首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infection and injury are frequently accompanied by hemolysis. Endothelial cells are direct targets of free Hb or its oxidative derivatives, including methemoglobin (MHb) and hemin. This study tested whether Hb or its derivatives alter chemokine (IL-8) and cytokine (IL-6) production and the membrane expression of cell adhesion molecule (E-selectin) in human umbilical vein endothelial cells (passages 2-4, HUVECs). E-selectin membrane content and IL-6 and IL-8 release were quantified by ELISA; cellular mRNA levels were determined by RT-PCR. MHb in vitro resulted in a dose (1-50 µM)- and time (2-16 h)-dependent increase in E-selectin membrane content and IL-6 and IL-8 release in HUVECs. The stimulatory effect of MHb (12 µM) on E-selectin membrane expression and IL-6 and IL-8 release was similar to that produced after treatment with TNF- (5 ng/ml) and IL-1 (0.25 ng/ml). In contrast, Hb or hemin had no effects. As expected, MHb, Hb, and hemin markedly induced heme oxygenase-1 expression in HUVECs. Haptoglobin, cytochalasin D, and actinomycin inhibited the MHb-induced responses, whereas zinc protoporphyrin IX (a heme oxygenase inhibitor) or desferroxamine (an iron chelator) did not inhibit MHb-induced responses. MHb also increased cellular mRNA levels of E-selectin, IL-6, and IL-8. MHb treatment activated cellular NF-B and NF-B inhibitors; N-acetyl cysteine, SN50, and caffeic acid phenylethyl ester inhibited the MHb-induced responses. These data indicate that MHb is a potent activator of endothelial cells through NF-B-mediated upregulation of cell adhesion molecule expression and chemokine and cytokine production. MHb-induced endothelial cell activation may have clinical significance after infections, hemolysis, or methemoglobinemia. human umbilical vein endothelial cells; cytokine; chemokine; adhesion molecule; hemolysis; hemoglobin; hemin; nuclear factor-B  相似文献   

2.
There is evidence that nitric oxide (NO), superoxide (O2), and their associated reactive nitrogen species (RNS) produced by vascular endothelial cells (ECs) in response to hemodynamic forces play a role in cell signaling. NO is known to impair mitochondrial respiration. We sought to determine whether exposure of human umbilical vein ECs (HUVECs) to steady laminar shear stress and the resultant NO production modulate electron transport chain (ETC) enzymatic activities. The activities of respiratory complexes I, II/III, and IV were dependent on the presence of serum and growth factor supplement in the medium. EC exposure to steady laminar shear stress (10 dyn/cm2) resulted in a gradual inhibition of each of the complexes starting as early as 5 min from the flow onset and lasting up to 16 h. Ramp flow resulted in inhibition of the complexes similar to that of step flow. When ECs were sheared in the presence of the NO synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 100 µM), the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO; 100 µM), or the peroxynitrite (ONOO) scavenger uric acid (UA; 50 µM), the flow-inhibitory effect on mitochondrial complexes was attenuated. In particular, L-NAME and UA abolished the flow effect on complex IV. Increased tyrosine nitration was observed in the mitochondria of sheared ECs, and UA blocked the shear-induced nitrotyrosine staining. In summary, shear stress induces mitochondrial RNS formation that inhibits the electron flux of the ETC at multiple sites. This may be a critical mechanism by which shear stress modulates EC signaling and function. oxidative stress; mitochondria; endothelium  相似文献   

3.
To determine the reductive process of extracellular dehydroascorbic acid (DHA), molecules (homocysteine, homocysteine thiolactone, methionine, cysteine, and homoserine) were tested to identify those with the potential to reduce DHA to ascorbic acid (AA). Homocysteine (Hcy) was the most potent of the molecules tested. The efficacy of Hcy was compared with that of other molecules able to reduce DHA (reduced glutathione (GSH) and cysteine (Cy)). Although all three molecules were able to reduce DHA, GSH and Cy were not to reduce DHA to AA at concentrations lower than 100 micromol/l, and only less than 5% DHA was reduced to AA at concentrations of 200-300 micromol/l. In contrast, Hcy reduced DHA to AA stoichiometrically at concentrations as low as 10 micromol/l. In Jurkat and U937 cells, the increasing concentrations of extracellular Hcy suppressed intracellular dehydroascorbic acid uptake, indicating that extracellular reduction of DHA by Hcy leads to decreasing extracellular DHA available for its intracellular uptake. Simultaneous oxidation and reduction of Hcy and DHA were accelerated extracellularly in the presence of quercetin, an inhibitor of DHA uptake, suggesting that extracellular ascorbic acid concentration increased via blocking DHA uptake by quercetin and reducing extracellular DHA by Hcy. The effect of homocysteine on DHA reduction and uptake was confirmed with human umbilical vein endothelial cells. The oxidation of Hcy also prevented the decrease in DNA synthesis in human umbilical vein endothelial cells, which would occur following exposure to Hcy.  相似文献   

4.
Troglitazone (Tro) and pioglitazone (Pio) activation of peroxisome proliferator-activated receptor (PPAR)- and PPAR--independent pathways was studied in cell lines derived from porcine renal tubules. PPAR--dependent activation of PPAR response element-driven luciferase gene expression was observed with Pio at 1 µM but not Tro at 1 µM. On the other hand, PPAR--independent P-ERK activation was observed with 5 µM Tro but not with Pio (5–20 µM). In addition, Pio (1–10 µM) increased metabolic acid production and activated AMP-activated protein kinase (AMPK) associated with decreased mitochondrial membrane potential, whereas Tro (1–20 µM) did not. These results are consistent with three pathways through which glitazones may act in effecting metabolic processes (ammoniagenesis and gluconeogenesis) as well as cellular growth: 1) PPAR--dependent and PPAR--independent pathways, 2) P-ERK activation, and 3) mitochondrial AMPK activation. The pathways influence cellular acidosis and glucose and glutamine metabolism in a manner favoring reduced plasma glucose in vivo. In addition, significant interactions can be demonstrated that enhance some physiological processes (ammoniagenesis) and suppress others (ligand-mediated PPAR- gene expression). Our findings provide a model both for understanding seemingly opposite biological effects and for enhancing therapeutic potency of these agents. peroxisome proliferator-activated receptor-; phospho-extracellular signal-regulated kinase; intracellular pH; Na+/H+ exchanger; AMP-activated protein kinase; mitochondria  相似文献   

5.
《Peptides》2012,33(12):2436-2443
Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, is associated with vascular dysfunction. The polypeptide apelin mediates two major actions on blood vessels. However, their combined effects on vascular function are not fully understood. The present study aimed to determine the effect of apelin-13 on myosin light chain (MLC) phosphorylation in vascular smooth muscle cells (VSMCs) under ADMA-induced endothelial leakage conditions. To assess the increased permeability induced by ADMA, human umbilical vein endothelium cells (HUVECs) were plated in transwell dishes. The FITC-dextran flux and FITC-apelin-13 flux through the endothelial monolayer were measured. To examine the effect of leakage of apelin-13 on MLC phosphorylation in HUVSMCs, transwell dishes were used to establish a coculture system with HUVECs in upper chambers and HUVSMCs in lower chambers. Western blot was performed to assess the phospho-MLC levels. ADMA increased endothelial permeability in a concentration- and time-dependent manner, accompanied by actin stress fiber assembly and intercellular gap formation. When HUVECs were treated with ADMA, the permeability to both macromolecular dextran and micromolecular apelin-13 increased significantly. Both p38 MAPK inhibitor and NADPH oxidase inhibitor could prevent HUVECs from the increased permeability, and the changes of cytoskeleton and intercellular junction, which were induced by ADMA. Apelin-13 passed through the ADMA-stimulated endothelial monolayer and increased the expression of phospho-MLC in VSMCs. These results suggest that ADMA increases endothelial permeability, which may involve the p38 MAPK and NADPH oxidase pathway. Apelin-13 can pass through the damaged endothelial barrier, and acts directly on VSMCs to increase MLC phosphorylation.  相似文献   

6.
Lysophosphatidic acid (LPA) is a bioactive lysophospholipid ligand present in oxidized low-density lipoprotein. The effects of LPA were investigated, first separately on endothelial cells (EC) and monocytes. Using Ki16425 (an LPA1 and LPA3 receptor antagonist), GW9662 [a peroxisome proliferator-activator receptor (PPAR) antagonist], and pertussis toxin (that inhibits Gi/o), we demonstrate that LPA enhances IL-8 and monocyte chemoattractant protein-1 expression through a LPA1-, LPA3-, Gi/o- and PPAR-dependent manner in the EAhy926 cells. The effect of LPA on chemokine overexpression was confirmed in human umbilical vein endothelial cells. LPA was able to enhance monocyte migration at concentrations <1 µM and to inhibit their migration at LPA concentrations >1 µM, as demonstrated by using a chemotaxis assay. We then investigated the effects of LPA on the cross-talk between EC and monocytes by evaluating the chemotactic activity in the supernatants of LPA-treated EC. At 1 µM LPA, both cell types respond cooperatively, favoring monocyte migration. At higher LPA concentration (25 µM), the chemotactic response varies as a function of time. After 4 h, the chemotactic effect of the cytokines secreted by the EC is counteracted by the direct inhibitory effect of LPA on monocytes. For longer periods of time (24 h), we observe a monocyte migration, probably due to lowered concentrations of bioactive LPA, given the induction of lipid phosphate phosphatase-2 in monocytes that may inactivate LPA. These results suggest that LPA activates EC to secrete chemokines that in combination with LPA itself might favor or not favor interactions between endothelium and circulating monocytes. lysophosphatidic acid; endothelial cells; monocytes; chemotaxis  相似文献   

7.
Wang LY  Zhang DL  Zheng JF  Zhang Y  Zhang QD  Liu WH 《Peptides》2011,32(12):2436-2443
Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, is associated with vascular dysfunction. The polypeptide apelin mediates two major actions on blood vessels. However, their combined effects on vascular function are not fully understood. The present study aimed to determine the effect of apelin-13 on myosin light chain (MLC) phosphorylation in vascular smooth muscle cells (VSMCs) under ADMA-induced endothelial leakage conditions. To assess the increased permeability induced by ADMA, human umbilical vein endothelium cells (HUVECs) were plated in transwell dishes. The FITC-dextran flux and FITC-apelin-13 flux through the endothelial monolayer were measured. To examine the effect of leakage of apelin-13 on MLC phosphorylation in HUVSMCs, transwell dishes were used to establish a coculture system with HUVECs in upper chambers and HUVSMCs in lower chambers. Western blot was performed to assess the phospho-MLC levels. ADMA increased endothelial permeability in a concentration- and time-dependent manner, accompanied by actin stress fiber assembly and intercellular gap formation. When HUVECs were treated with ADMA, the permeability to both macromolecular dextran and micromolecular apelin-13 increased significantly. Both p38 MAPK inhibitor and NADPH oxidase inhibitor could prevent HUVECs from the increased permeability, and the changes of cytoskeleton and intercellular junction, which were induced by ADMA. Apelin-13 passed through the ADMA-stimulated endothelial monolayer and increased the expression of phospho-MLC in VSMCs. These results suggest that ADMA increases endothelial permeability, which may involve the p38 MAPK and NADPH oxidase pathway. Apelin-13 can pass through the damaged endothelial barrier, and acts directly on VSMCs to increase MLC phosphorylation.  相似文献   

8.
Free, monovalent SLeX (Neu5Ac2-3GalßI-4(Fucl-3)-GlcNAc),SLn (Neu5Ac2-3Galß1-4GlcNAc) and corresponding BSA-conjugatedforms—displaying different ratios of SLeX and SLn to protein—weretested for their ability to inhibit binding of HL-60 cells toImmobilized E-selectin. Free SLeX and conjugated SLeX-BSA inhibitedcell binding in a dose-dependent manner. SLn and SLn-BSA didnot inhibit binding. SLeX16BSA (16 mol tetrasaccharide/mol BSA)and monovalent SLeX inhibited cell binding with measured inhibitoryconcentrations (IC50s) of 1 µM and 1 mM, respectively,demonstrating a three-order-of-magnitude enhancement of inhibitoryactivity with the multivalent form of SLeX. A SLex7BSA conjugatewas 10-fold less potent than those with 11 or 16 mol SLeX/molBSA. An assay which measured neutrophil rolling on interleukin(IL)-1ß-activated human umbilical vein endothelialcells (HUVECs) showed 50% reduction in the number of rollingneutrophils in the presence of 1 µM SLeX16BSA, whereasthe level of free, monovalent SLeX oligosaccharide requiredto produce the same effect was {small tilde}0.3 mM. SLeX–BSAwas found to be an excellent reagent for staining endothelialcells expressing E-selectin. Biotinylated SLeX–BSA inconjunction with Texas red avidin-stained lipopolysaccharide(LPS)-activated HUVECs, and co-incubation of activated cellswith anti-E-selectin, specifically blocked staining. The distributionof E-selectin, as determined by binding of SLeX–BSA, wasvirtually identical with that obtained by binding of anti-E-selectinantibody. The pattern was punctate in nature, rather than beingdiffuse, suggesting that E-selectin may be organized as clusterswithin the plasma membrane. The results suggest that multivalentforms of SLeX bind to E-selectin with higher affinity than domonovalent glycans. Clustering of E-selectin in the membranemay be important for binding to counter-receptors on leukocytecell surfaces. cell adhesion E-selectin glycoconjugate leukocyte receptors sialyl-LeX  相似文献   

9.
Toxin- (T)from the Brazilian scorpion Tityusserrulatus venom caused a concentration- andtime-dependent increase in the release of norepinephrine andepinephrine from bovine adrenal medullary chromaffin cells. T was~200-fold more potent than veratridine judged fromEC50 values, although the maximalsecretory efficacy of veratridine was 10-fold greater than that of T(1.2 vs. 12 µg/ml of catecholamine release). The combination of both toxins produced a synergistic effect that was particularly drastic at 5 mM extracellular Ca2+concentration([Ca2+]o),when 30 µM veratridine plus 0.45 µM T were used. T (0.45 µM) doubled the basal uptake of45Ca2+,whereas veratridine (100 µM) tripled it. Again, a drastic synergism in enhancing Ca2+ entry was seenwhen T and veratridine were combined; this was particularlypronounced at 5 mM[Ca2+]o.Veratridine induced oscillations of cytosolicCa2+ concentration([Ca2+]i)in single fura 2-loaded cells without elevation of basal levels. Incontrast, T elevated basal[Ca2+]ilevels, causing only small oscillations. When added together, T andveratridine elevated the basal levels of[Ca2+]iwithout causing large oscillations. T shifted the current-voltage (I-V) curve forNa+ channel current to the left.The combination of T with veratridine increased the shift of theI-V curve to the left, resulting in agreater recruitment of Na+channels at more hyperpolarizing potentials. This led to enhanced andmore rapid accumulation of Na+ inthe cell, causing cell depolarization, the opening of voltage-dependent Ca2+ channels, andCa2+ entry and secretion.

  相似文献   

10.
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S-1-P) are both low molecular weight lysophospholipid (LPL) ligands that are recognized by the Edg family of G protein-coupled receptors. In endothelial cells, these two ligands activate Edg receptors, resulting in cell proliferation and cell migration. The intercellular adhesion molecule-1 (ICAM-1, CD54) is one of many cell adhesion molecules belonging to the immunoglobulin superfamily. This study showed that LPA and S-1-P enhance ICAM-1 expression at both the mRNA and protein levels in human umbilical cord vein endothelial cells (HUVECs). This enhanced ICAM-1 expression in HUVECs was first observed at 2 h postligand treatment. Maximal expression appeared at 8 h postligand treatment, as detected by flow cytometry and Western blotting. Furthermore, the effects of S-1-P on ICAM-1 expression were shown to be concentration dependent. Prior treatment of HUVECs with pertussis toxin, a specific inhibitor of Gi, ammonium pyrrolidinedithiocarbamate and BAY 11–7082, inhibitors of the nuclear factor (NF)-B pathway, or Clostridium difficile toxin B, an inhibitor of Rac, prevented the enhanced effect of LPL-induced ICAM-1 expression. However, pretreatment of HUVECs with exoC3, an inhibitor of Rho, had no effect on S-1-P-enhanced ICAM-1 expression. In a static cell-cell adhesion assay system, pretreatment of LPL enhanced the adhesion between HUVECs and U-937 cells, a human mononucleated cell line. The enhanced adhesion effect could be prevented by preincubation with a functional blocking antibody against human ICAM-1. These results suggest that LPLs released by activated platelets might enhance interactions of leukocytes with the endothelium through a Gi-, NF-B-, and possibly Rac-dependent mechanism, thus facilitating wound healing and inflammation processes. lysophosphatidic acid; sphingosine 1-phosphate; inflammation; intercellular adhesion molecule-1; nuclear factor-B; human umbilical cord vein endothelial cells  相似文献   

11.
Membrane tethers were found to be extracted from leukocytes and macrovascular endothelial cells (e.g., human umbilical vein endothelial cells or HUVECs) when a point pulling force was exerted. These tethers stabilize leukocyte rolling on the endothelium during the inflammatory response. However, little is known about tether extraction from other vascular cells like microvascular endothelial cells (MECs). In this study, we extracted tethers from both adult and neonatal dermal MECs with the micropipette aspiration technique. We found a linear relationship between the pulling force and tether growth velocity for both cell lines. This constitutive relationship is mainly determined by the membrane mechanical property and the underlying actin-based cytoskeleton for both attached and suspended endothelial cells. It is independent of cell surface receptor type, attachment state, cytokine stimulation, or cell lineage. For both types of MECs, the threshold forces are 50 pN and the effective viscosities are around 0.5 pN·s/µm. These results, which are close to what was obtained from HUVECs, indicate that homogeneity is preserved in terms of tether extraction among different types of endothelial cells, and simultaneous tethers are likely extracted when leukocytes roll on either microvascular or macrovascular surfaces. leukocyte rolling; cell mechanics; micropipette; cytoskeleton  相似文献   

12.

Objectives

To investigated the potential of a novel dendrosomal nanoformulation of curcumin (DNC) in blocking radiation-induced changes in irradiated human umbilical vein endothelial cells (HUVECs), and their adhesion to human THP-1 monocytoid cells.

Results

Co60 gamma rays reduced viability, raised the expression of adhesion molecules, ICAM-1, VCAM-1 and E-selectin (mRNA and protein), augmented the adhesion of THP-1 cells to HUVECs, activated NF-κB binding, increased the release of pro-inflammatory cytokines (IL-6, IL-8 and MCP-1) and induced oxidative damage (reduced glutathione declined, while 8-OHdG and TBARS increased). 5 µM DNC significantly inhibited these radiation-induced changes, activated the Nrf-2 pathway, and effectively suppressed THP-1 adhesion to HUVECs, implicating p38 MAPK signaling.

Conclusion

DNC treatment is a potential preventive method against inflammation and vascular damage from ionizing radiation.
  相似文献   

13.
Reoxygenation of hypoxic human umbilical vein endothelial cells(HUVECs) increases protein expression of the complement regulators CD46and CD55. As the receptor for C3b is known to be present on injuredbovine endothelial cells, we investigated whether hypoxia or inflammatory mediators induce complement receptor type 1 (CR1; CD35) expression on HUVECs. CR1 protein expressionincreased 3.7 ± 0.6-fold as measured by ELISA on HUVECsfollowing hypoxia (48 h, 1%O2). Colocalization of CD35 andvon Willebrand factor by confocal microscopy confirmed that CD35 waspredominantly intracellular. Lipopolysaccharide or tumor necrosisfactor- also significantly increased HUVEC CR1 proteinexpression. Western blot analysis of neutrophil or hypoxicHUVEC lysates revealed a 221-kDa CR1 band under nonreducingconditions. RT-PCR of hypoxic HUVEC mRNA revealed a singleband that, after sequencing, was identified as CD35. In situhybridization of hypoxic HUVECs, but not normoxic HUVECs or fibroblasts, demonstrated increased CD35 mRNA.Hypoxic HUVECs bound immune complexes and acted as a cofactorfor factor I-mediated cleavage of C3b. Thus hypoxia induces functionalHUVEC CR1 expression.  相似文献   

14.
In luteal cells, prostaglandin (PG)F2a mobilizes intracellular calcium concentration ([Ca]i), generates reactive oxygen species (ROS), depletes ascorbic acid (AA) levels, inhibits steroidogenesis, and ultimately induces cell death. We investigated the hypothesis that [Ca]i mobilization stimulates ROS, which results in depletion of cellular AA in rat luteal cells. We used a self-referencing AA-selective electrode that noninvasively measures AA flux at the extended boundary layer of single cells and fluorescence microscopy with fura 2 and dichlorofluorescein diacetate (DCF-DA) to measure [Ca]i and ROS, respectively. Menadione, a generator of intracellular superoxide radical (), PGF2a, and calcium ionophore were shown to increase [Ca]i and stimulate intracellular ROS. With calcium ionophore and PGF2a, but not menadione, the generation of ROS was dependent on extracellular calcium influx. In unstimulated cells there was a net efflux of AA of 121.5 ± 20.3 fmol · cm1 · s1 (mean ± SE, n = 8), but in the absence of extracellular calcium the efflux was significantly reduced (10.3 ± 4.9 fmol · cm1 · s1; n = 5, P < 0.05). PGF2a and menadione stimulated AA efflux, but calcium ionophore had no significant effect. These data suggest two AA regulatory mechanisms: Under basal conditions, AA efflux is calcium dependent and may represent recycling and maintenance of an antioxidant AA gradient at the plasma membrane. Under luteolytic hormone and/or oxidative stress, AA efflux is stimulated that is independent of extracellular calcium influx or generation of ROS. Although site-specific mobilization of calcium pools and ROS cannot be ruled out, the release of AA by PGF2a-stimulated luteal cells may occur through other signaling pathways. luteolysis; apoptosis; self-referencing microelectrode  相似文献   

15.
We previously reported that uniaxial continuous stretch in human umbilical vein endothelial cells (HUVECs) induced interleukin-6 (IL-6) secretion via IB kinase (IKK)/nuclear factor-B (NF-B) activation. The aim of the present study was to clarify the upstream signaling mechanism responsible for this phenomenon. Stretch-induced IKK activation and IL-6 secretion were inhibited by application of 51 integrin-inhibitory peptide (GRGDNP), phosphatidylinositol 3-kinase inhibitor (LY-294002), phospholipase C- inhibitor (U-73122), or protein kinase C inhibitor (H7). Although depletion of intra- or extracellular Ca2+ pool using thapsigargin (TG) or EGTA, respectively, showed little effect, a TG-EGTA mixture significantly inhibited stretch-induced IKK activation and IL-6 secretion. An increase in the intracellular Ca2+ concentration ([Ca2+]i) upon continuous stretch was observed even in the presence of TG, EGTA, or GRGDNP, but not in a solution containing the TG-EGTA mixture, indicating that both integrin activation and [Ca2+]i rise are crucial factors for stretch-induced IKK activation and after IL-6 secretion in HUVECs. Furthermore, while PKC activity was inhibited by the TG-EGTA mixture, GRGDNP, LY-294002, or U-73122, PLC- activity was retarded by GRGDNP or LY-294002. These results indicate that continuous stretch-induced IL-6 secretion in HUVECs depends on outside-in signaling via integrins followed by a PI3-K-PLC--PKC-IKK-NF-B signaling cascade. Another crucial factor, [Ca2+]i increase, may at least be required to activate PKC needed for NF-B activation. nuclear factor-B; phosphatidylinositol 3-kinase; phospholipase C-; protein kinase C; intracellular Ca2+ concentration  相似文献   

16.
Metabolic responses induced by thrombin in human umbilical vein endothelial cells (HUVECs) were investigated by using the cytosensor technique. Thrombin increased the extracellular acidification rate of endothelial cells, measured as an index of metabolic activity with a cytosensor microphysiometer, in a concentration-dependent fashion with an EC(50) of 1.27+/-0.59 IU/ml, which was abolished by the MAP kinase inhibitor PD98059. When intracellular Ca(2+) was chelated or PKC was inactivated, PD98059 failed to abolish the thrombin-induced acidification rate response in HUVECs. In addition, the tyrosine kinase inhibitor genistein, PKC inhibitor calphostin C, and Na(+)/H(+)exchanger antagonist MIA also partly inhibited thrombin-induced acidification rate responses. It is suggested that thrombin stimulated rapid metabolic responses via MAP kinase in HUVECs, which are calcium- and PKC-dependent.  相似文献   

17.
Exposure to nanoparticles (NPs) may cause vascular effects including endothelial dysfunction and foam cell formation, with oxidative stress and inflammation as supposed central mechanisms. We investigated oxidative stress, endothelial dysfunction and lipid accumulation caused by nano-sized carbon black (CB) exposure in cultured human umbilical vein endothelial cells (HUVECs), THP-1 (monocytes) and THP-1 derived macrophages (THP-1a). The proliferation of HUVECs or co-cultures of HUVECs and THP-1 cells were unaffected by CB exposure, whereas there was increased cytotoxicity, assessed by the LDH and WST-1 assays, especially in THP-1 and THP-1a cells. The CB exposure decreased the glutathione (GSH) content in THP-1 and THP-1a cells, whereas GSH was increased in HUVECs. The reactive oxygen species (ROS) production was increased in all cell types after CB exposure. A reduction of the intracellular GSH concentration by buthionine sulfoximine (BSO) pre-treatment further increased the CB-induced ROS production in THP-1 cells and HUVECs. The expression of adhesion molecules ICAM-1 and VCAM-1, but not adhesion of THP-1 to HUVECs or culture dishes, was elevated by CB exposure, whereas these effects were unaffected by BSO pre-treatment. qRT-PCR showed increased VCAM1 expression, but no change in GCLM and HMOX1 expression in CB-exposed HUVECs. Pre-exposure to CB induced lipid accumulation in THP-1a cells, which was not affected by the presence of the antioxidant N-acetylcysteine. In addition, the concentrations of CB to induce lipid accumulation were lower than the concentrations to promote intracellular ROS production in THP-1a cells. In conclusion, exposure to nano-sized CB induced endothelial dysfunction and foam cell formation, which was not dependent on intracellular ROS production.  相似文献   

18.
We havepreviously shown that Ca2+-dependent Clsecretion across intestinal epithelial cells is limited by a signalingpathway involving transactivation of the epidermal growth factorreceptor (EGFR) and activation of ERK mitogen-activated protein kinase (MAPK). Here, we have investigated a possible role for p38 MAPK inregulation of Ca2+-dependent Cl secretion.Western blot analysis of T84 colonic epithelial cells revealed that the muscarinic agonist carbachol (CCh; 100 µM)stimulated phosphorylation and activation of p38 MAPK. The p38inhibitor SB-203580 (10 µM) potentiated and prolonged short-circuitcurrent (Isc) responses to CCh acrossvoltage-clamped T84 cells to 157.4 ± 6.9% of thosein control cells (n = 21; P < 0.001).CCh-induced p38 phosphorylation was attenuated by the EGFR inhibitortyrphostin AG-1478 (0.1 nM-10 µM) and by the Src family kinaseinhibitor PP2 (20 nM-2 µM). The effects of CCh on p38phosphorylation were mimicked by thapsigargin (TG; 2 µM), whichspecifically elevates intracellular Ca2+, and wereabolished by the Ca2+ chelator BAPTA-AM (20 µM), implyinga role for intracellular Ca2+ in mediating p38 activation.SB-203580 (10 µM) potentiated Isc responses toTG to 172.4 ± 18.1% of those in control cells (n = 18; P < 0.001). When cells were pretreated withSB-203580 and PD-98059 to simultaneously inhibit p38 and ERK MAPKs,respectively, Isc responses to TG and CCh weresignificantly greater than those observed with either inhibitor alone.We conclude that Ca2+-dependent agonists stimulate p38 MAPKin T84 cells by a mechanism involving intracellularCa2+, Src family kinases, and the EGFR. CCh-stimulated p38activation constitutes a similar, but distinct and complementary,antisecretory signaling pathway to that of ERK MAPK.

  相似文献   

19.
Nitric oxide (NO)is known to produce some of its biological activity throughmodification of cellular thiols. Return of cellular thiols to theirbasal state requires the activity of the GSH redox cycle, suggestingimportant interactions between NO signaling and regulation of cellularredox status. Because continuous exposure to NO may lead to adaptiveresponses in cellular redox systems, we investigated the effects of NOon cellular GSH levels in vascular endothelial cells. Acute exposure (1 h) of cells to >1 mMS-nitroso-N-acetyl-penicillamine (SNAP) led to depletion of GSH. On the other hand, chronic exposure tolower concentrations of SNAP (1 mM) led to a progressive increase incytosolic GSH, reaching fourfold above basal by 16 h. The mechanism mayinvolve an increase in GSH biosynthesis through effects on biosyntheticenzymes or through increased supply of cysteine, the limitingsubstrate. In this regard, we report that chronic exposure to SNAP ledto a concentration-dependent increase in cystine uptake over a timecourse similar to that seen for elevation of GSH. The effect of SNAP oncystine uptake was inhibitable by either cycloheximide or actinomycinD, suggesting a requirement for both RNA and protein synthesis.Furthermore, uptake was Na+independent and was blocked by extracellular glutamate. Extracellular glutamate also blocked SNAP-mediated elevation of cytosolic GSH. Finally, in a coculture model, NO produced by cytokine-pretreated RAW264.7 cells increased both GSH levels and cystine uptake in naiveendothelial cells. These findings strongly suggest that NO leads toadaptive induction of thexc amino acidtransport system, increased cystine uptake, and elevation ofintracellular GSH levels.  相似文献   

20.
We investigatedthe role of intracellular calcium concentration([Ca2+]i) in endothelin-1 (ET-1) production,the effects of potential vasospastic agents on[Ca2+]i, and the presence of L-typevoltage-dependent Ca2+ channels in cerebral microvascularendothelial cells. Primary cultures of endothelial cells isolated frompiglet cerebral microvessels were used. Confluent cells were exposed toeither the thromboxane receptor agonist U-46619 (1 µM),5-hydroxytryptamine (5-HT; 0.1 mM), or lysophosphatidic acid (LPA; 1 µM) alone or after pretreatment with the Ca2+-chelatingagent EDTA (100 mM), the L-type Ca2+ channel blockerverapamil (10 µM), or the antagonist of receptor-operated Ca2+ channel SKF-96365 HCl (10 µM) for 15 min. ET-1production increased from 1.2 (control) to 8.2 (U-46619), 4.9 (5-HT),or 3.9 (LPA) fmol/µg protein, respectively. Such elevated ET-1biosynthesis was attenuated by verapamil, EDTA, or SKF-96365 HCl. Toinvestigate the presence of L-type voltage-dependent Ca2+channels in endothelial cells, the [Ca2+]isignal was determined fluorometrically by using fura 2-AM. Superfusionof confluent endothelial cells with U-46619, 5-HT, or LPA significantlyincreased [Ca2+]i. Pretreatment ofendothelial cells with high K+ (60 mM) or nifedipine (4 µM) diminished increases in [Ca2+]i inducedby the vasoactive agents. These results indicate that 1)elevated [Ca2+]i signals are involved in ET-1biosynthesis induced by specific spasmogenic agents, 2) theincreases in [Ca2+]i induced by thevasoactive agents tested involve receptor as well as L-typevoltage-dependent Ca2+ channels, and 3) primarycultures of cerebral microvascular endothelial cells express L-typevoltage-dependent Ca2+ channels.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号