首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well established that the tumour microenvironment can both promote and suppress tumour growth and invasion, however, most mathematical models of invasion view the normal tissue as inhibiting tumour progression via immune modulation or spatial constraint. In particular, the production of acid by tumour cells and the subsequent creation of a low extracellular pH environment has been explored in several ‘acid-mediated tumour invasion’ models where the acidic environment facilitates normal cell death and permits tumour invasion. In this paper, we extend the acid-invasion model developed by Gatenby and Gawlinski (1996) to include both the competitive and cooperative interactions between tumour and normal cells, by incorporating the influence of extracellular matrix and protease production at the tumour-stroma interface. Our model predicts an optimal level of tumour acidity which produces both cell death and matrix degradation. Additionally, very aggressive tumours prevent protease production and matrix degradation by excessive normal cell destruction, leading to an acellular (but matrix filled) gap between the tumour and normal tissue, a feature seen in encapsulated tumours. These results sugest, counterintuitively, that increasing tumour acidity may, in some cases, prevent tumour invasion.  相似文献   

2.
Cancer is a complex disease involving processes at spatial scales from subcellular, like cell signalling, to tissue scale, such as vascular network formation. A number of multiscale models have been developed to study the dynamics that emerge from the coupling between the intracellular, cellular and tissue scales. Here, we develop a continuum partial differential equation model to capture the dynamics of a particular multiscale model (a hybrid cellular automaton with discrete cells, diffusible factors and an explicit vascular network). The purpose is to test under which circumstances such a continuum model gives equivalent predictions to the original multiscale model, in the knowledge that the system details are known, and differences in model results can be explained in terms of model features (rather than unknown experimental confounding factors). The continuum model qualitatively replicates the dynamics from the multiscale model, with certain discrepancies observed owing to the differences in the modelling of certain processes. The continuum model admits travelling wave solutions for normal tissue growth and tumour invasion, with similar behaviour observed in the multiscale model. However, the continuum model enables us to analyse the spatially homogeneous steady states of the system, and hence to analyse these waves in more detail. We show that the tumour microenvironmental effects from the multiscale model mean that tumour invasion exhibits a so-called pushed wave when the carrying capacity for tumour cell proliferation is less than the total cell density at the tumour wave front. These pushed waves of tumour invasion propagate by triggering apoptosis of normal cells at the wave front. Otherwise, numerical evidence suggests that the wave speed can be predicted from linear analysis about the normal tissue steady state.  相似文献   

3.
Asparagine-linked oligosaccharides in malignant tumour growth   总被引:1,自引:0,他引:1  
The expression of beta 1-6-branched complex-type oligosaccharides in several tumour cell models appears to be associated with enhanced metastatic potential. P2B, a major PHA-L-binding glycoprotein was isolated from metastatic MDAY-D2 cells and shown to bind to collagen, fibronectin and laminin with increased affinity after removal of N-linked sialic acid or polylactosamine. Sialylated polylactosamine-containing beta 1-6-branched oligosaccharides on proteins such as P2B and fibronectin may reduce cell adhesion and enhance tumour cell invasion. The loss of branched complex-type oligosaccharides in tumour cells due to somatic mutations or inhibition by swainsonine is also associated with decreased cell proliferation in tissue culture and slower rates of solid tumour growth in mice.  相似文献   

4.
Mouse colorectal cancer (CRC) models generated by orthotopic microinjection of human CRC cell lines reproduce the pattern of lymphatic, haematological and transcoelomic spread but generate low metastatic efficiency. Our aim was to develop a new strategy that could increase the metastatic efficiency of these models. We used subcutaneous implantation of the human CRC cell lines HCT116 or SW48 prior to their orthotopic microinjection in the cecum of nude mice (SC+ORT). This subcutaneous preconditioning significantly enhanced metastatic dissemination. In the HCT116 model it increased the number and size of metastatic foci in lymph nodes, lung, liver and peritoneum, whereas, in the SW48 model, it induced a shift from non-metastatic to metastatic. In both models the number of apoptotic bodies in the primary tumour in the SC+ORT group was significantly reduced compared with that in the direct orthotopic injection (ORT) group. Moreover, in HCT116 tumours the number of keratin-positive tumour buddings and single epithelial cells increased at the invasion front in SC+ORT mice. In the SW48 tumour model, we observed a trend towards a higher number of tumour buds and single cells in the SC+ORT group but this did not reach statistical significance. At a molecular level, the enhanced metastatic efficiency observed in the HCT116 SC+ORT model was associated with an increase in AKT activation, VEGF-A overexpression and downregulation of β1 integrin in primary tumour tissue, whereas, in SW48 SC+ORT mice, the level of expression of these proteins remained unchanged. In summary, subcutaneous preconditioning increased the metastatic dissemination of both orthotopic CRC models by increasing tumour cell survival and invasion at the tumour invasion front. This approach could be useful to simultaneously study the mechanisms of metastases and to evaluate anti-metastatic drugs against CRC.KEY WORDS: Collective invasion, Colorectal cancer model, Metastasis, Orthotopic injection, Single tumour cell, Subcutaneous preconditioning  相似文献   

5.
Collective phenomena in multi-cellular assemblies can be approached on different levels of complexity. Here, we discuss a number of mathematical models which consider the dynamics of each individual cell, so-called agent-based or individual-based models (IBMs). As a special feature, these models allow to account for intracellular decision processes which are triggered by biomechanical cell-cell or cell-matrix interactions. We discuss their impact on the growth and homeostasis of multi-cellular systems as simulated by lattice-free models. Our results demonstrate that cell polarisation subsequent to cell-cell contact formation can be a source of stability in epithelial monolayers. Stroma contact-dependent regulation of tumour cell proliferation and migration is shown to result in invasion dynamics in accordance with the migrating cancer stem cell hypothesis. However, we demonstrate that different regulation mechanisms can equally well comply with present experimental results. Thus, we suggest a panel of experimental studies for the in-depth validation of the model assumptions.  相似文献   

6.
We propose that a highly malignant brain tumour is an opportunistic, self-organizing and adaptive complex dynamic biosystem rather than an unorganized cell mass. To test the hypothesis of related key behaviour such as cell proliferation and invasion, we have developed a new in vitro assay capable of displaying several of the dynamic features of this multiparameter system in the same experimental setting. This assay investigates the development of multicellular U87MGmEGFR spheroids in a specific extracellular matrix gel over time. The results show that key features such as volumetric growth and cell invasion can be analysed in the same setting over 144 h without continuously supplementing additional nutrition. Moreover, tumour proliferation and invasion are closely correlated and both key features establish a distinct ratio over time to achieve maximum cell velocity and to maintain the system's temporo-spatial expansion dynamics. Single cell invasion follows a chain-like pattern leading to the new concept of a intrabranch homotype attraction . Since preliminary studies demonstrate that heterotype attraction can specifically direct and accelerate the emerging invasive network, we further introduce the concept of least resistance, most permission and highest attraction as an essential principle for tumour invasion. Together, these results support the hypothesis of a self-organizing adaptive biosystem.  相似文献   

7.
A significant role for micro (mi)RNA in the regulation of gene expression in tumours has been recently established. In order to further understand how miRNA expression may contribute to prostate tumour growth and progression, we evaluated expression of miRNA in two invasive prostate tumour lines, PC3 and DU145, and compared it to that in normal prostate epithelial cells. Although a number of miRNAs were differentially expressed, we focused our analysis on miR-105, a novel miRNA not previously linked to prostate cancer. miR-105 levels were significantly decreased in both tumour cell lines in comparison to normal prostate epithelial cells. To determine its potential role in prostate cancer pathogenesis, we overexpressed miR-105 in both PC3 and DU145 cells and determined its effect on various tumourigenic properties. miR-105 overexpression inhibited tumour cell proliferation, tumour growth in anchorage-independent three-dimensional conditions and tumour invasion in vitro, properties of highly aggressive tumour cells. Of potential clinical significance, miR-105 overexpression inhibited tumour growth in vivo in xenograft models using these cell lines. We further identified CDK6 as a putative target of miR-105 which is likely a main contributor to the inhibition of tumour cell growth observed in our assays. Our results suggest that miR-105 inhibits tumour cell proliferation and hence may represent a novel therapeutically relevant cellular target to inhibit tumour growth or a marker of aggressive tumours in prostate cancer patients.  相似文献   

8.
Most human cancers arise either from epithelial cells or their progenitors. Epithelial cells possess a distinctive apical–basal polarity and loss of polarity is frequently assumed to be a common feature of cancer progression. In particular, cancer cell dissemination to ectopic sites, and metastatic growth at those sites, is often considered to require a mesenchymal transition in which the transformed epithelial cells lose their apical–basal polarity. However, many cancers retain epithelial characteristics, and until recently there has been little conclusive evidence for an involvement of the cell polarity machinery in tumour growth and metastasis. In this article, we discuss evidence that polarity proteins can be potent invasion suppressors but that loss of epithelial character is not essential either for tumour growth and invasion, or metastatic colonization.  相似文献   

9.
In vitro and in vivo models to study the pathogenesis of thyroid autoimmunity are reviewed. Animal models with experimentally induced or spontaneously developed autoimmune thyroid disease as well as transplantation models have been used extensively in these studies, but also the use of thyroid cell cultures from both humans and animals has contributed to the present state of knowledge. Cytokines may play a role in the pathogenic mechanism in thyroid autoimmunity. The major in vitro and in vivo effects of for example interleukin-1, tumour necrosis factor and gamma-interferon on differentiated thyroid cell functions are inhibitory. The advantage of using cell cultures has been the possibility of studying an influence on thyrocytes from a single agent individually, such as cytokines, hormones or growth factors. The disadvantage is that an organism is under the influence of a multitude of factors that can only be investigated in vivo in intact organisms. Both types of models have therefore been important in the understanding of thyroid autoimmunity.  相似文献   

10.
Heparanase is an endoglycosidase enzyme present in activated leucocytes, mast cells, placental tissue, neutrophils and macrophages, and is involved in tumour metastasis and tissue invasion. It presents a potential target for cancer therapies and various molecules have been developed in an attempt to inhibit the enzymatic action of heparanase. In an attempt to develop a novel therapeutic with an associated diagnostic assay, we have previously described high affinity aptamers selected against heparanase. In this work, we demonstrated that these anti-heparanase aptamers are capable of inhibiting tissue invasion of tumour cells associated with oral cancer and verified that such inhibition is due to inhibition of the enzyme and not due to other potentially cytotoxic effects of the aptamers. Furthermore, we have identified a short 30 bases aptamer as a potential candidate for further studies, as this showed a higher ability to inhibit tissue invasion than its longer counterpart, as well as a reduced potential for complex formation with other non-specific serum proteins. Finally, the aptamer was found to be stable and therefore suitable for use in human models, as it showed no degradation in the presence of human serum, making it a potential candidate for both diagnostic and therapeutic use.  相似文献   

11.
Objectives:  Gliomas are an important form of brain cancer, with high mortality rate. Mathematical models are often used to understand and predict their behaviour. However, using current modeling techniques one must choose between simulating individual cell behaviour and modeling tumours of clinically significant size.
Materials and Methods:  We propose a hybrid compartment-continuum-discrete model to simulate glioma growth and malignant cell invasion. The discrete portion of the model is capable of capturing intercellular interactions, including cell migration, intercellular communication, spatial cell population heterogeneity, phenotype differentiation, epigenetic events, proliferation, and apoptosis. Combining this with a compartment and continuum model allows clinically significant tumour sizes to be evaluated.
Results and Conclusions:  This model is used to perform multiple simulations to determine sensitivity to changes in important model parameters, specifically, the fundamental length parameter, necrotic cell degradation rate, rate of cell migration, and rate of phenotype transformation. Using these values, the model is able to simulate tumour growth and invasion behaviour, observed clinically. This mathematical model provides a means to simulate various tumour development scenarios, which may lead to a better understanding of how altering fundamental parameters can influence neoplastic progression.  相似文献   

12.
Kotsakis P  Griffin M 《Amino acids》2007,33(2):373-384
Summary. Basic biological processes in which tissue transglutaminase (TG2, tTG) is thought to be important including apoptosis, cell adhesion and migration, ECM homeostasis and angiogenesis are key stages in the multistage tumour progression cascade. Studies undertaken with primary tumours and experimental models suggest that TG2 expression and activity in the tumour body and surrounding matrix generally decreases with tumour progression, favouring matrix destabilisation, but supporting angiogenesis and tumour invasion. In contrast, in the secondary metastatic tumour TG2 is often highly expressed whereby its potential roles in cell survival both at the intra- and extracellular level become important. In the following review the underlying molecular basis for the selection of these different phenotypes in tumour types and the anomaly for the requirement of TG2 is discussed in relation to the complex events of tumour progression.  相似文献   

13.
We recently identified p140Cap as a novel adaptor protein, expressed in epithelial-rich tissues and phosphorylated upon cell matrix adhesion and growth factor treatment. Here, we characterise p140Cap as a novel Src-binding protein, which regulates Src activation via C-terminal Src kinase (Csk). p140Cap silencing increases cell spreading, migration rate and Src kinase activity. Accordingly, increased expression of p140Cap activates Csk, leading to inhibition of Src and downstream signalling as well as of cell motility and invasion. Moreover, cell proliferation and "in vivo" breast cancer cell growth are strongly impaired by high levels of p140Cap, providing the first evidence that p140Cap is a novel negative regulator of tumour growth.  相似文献   

14.
Invasive tumour cells, such as gliomas, frequently express EGF (epidermal growth factor) receptor at a high level and they exhibit enhanced cell migration in response to EGF. We reported previously that tumour cell migration is associated with ectodomain cleavage of CD44, the major adhesion molecule that is implicated in tumour invasion and metastasis, and that the cleavage is enhanced by ligation of CD44. In the present study, we show that EGF promotes CD44 cleavage and CD44-dependent cell migration. Introduction of a dominant-negative mutant of the small GTPase Rac1 or depletion of Rac1 by RNAi (RNA interference) abrogated CD44 cleavage induced by EGF. Treatment with PD98059, an inhibitor for MEK (mitogen-activated protein kinase/extracellular-signal-regulated kinase kinase), also suppressed the CD44 cleavage. Furthermore, RNAi studies showed that EGF induced ADAM10 (a disintegrin and metalloproteinase 10)-dependent CD44 cleavage and cell migration. These results indicate that EGF induces ADAM10-mediated CD44 cleavage through Rac1 and mitogen-activated protein kinase activation, and thereby promotes tumour cell migration and invasion.  相似文献   

15.
In order to accomplish the transition from avascular to vascular growth, solid tumours secrete a diffusible substance known as tumour angiogenesis factor (TAF) into the surrounding tissue. Endothelial cells which form the lining of neighbouring blood vessels respond to this chemotactic stimulus in a well-ordered sequence of events comprising, at minimum, of a degradation of their basement membrane, migration and proliferation. Capillary sprouts are formed which migrate towards the tumour eventually penetrating it and permitting vascular growth to take place. It is during this stage of growth that the insidious process of invasion of surrounding tissues can and does take place. A model mechanism for angiogenesis is presented which includes the diffusion of the TAF into the surrounding host tissue and the response of the endothelial cells to the chemotactic stimulus. Numerical simulations of the model are shown to compare very well with experimental observations. The subsequent vascular growth of the tumour is discussed with regard to a classical reaction-diffusion pre-pattern model.  相似文献   

16.
Known as one of the hallmarks of cancer (Hanahan and Weinberg in Cell 100:57–70, 2000) cancer cell invasion of human body tissue is a complicated spatio-temporal multiscale process which enables a localised solid tumour to transform into a systemic, metastatic and fatal disease. This process explores and takes advantage of the reciprocal relation that solid tumours establish with the extracellular matrix (ECM) components and other multiple distinct cell types from the surrounding microenvironment. Through the secretion of various proteolytic enzymes such as matrix metalloproteinases or the urokinase plasminogen activator (uPA), the cancer cell population alters the configuration of the surrounding ECM composition and overcomes the physical barriers to ultimately achieve local cancer spread into the surrounding tissue. The active interplay between the tissue-scale tumour dynamics and the molecular mechanics of the involved proteolytic enzymes at the cell scale underlines the biologically multiscale character of invasion and raises the challenge of modelling this process with an appropriate multiscale approach. In this paper, we present a new two-scale moving boundary model of cancer invasion that explores the tissue-scale tumour dynamics in conjunction with the molecular dynamics of the urokinase plasminogen activation system. Building on the multiscale moving boundary method proposed in Trucu et al. (Multiscale Model Simul 11(1):309–335, 2013), the modelling that we propose here allows us to study the changes in tissue-scale tumour morphology caused by the cell-scale uPA microdynamics occurring along the invasive edge of the tumour. Our computational simulation results demonstrate a range of heterogeneous dynamics which are qualitatively similar to the invasive growth patterns observed in a number of different types of cancer, such as the tumour infiltrative growth patterns discussed in Ito et al. (J Gastroenterol 47:1279–1289, 2012).  相似文献   

17.
GBM (glioblastoma multiforme) is the most aggressive and invasive form of primary human brain cancer. We recently developed a novel brain cancer model in the inbred VM mouse strain that shares several characteristics with human GBM. Using bioluminescence imaging, we tested the efficacy of CR (calorie restriction) for its ability to reduce tumour size and invasion. CR targets glycolysis and rapid tumour cell growth in part by lowering circulating glucose levels. The VM-M3 tumour cells were implanted intracerebrally in the syngeneic VM mouse host. Approx. 12–15 days post-implantation, brains were removed and both ipsilateral and contralateral hemispheres were imaged to measure bioluminescence of invading tumour cells. CR significantly reduced the invasion of tumour cells from the implanted ipsilateral hemisphere into the contralateral hemisphere. The total percentage of Ki-67-stained cells within the primary tumour and the total number of blood vessels was also significantly lower in the CR-treated mice than in the mice fed ad libitum, suggesting that CR is anti-proliferative and anti-angiogenic. Our findings indicate that the VM-M3 GBM model is a valuable tool for studying brain tumour cell invasion and for evaluating potential therapeutic approaches for managing invasive brain cancer. In addition, we show that CR can be effective in reducing malignant brain tumour growth and invasion.  相似文献   

18.
ABSTRACT: BACKGROUND: Protein kinase RNA (PKR-regulated) is a double-stranded RNA activated protein kinase whose expression is induced by interferon. The role of PKR in cell growth regulation is controversial, with some studies supporting a tumour suppressor function and others suggesting a growth-promoting role. However, it is possible that the function of PKR varies with the type of cancer in question. METHODS: We report here a detailed study to evaluate the function of PKR in hepatitis C virus genotype 4 (HCV-4) infected patients. PKR gene was quantitated in HCV related malignant and non-malignant liver tissue by RT-PCR technique and the association of HCV core and PKR was assessed. RESULTS: If PKR functions as a tumour suppressor in this system, its expression would be higher in chronic hepatitis tissues. On the contrary our study demonstrated the specific association of HCV-4 with PKR expressed in hepatocellular carcinoma (HCC) tissues, leading to an increased gene expression of the kinase in comparison to chronic hepatitis tissues. This calls into question its role as a tumour suppressor and suggests a positive regulatory role of PKR in growth control of liver cancer cells. One limitation of most of other studies is that they measure the levels rather than the quantitation of PKR gene. CONCLUSION: The findings suggest that PKR exerts a positive role in cell growth control of HCV-4 related HCC, obtaining a cut-off value for PKR expression in liver tissue provides the first evidence for existence of a viral activator of PKR. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1267826959682402.  相似文献   

19.
Monitoring of lung tumour cell growth in artificial membranes   总被引:1,自引:0,他引:1  
Morbidity of many tumour types is associated with invasion of tumour cells through the basement membrane and subsequent metastasis to vital organs. Tumour invasion is frequently detected late on as many patients present with advanced disease. The method of detecting invasion is through conventional histological staining techniques, which are time consuming and require processing of the sample. This can affect interpretation of the results. In this study, a new imaging technique, optical coherence tomography (OCT), was used to monitor lung tumour cell growth in two artificial membranes composed of either collagen type I or Matrigel. In parallel, standard histological section analysis was performed to validate the accuracy of the monitoring by OCT. Cross-sectional images from OCT revealed that lung tumour cells infiltrated only when low cell seeding density (5 x 10(5)) and low collagen concentration (1.5 mg/ml) were combined. The cells could be easily differentiated from the artificial membranes and appeared as either a brighter layer on the top of the membrane or brighter foci embedded within the darker membrane. These cell-membrane morphologies matched remarkably to the standard histological section images. Our results suggest that OCT has a great potential to become a useful tool for fast and robust imaging of cell growth in vivo and as a potential assessment of cell invasion.  相似文献   

20.
Tumour cells usually live in an environment formed by other host cells, extra-cellular matrix and extra-cellular liquid. Cells duplicate, reorganise and deform while binding each other due to adhesion molecules exerting forces of measurable strength. In this paper, a macroscopic mechanical model of solid tumour is investigated which takes such adhesion mechanisms into account. The extracellular matrix is treated as an elastic compressible material, while, in order to define the relationship between stress and strain for the cellular constituents, the deformation gradient is decomposed in a multiplicative way distinguishing the contribution due to growth, to cell rearrangement and to elastic deformation. On the basis of experimental results at a cellular level, it is proposed that at a macroscopic level there exists a yield condition separating the elastic and dissipative regimes. Previously proposed models are obtained as limit cases, e.g. fluid-like models are obtained in the limit of fast cell reorganisation and negligible yield stress. A numerical test case shows that the model is able to account for several complex interactions: how tumour growth can be influenced by stress, how and where it can generate cell reorganisation to release the stress level, how it can lead to capsule formation and compression of the surrounding tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号