首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1H NMR and UV-visible electronic absorption studies have been performed to investigate the effects of anions and cyclic organic molecules on the interconversion of the T- and R-conformational states (Kaarsholm et al., 1989) of hexameric M (II)-substituted insulin in solution (M = Zn or Co.). Two ligand binding processes that stabilize the R-state conformation of the M(II)-substituted insulin hexamer [M(II)-R6] have been distinguished: (i) The binding of neutral organic molecules to the six, crystallographically identified, protein pockets in the Zn(II)-R6 insulin hexamer (Derewenda et al. 1989) generate homotropic site-site interactions that stabilize the R-state. Cyclohexanol, phenol, 4-nitrophenol, and 4-hydroxymethylbenzoate are shown to bind at these sites. (ii) The coordination of singly charged anions that are able to gain access to the two HisB10 coordinated metal ions of the M(II)-R6 hexamer stabilizes the R-state. Adducts of the M(II)-R6 hexamer are formed, thereby, in which the solvent-accessible fourth coordination position of the M(II) ion is replaced by a competing anion. Binding to these two classes of sites introduces strong heterotropic interactions that stabilize the R-state. UV-visible spectral data and apparent affinity constants for the adducts formed by the Co(II)-R6 hexamer with a wide range of anionic ligands are presented. The Co(II)-R6 adducts have a strong preference for the formation of pseudotetrahedral Co(II) centers. The HCO3- and pyridine-2-thiolate ions form Co(II)-R6 adducts that are proposed to possess pentacoordinate Co(II) geometries. The relevance of the Co(II)-R6 complexes to carbonic anhydrase catalysis and zinc enzyme model systems is discussed.  相似文献   

2.
Herein, we evaluate the binding of Pb(II) and Bi(III) to cysteine-substituted versions of the TRI peptides [AcG-(LKALEEK)4G-NH2] which have previously been shown to bind Hg(II) and Cd(II) in unusual geometries as compared with small-molecule thiol ligands in aqueous solutions. Studies of Pb(II) and Bi(III) with the peptides give rise to complexes consistent with the metal ions bound to three sulfur atoms with M–S distances of 2.63 and 2.54 Å, respectively. Competition experiments between the metal ions Pb(II), Cd(II), Hg(II) and Bi(III) for the peptides show that Hg(II) has the highest affinity, owing to the initial formation of the extremely strong HgS2 bond. Cd(II) and Pb(II) have comparable binding affinities at pH > 8, while Bi(III) displays the weakest affinity, following the model, M(II) + (TRI LXC)3 3? → M(II)(TRI LXC)3 ?. While the relevant equilibria for Hg(II) binding to the TRI peptides corresponds to a strong first step forming Hg(TRI LXC)2(HTRI LXC), followed by a single deprotonation to give Hg(TRI LXC)3 ?, the binding of Cd(II) and Pb(II) is consistent with initial formation of M(II)(TRI LXC)(HTRI LXC)2 + at pH < 5 followed by a two-proton dissociation step (pK a2) yielding M(II)(TRI LXC)3 ?. Pb(II)(TRI LXC)(HTRI LXC)2 + converts to Pb(II)(TRI LXC)3 ? at slightly lower pH values than the corresponding Cd(II)–peptide complexes. In addition, Pb(II) displays a lower pK a of binding to the “d”-substituted peptide, (TRI L12C, pK a2 = 12.0) compared with the “a”-substituted peptide, (TRI L16C, pK a2 = 12.6), the reverse of the order seen for Hg(II) and Cd(II). Pb(II) also showed a stronger binding affinity for TRI L12C (K bind = 3.2 × 107 M?1) compared with that with TRI L16C (K bind = 1.2 × 107 M?1) at pH > 8.  相似文献   

3.
D T Cronce  W D Horrocks 《Biochemistry》1992,31(34):7963-7969
Excitation spectroscopy of the 7F0----5D0 transition of Eu3+ and diffusion-enhanced energy transfer are used to study metal-binding characteristics of the calcium-binding protein parvalbumin from codfish. Energy is transferred from Eu3+ ions occupying the CD- and EF-binding sites to the freely-diffusing Co(III) coordination complex energy acceptors: [Co(NH3)6]3+, [Co(NH3)5H2O]3+, [CoF(NH3)5]2+, [CoCl(NH3)5]2+, [Co(NO2)3(NH3)3], and [Co(ox)3]3-. In the absence of these inorganic energy acceptors, the excited-state lifetimes of Eu3+ bound to the CD and EF sites are indistinguishable, even in D2O; however, in the presence of the positively charged energy acceptor complexes, the Eu3+ probes in the cod parvalbumin have different excited-state lifetimes due to a greater energy-transfer site from Eu3+ in the CD site than from this ion in the EF site. The observation of distinct lifetimes for Eu3+ in the two sites allows the study of the relative binding site affinities and selectivity, using other members of the lanthanide ion series. Our results indicate that during the course of a titration of the metal-free protein, Eu3+ fills the two sites simultaneously. Eu3+ is competitively displaced by other Ln3+ ions, with the CD site showing a preference for the larger Ln3+ ions while the EF site shows little, if any, competitive selectivity across the Ln3+ ion series.  相似文献   

4.
Metals are thought to play a role in the structure of many viruses. The crystal structure of the T=3 icosahedral cowpea chlorotic mottle virus (CCMV) suggests the presence of 180 unique metal-binding sites in the assembled protein cage. Each of these sites is thought to involve the coordination of the metal by five amino acids contributed from two adjacent coat protein subunits. We have used fluorescence resonance energy transfer (FRET), from tryptophan residues proximal to the putative metal-binding sites, to probe Tb(III) binding to the virus. Binding of Tb(III) was investigated on the wild-type virus and a mutant where the RNA binding ability of the virus was removed. Tb(III) binding was observed both in the wild-type virus (Kd=19 M) and the mutant (Kd=17 M), as monitored by the increase in Tb(III) fluorescence (545 nm) and concomitant decrease in tryptophan fluorescence (342 nm). Competitive binding experiments showed Ca(II) to have about 100-fold less affinity for the binding sites (Kd=1.97 mM). This is the first direct evidence of metal binding to the putative metal-binding sites, originally suggested from the crystal structure of CCMV.  相似文献   

5.
Pulsed dye laser excitation spectroscopy of the 7F0----5D0 transition of Eu(III) reveals only a single peak as this ion is titrated into apocalmodulin. A titration based on the intensity of this transition shows that the first two Eu(III) ions bind quantitatively to two tight sites, followed by weaker binding (Kd = 2 microM) to two additional sites under conditions of high ionic strength (0.5 M KC1). This excitation experiment is also shown to be a general method for measuring contaminating levels of EDTA down to 0.2 microM in proton solutions. Experiments with Tb(III) using both direct laser excitation and indirect sensitization of Tb(III) luminescence through tyrosine residues in calmodulin also give evidence for two tight and two weaker binding sites (Kd = 2-3 microM). The indirect sensitization results primarily upon binding to the two weaker sites, implying that Tb(III) binds first to domains I and II, which are remote from tyrosine-containing domains III and IV. The 7F0----5D0 excitation signal of Eu(III) was used to measure the relative overall affinities of the tripositive lanthanide ions, Ln(III), across the series. Ln(III) ions at the end of the series are found to bind more weakly than those at the beginning and middle of the series. Eu(III) excited-state lifetime measurements in H2O and D2O reveal that two water molecules are coordinated to the Eu(III) at each of the four metal ion binding sites. Measurements of F?rster-type nonradiative energy-transfer efficiencies between Eu(III) and Nd(III) in the two tight sites were carried out by monitoring the excited-state lifetimes of Eu(III) in the presence and absence of the energy acceptor ion Nd(III).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
1. Insulin binding sites were characterized and quantified in snail (Helix aspersa) ganglia by incubation of tissue sections with 125I-porcine insulin, autoradiography with [3H]Ultrofilm, image analysis coupled to computer-assisted microdensitometry, and comparison with 125I-standards. Cellular localization was performed in the same sections by emulsion autoradiography. 2. Specific insulin binding sites were demonstrated in discretely localized groups of neurons of the cerebral, pleural, parietal, visceral, and pedal ganglia and in nerves. Scatchard analysis performed with consecutive sections from single animals revealed a single class of high-affinity insulin binding sites (Kd, 0.13 +/- 0.01 nM; Bmax, 157 +/- 10 fmol/mg protein). 3. Our results suggest that insulin may play a role as a neurotransmitter or neuromodulator in snail ganglia.  相似文献   

7.
The technique of laser-excited Eu(III) luminescence was applied to monitor Eu(III) binding to a variety of phospholipids. Eu(III) excitation spectra were similar with and without the presence of neutral phospholipids, while acidic phospholipids changed the spectrum in a concentration-dependent manner. Eu(III) appears to bind to the phosphate moiety with at least a 2:1 phospholipid:metal ion stoichiometry. Analysis of luminescence lifetimes reveals that only one or two waters of hydration are removed from Eu(III) by addition of neutral phospholipids, whereas acidic phospholipids and inorganic phosphate strip off all but one or two waters. Implications with regard to fusion and use of lanthanides as probes in membrane preparations are discussed.  相似文献   

8.
Pulsed-dye laser excitation and lifetime spectroscopy of the 7F0----5D0 transition of Eu3+ reveals details of the binding of this ion to the calcium-binding sites of calmodulin (labeled I-IV, starting at the N-terminus). For 10 microM calmodulin Eu3+ binds quantitatively at sites I and II and more weakly at sites III and IV with Kd values of approximately 0.5 microM and 1.0 microM at the latter sites. In D2O solution the time course of luminescence emission of Eu3+-loaded calmodulin can be separated into three exponential components with lifetimes of 2.50 (sites I and II) and 1.70 and 0.63 ms (sites III and IV). This finding permits the time resolution of the excitation spectrum by determination of the amplitudes of the three components as the excitation wavelength is scanned across the spectral profile in 0.1-nm increments. The amplitudes (intensities at time t = O) are plotted as a function of wavelength and the results fitted to three Lorentzian peaks centered at 579.20, 579.40, and 579.32 nm in order of decreasing lifetimes. In H2O solution only two exponential luminescence decay components are resolvable with lifetimes of 0.41 and 0.27 ms, corresponding to sites I and II and sites III and IV, respectively. These results indicate that two water molecules are coordinated to the Eu3+ ions at sites I and II and at either site III or site IV, with three water molecules at the remaining site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Close coorelation of atomic absorption measurements for Ca(II) contents indicates that from pH 5.8-7.4 a twentyfold excess of EGTA1 removes but one of two Ca(II) from carp parvalbumin. Thus binding of the two Ca(II) appears to be noncooperative. The maximum in emission intensity observed at a nonintegral 1.4-1.7 equivs of added Tb(III) is shown to be due to quenching by excess Tb(III). The emission intensity at the maximum increased 40% upon dialysis to remove Tb(III) not bound in the CD or EF sites. Atomic absorption results show that both Ca(CD) and Ca(EF) of native parvalbumin are easily replaced by Tb(III). Emission of Tb(EF) is not quenched by Tb(CD), but by solution Tb(III) bound at a third site, perhaps the single water molecule bound to Tb(EF). Labeling of the single sulfhydryl group with a trifluoroacetonyl gorup yields a protein with ultraviolet circular dichroism, emission, and circularly polarized emission spectra closely similar to those of native parvalbumin.  相似文献   

10.
Because of wide ligand-binding ability and significant industrial interest of beta-lactoglobulin (beta-LG), its binding properties have been extensively studied. However, there still exists a controversy as to where a ligand binds, since at least two potential hydrophobic binding sites in beta-LG have been postulated for ligand binding: an internal one (calyx) and an external one (near the N-terminus). In this work, the local polarity and hydrophobic binding sites of beta-LG have been characterized by using N-terminal specific fluorescence labeling combined with a polarity-sensitive fluorescent probe 3-(4-chloro-6-hydrazino- 1,3,5-triazinylamino)-7-(dimethylamino)-2-methylphenazine (CHTDP). The polarity within the calyx is found to be extremely low, which is explained in terms of superhydrophobicity possibly resulting from its nanostructure, and the polarity is increased with the destruction of the calyx by heat treatment. However, the polarity of the N-terminal domain in native beta-LG is decreased after thermal denaturation. This polarity trend toward decreasing instead of increasing shows that beta-LG may have no definite external hydrophobic binding site. The hydrophobic binding of a ligand such as CHTDP at the surface of the protein is probably achieved via appropriate assembling of corresponding hydrophobic residues rather than via a fixed external hydrophobic binding site. Also, the ligand-binding location in beta-LG is found to be relevant to not only experimental conditions (pH < or = 6.2 or pH > 7.1) but also binding mechanisms (hydrophobic affinity or electrostatic interaction).  相似文献   

11.
The nature of the intermediate-affinity (n2) Mn(II) binding sites in glutamine synthetase [EC 6.3.1.2] has been studied as a function of adenylylation in a variety of enzyme-metal complexes by EPR. In the absence of nucleotide the n2 Mn(II) environment is nearly isotropic, the Mn(II) bonds are highly ionic, and the interaction distance R greater than or equal to 12-14 A. Nucleotide binding at the n2 Mn(II) site renders the n2 Mn(II) signal unobservable and causes a reduction in signal amplitude (approximately 30%) and line broadening (approximately 6 G) at the high-affinity (n1) Mn(II) site. This behavior indicates that nucleotide binding induces a conformational change in the enzyme which brings the previously distant n1 and n2 sites into closer proximity (R less than or equal to 8-11 A), possibly for the purpose of activating the nucleotide for direct phosphoryl transfer to L-glutamate. In line with this suggestion, the broad, unresolved resonances in complexes containing both L-methionine SR-sulfoximine (MSOX) and nucleotide may result from the phosphorylation of MSOX. The n2 Mn(II) site is not affected by adenylylation in all the enzyme-metal complexes studied, which suggests that the regulatory effects of adenylylation may only act at the n1 Mn(II) sites.  相似文献   

12.
The complex formation of europium(III) and curium(III) with urea in aqueous solution has been studied at I = 0.1 M (NaClO4), room temperature and trace metal concentrations in the pH-range of 1-8 at various ligand concentrations using time-resolved laser-fluorescence spectroscopy. While for curium(III) the luminescence maximum is red shifted upon complexation, in case of europium(III) emission wavelengths remain unaltered but a significant change in peak splitting occurs. Both heavy metals form weak complexes of the formulae ML3+ and MLOH2+ with urea. Stability constants were determined to be log β110 = −0.12 ± 0.05 and log β11-1 = −6.86 ± 0.15 for europium(III) and log β110 = −0.28 ± 0.12 and log β11-1 = −7.01 ± 0.15 for curium(III).  相似文献   

13.
Commercial calf liver arginase was further purified through gel filtration column chromatography. The enzyme is nearly homogeneous in SDS-PAGE; it contains 4 manganese atoms per molecule of enzyme. By dialysis against 1,10-o-phenanthroline at 4°C it is possible to obtain an arginase apo-form containing 2 manganese atoms per molecule of enzyme (apo-2 form) while a treatment of the pur enzyme with o-phenanthroline at 37°C followed by dialysis against 0.1 M NaCl is capable of producing an apoenzyme with only 1 manganese atom per molecule (apo-1 form). The apo-2 and apo-1 arginases retain respectively about 50% and 25% of the full enzymatic activity. NMR titrations of both apo-arginases with increasing concentrations of manganese allowed us to determine the affinity constants for the binding of Mn2+ to the protein. It was shown that in this enzyme two manganese atoms are weakly bound, one is more strongly bound and the fourth one is bound so tightly that it is not removed under the experimental conditions used.  相似文献   

14.
The observation that there are significant differences in the concentration, affinity, and specificity of both central nervous system (CNS) and peripheral angiotensin receptors among several different mammalian species, including the African Green monkey, led to the detailed analysis of 125I-angiotensin II binding in the uterus of the African Green monkey. The Bmax for angiotensin receptors in uterine tissue from this species is 56.6 +/- 8.7 fmole per mg protein. The Kd for angiotensin II is .601 +/- .108 nM. The specificity of the receptor is similar to that reported for the uterus of the rat and dog. These results indicate that the angiotensin II receptors, although nearly absent from the CNS of the African Green monkey, are found in the uterus and are very similar to uterine receptors previously characterized in the rat and dog and support the use of these species as appropriate models for studying the biochemistry of angiotensin binding in the uterus.  相似文献   

15.
A new polyacid derivative ligand of biphenyl-substituted terpyridine, [4'-(biphenyl-4'-yl)-2,2':6'2'-terpyridine-6,6'-diyl]bis(methylenenitrilo)tetrakis(acetic acid) was synthesized, and the fluorescence properties of its Eu3+ and Tb3+ chelates were investigated. The Eu3+ chelate of the ligand is strongly fluorescent, with a fluorescence quantum yield of 0.156, molar absorption coefficient of 2.95 x 10(4) mol/L/cm at molar absorption maximum of 336 nm, and fluorescence lifetime of 1.29 ms, whereas its Tb3+ chelate is non-fluorescent.  相似文献   

16.
A one-step method is described for the fluorometric determination of the activity of the enzyme catalase (EC 1.11.1.6.), based on the finding that H(2)O(2) in the europium (III)-tetracycline-hydrogen peroxide system is consumed by catalase. This is accompanied by a large decrease in both fluorescence intensity and decay time. The limit of detection (LOD; at S/N=3) for catalase at 30 degrees C for a 10-min kinetic assay is 1.0 unit/mL, with a linear range from 1.0 to 10 unit/mL. At an incubation time of 30 min at 37 degrees C for a one-point assay, the LOD is 0.046 unit/mL, with a linear range from 46 to 400 munit/mL. The assay was performed on microtiterplates and is fully compatible with existing plate readers. It is a one-step, simple, and sensitive method suitable for both continuous kinetic and one-point detections, does not require the addition of other substrates, and works best at neutral pH (with an optimum at pH 6.9). The reagent has the typical spectral features of a europium-ligand complex including a large Stokes shift (210 nm), a red line-like emission (centered at 616 nm), and a decay time in the microsecond domain. It is also the first europium-based probe that is compatible with the 405-nm diode laser. In summary, the new assay provides distinct advantages over direct ultraviolet detection and over the two-reagent (peroxidase) method.  相似文献   

17.
A continuous spectrophotometric assay has been developed to quantify the calmodulin, calcium(II) ion, and europium(III) ion dependence of the activation of NAD kinase from pea seedlings. Experimental enzyme activation data are compared with the theoretical curves for the binding of calcium(II) ions to the individual calcium binding sites of calmodulin. These results indicate that the binding of three calcium(II) ions is necessary for activation of plant NAD kinase. Further studies demonstrate that europium(III) ions can replace calcium(II) ions in calmodulin with retention of its ability to activate NAD kinase.  相似文献   

18.
Insulin receptors could be demonstrated in cultured smooth muscle cells of rat aorta. The specific binding of 125I-insulin was time-, temperature- and pH-dependent. The optimal temperature for our studies was 12 degrees C. At this temperature maximal specific binding was 0.5% of total counts at 120 min incubation. The pH-optimum for the binding process was between 7.5 and 8. Degradation of 125I-insulin at 12 degrees C was 14%, no degradation of binding sites could be measured at this temperature. Dissociation of 125I-insulin was rapid. 50% of the labeled hormone remained associated with the cells. Half-maximal inhibition of 125I-insulin binding was produced by insulin at 4 X 10(-11) mol/l. Scatchard-analysis gave curvilinear plots, that may suggest negative cooperativity. Specificity of binding was studied in competition experiments between 125I-insulin, insulin, proinsulin, insulin-like growth factors and human growth hormone. Half-maximal inhibition of 125I-insulin binding was produced by proinsulin at 2 X 10(-9) mol/l and by insulin-like growth factors at 9 X 10(-9) mol/l. Human growth hormone had no significant effect on the insulin binding.  相似文献   

19.
20.
Immobilized metal ion affinity chromatography has been used to demonstrate and partially characterize Fe(III) binding sites on apoferritin. Binding of Fe(III) to these sites is influenced by pH, but not affected by high ionic strength. These results suggest that both ionic and coordinate covalent interactions are important in the formation of the Fe(III): apoferritin complex. This is, to our knowledge, the first demonstration of direct Fe(III) binding to apoferritin. Other immobilized metal ions, including Zn(II), Ni(II), Cu(II), Cr(III), Co(II), and Tb(III), displayed little or no adsorption of apoferritin. The analytical technique of immobilized metal ion affinity chromatography also shows great promise in the purification of apoferritin, ferritin, and other iron-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号