-1 encodes an ATPase that functions nonautonomously to regulate growth. asna-1 is expressed in a restricted set of sensory neurons and in insulin-producing intestinal cells. asna-1 mutants are reduced in insulin secretion while overexpression of asna-1 mimics the effects of insulin overexpression. Human ASNA1 is highly expressed in pancreatic beta cells, but not in other pancreatic endocrine cell types, and regulates insulin secretion in cultured cells. We propose that ASNA1 is an evolutionarily conserved modulator of insulin signaling.  相似文献   

9.
Proton-translocating nicotinamide nucleotide transhydrogenase is located in the mitochondrial inner membrane and catalyzes the reduction of NADP(+) by NADH to NADPH and NAD(+). The present investigation describes the expression of the transhydrogenase gene in various mouse organs, subsections of the human brain and Caenorhabditis elegans. In the mouse, the expression was highest in heart tissue (100%) followed by kidney (64%), testis (52%), adrenal gland (41%), liver (35%), pancreas (34%), bladder (26%), lung (25%), ovary (21%) and brain (14%). The expression in brain tissue was further investigated in the human brain which showed a distribution that apparently varied as a function of neuronal density, a result that was supported by estimations of expression in C. elegans using Green Fluorescent Protein (GFP) controlled by the transhydrogenase promoter. GFP-expressing C. elegans lines showed a clear concentration of fluorescence to the gut, the pharyngeal-intestinal valve and certain neurons. It is concluded that the transhydrogenase gene is expressed to various extents in all cell types in mouse, human and C. elegans.  相似文献   

10.
The activities of many neuronal proteins are modulated by ethanol, but the fundamental mechanisms underlying behavioral effects of ethanol remain unclear. To identify mechanisms responsible for intoxication, we screened for Caenorhabditis elegans mutants with altered behavioral responses to ethanol. We found that slo-1 mutants, which were previously recognized as having slightly uncoordinated movement, are highly resistant to ethanol in two behavioral assays. Numerous loss-of-function slo-1 alleles emerged from our screens, indicating that slo-1 has a central role in ethanol responses. slo-1 encodes the BK potassium channel. Electrophysiological analysis shows that ethanol activates the channel in vivo, which would inhibit neuronal activity. Moreover, behaviors of slo-1 gain-of-function mutants resemble those of ethanol-intoxicated animals. These results demonstrate that selective activation of BK channels is responsible for acute intoxicating effects of ethanol in C. elegans. BK channel activation may explain a variety of behavioral responses to ethanol in invertebrate and vertebrate systems.  相似文献   

11.
Lyon CJ  Evans CJ  Bill BR  Otsuka AJ  Aguilera RJ 《Gene》2000,252(1-2):147-154
The Caenorhabditis elegans nuc-1 gene has previously been implicated in programmed cell death due to the presence of persistent undegraded apoptotic DNA in nuc-1 mutant animals. In this report, we describe the cloning and characterization of nuc-1, which encodes an acidic nuclease with significant sequence similarity to mammalian DNase II. Database searches performed with human DNase II protein sequence revealed a significant similarity with the predicted C. elegans C07B5.5 ORF. Subsequent analysis of crude C. elegans protein extracts revealed that wild-type animals contained a potent endonuclease activity with a cleavage preference similar to DNase II, while nuc-1 mutant worms demonstrated a marked reduction in this nuclease activity. Sequence analysis of C07B5.5 DNA and mRNA also revealed that nuc-1(e1392), but not wild-type animals contained a nonsense mutation within the CO7B5.5 coding region. Furthermore, nuc-1 transgenic lines carrying the wild-type C07B5.5 locus demonstrated a complete complementation of the nuc-1 mutant phenotype. Our results therefore provide compelling evidence that the C07B5.5 gene encodes the NUC-1 apoptotic nuclease and that this nuclease is related in sequence and activity to DNase II.  相似文献   

12.
Fluoxetine (Prozac) is an antidepressant that is thought to act by blocking presynaptic reuptake of the neurotransmitter serotonin. Despite widespread clinical use of fluoxetine, direct evidence for this mechanism has been difficult to obtain in vivo. We have determined that fluoxetine has an additional neuromuscular effect on C. elegans that is distinct from inhibition of serotonin reuptake. By screening for mutants resistant to this effect, we have identified seven genes. We report that two of these genes are homologous to each other and define a novel gene family that encodes over a dozen multipass transmembrane proteins. Our findings may have clinical implications for the mechanism of action of fluoxetine.  相似文献   

13.
Human disturbance may have several negative impacts on bird biology. Although some species may habituate to human presence, other species do not show any signs of habituation, and may even be sensitized or affected by human disturbance. Furthermore, anthropogenic effects on bird behaviour rarely have been explored to address the alteration of frequencies of aggressive and fear‐associated behaviours. Such behavioural approaches may provide substantial data for bird conservation and management. Therefore, we assessed whether human disturbance disrupts the normal behaviour of Burrowing Owls Athene cunicularia. Specifically, we assessed whether guarding parents exhibited aggressive and fearful behaviours differentially in areas where human contact was more common. Burrowing Owls showed increased frequencies of threat displays in sites with more people walking by the nests, but not fear behaviours. These results suggest that different domains of behaviour (aggression vs. fear) may respond differently to human disturbance. We highlight the importance of quantifying a wide range of behavioural acts as indicators of bird stress in studies of anthropogenic impact.  相似文献   

14.
15.
Memory and the expression of learned behaviors by an organism are often triggered by contextual cues that resemble those that were present when the initial learning occurred. In state-dependent learning, the cue eliciting a learned behavior is a neuroactive drug; behaviors initially learned during exposure to centrally acting compounds such as ethanol are subsequently recalled better if the drug stimulus is again present during testing. Although state-dependent learning is well documented in many vertebrate systems, the molecular mechanisms underlying state-dependent learning and other forms of contextual learning are not understood. Here we demonstrate and present a genetic analysis of state- dependent adaptation in Caenorhabditis elegans. C. elegans normally exhibits adaptation, or reduced behavioral response, to an olfactory stimulus after prior exposure to the stimulus. If the adaptation to the olfactory stimulus is acquired during ethanol administration, the adaptation is subsequently displayed only if the ethanol stimulus is again present. cat-1 and cat-2 mutant animals are defective in dopaminergic neuron signaling and are impaired in state dependency, indicating that dopamine functions in state-dependent adaptation in C. elegans.  相似文献   

16.
Innexins in C. elegans   总被引:2,自引:0,他引:2  
Innexins are functionally analogous to the vertebrate connexins, and the innexin family of gap junction proteins has been identified in many invertebrates, including Drosophila and C. elegans. The genome sequencing project has identified 25 innexins in C. elegans. We are particularly interested in the roles that gap junctions may play in embryonic development and in wiring of the nervous system. To identify the particular C. elegans innexins that are involved in these processes, we are examining their expression patterns using specific antibodies and translational GFP fusions. In addition we are investigating mutant, RNAi and overexpression phenotypes for many of these genes. To date, we have generated specific antibodies to the non-conserved carboxyl termini of 5 innexins. We have constructed GFP translational fusions for 17 innexins and observed expression patterns for 13 of these genes. In total we have characterized expression patterns representing 14 innexins. Mutations have been identified in 5 of these genes, and at least 3 others have RNAi mutant phenotypes. Generalities emerging from our studies include: 1) most tissues and many individual cells express more than one innexin, 2) some innexins are expressed widely, while others are expressed in only a few cells, and 3) there is a potential for functional pairing of innexins.  相似文献   

17.
In response to environmental and dietary cues, the C. elegans orphan nuclear receptor, DAF-12, regulates dauer diapause, reproductive development, fat metabolism, and life span. Despite strong evidence for hormonal control, the identification of the DAF-12 ligand has remained elusive. In this work, we identified two distinct 3-keto-cholestenoic acid metabolites of DAF-9, a cytochrome P450 involved in hormone production, that function as ligands for DAF-12. At nanomolar concentrations, these steroidal ligands (called dafachronic acids) bind and transactivate DAF-12 and rescue the hormone deficiency of daf-9 mutants. Interestingly, DAF-9 has a biochemical activity similar to mammalian CYP27A1 catalyzing addition of a terminal acid to the side chain of sterol metabolites. Together, these results define the first steroid hormones in nematodes as ligands for an invertebrate orphan nuclear receptor and demonstrate that steroidal regulation of reproduction, from biology to molecular mechanism, is conserved from worms to humans.  相似文献   

18.
Caenorhabditis elegans has been used for over a decade to characterize signaling cascades controlling innate immune responses. However, what initiates these responses in the worm has remained elusive. To gain a better understanding of the initiating events we delineated genome-wide immune responses to the bacterial pathogen Pseudomonas aeruginosa in worms heavily-colonized by the pathogen versus worms visibly not colonized. We found that infection responses in both groups were identical, suggesting that immune responses were not correlated with colonization and its associated damage. Quantitative RT-PCR measurements further showed that pathogen secreted factors were not able to induce an immune response, but exposure to a non-pathogenic Pseudomonas species was. These findings raise the possibility that the C.elegans immune response is initiated by recognition of microbe-associated molecular patterns. In the absence of orthologs of known pattern recognition receptors, C. elegans may rely on novel mechanisms, thus holding the potential to advance our understanding of evolutionarily conserved strategies for pathogen recognition.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号