首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ongoing bioethical debate on pharmacological cognitive enhancement (PCE) in healthy individuals is often legitimated by the assumption that PCE will widely spread and become desirable for the general public in the near future. This assumption was questioned as PCE is not equally save and effective in everyone. Additionally, it was supposed that the willingness to use PCE is strongly personality-dependent likely preventing a broad PCE epidemic. Thus, we investigated whether the cognitive performance and personality of healthy individuals with regular nonmedical methylphenidate (MPH) use for PCE differ from stimulant-naïve controls. Twenty-five healthy individuals using MPH for PCE were compared with 39 age-, sex-, and education-matched healthy controls regarding cognitive performance and personality assessed by a comprehensive neuropsychological test battery including social cognition, prosocial behavior, decision-making, impulsivity, and personality questionnaires. Substance use was assessed through self-report in an interview and quantitative hair and urine analyses. Recently abstinent PCE users showed no cognitive impairment but superior strategic thinking and decision-making. Furthermore, PCE users displayed higher levels of trait impulsivity, novelty seeking, and Machiavellianism combined with lower levels of social reward dependence and cognitive empathy. Finally, PCE users reported a smaller social network and exhibited less prosocial behavior in social interaction tasks. In conclusion, the assumption that PCE use will soon become epidemic is not supported by the present findings as PCE users showed a highly specific personality profile that shares a number of features with illegal stimulant users. Lastly, regular MPH use for PCE is not necessarily associated with cognitive deficits.  相似文献   

2.
An anaerobic microbial consortium able to biodegrade saturation levels of perchloroethylene (PCE) in a column containing a source zone of PCE was examined phylogenetically to determine microbial community structure and spatial variation in relation to the PCE source. The consortium was comprised of at least 34 members with 7 organisms sharing affiliations with known respiratory or cometabolic dechlorinators. Seven other organisms had their closest phylogenetic relative detected in other environments containing chlorinated compounds. Based on denaturing gradient gel electrophoresis, significant Bacteria were Dehalococcoides ethenogenes, Shewanella putrefaciens, and an Acetobacterium species. Spatial variations in community structure of the consortium relative to the PCE source zone were observed. A Pseudomonas species was predominant in a zone 30 cm from the PCE source. A Methanothrix species was predominant at points over 85 cm from the source zone. A Trichlorobacter species was detected where PCE concentrations were highest, up to 85 cm from the PCE source, whereas D. ethenogenes was ubiquitous to over 128 cm from the PCE source.  相似文献   

3.
We have been studying an anaerobic enrichment culture which, by using methanol as an electron donor, dechlorinates tetrachloroethene (PCE) to vinyl chloride and ethene. Our previous results indicated that H2 was the direct electron donor for rductive dechlorination of PCE by the methanol-PCE culture. Most-probable-number counts performed on this culture indicated low numbers (< or equal to 10(4)/ml)) of methanogens and PCE dechlorinators using methanol and high numbers (> or equal to 10(6)/ml)) of sulfidogens, methanol-utilizing acetogens, fermentative heterotrophs, and PCE dechlorinators using H2. An anaerobic H2-PCE enrichment culture was derived from a 10(-6) dilution of the methanol-PCE culture. This H2-PCE culture used PCE at increasing rates over time when transferred to fresh medium and could be transferred indefinitely with H2 as the electron donor for the PCE dechlorination, indicating that H2-PCE can serve as an electron donor-acceptor pair for energy conservation and growth. Sustained PCE dechlorination by this culture was supported by supplementation with 0.05 mg of vitamin B12 per liter, 25% (vol/vol) anaerobic digestor sludge supernatant, and 2 mM acetate, which presumably served as a carbon source. Neither methanol nor acetate could serve as an electron donor for dechlorination by the H2-PCE culture, and it did not produce CH4 or acetate from H2-CO2 or methanol, indicating the absence of methanogenic and acetogenic bacteria. Microscopic observatios of the pruified H2-PCE culture showed only two major morphotypes: irregular cocci and small rods.  相似文献   

4.
A recombinant strain of Escherichia coli (JM109/pBZ1260) expressing constitutively toluene-o-xylene monooxygenase (ToMO) of Pseudomonas stutzeri OX1 degraded binary mixtures (100 microM each) of tetrachloroethylene (PCE) with either trichloroethylene (TCE), 1,1-dichloroethylene (1,1-DCE), cis-dichloroethylene (cis-DCE), trans-1,2-dichloroethylene (trans-DCE), or vinyl chloride (VC). PCE degradation was 8-20% for these binary mixtures, while TCE and trans-DCE with PCE were degraded at 19%, 1,1-DCE at 37%, cis-DCE at 97%, and VC at 27%. The host P. stutzeri OXI was also found to degrade binary mixtures of PCE/TCE, PCE/cis-DCE, and PCE/VC when induced with toluene. Degradation of quaternary mixtures of PCE/TCE/trans-DCE/VC and PCE/TCE/cis-DCE/VC by JM109/pBZ1260 were also investigated as well as mixtures of PCE/TCE/trans-DCE/1,1-DCE/cis-DCE/VC; when all the chlorinated compounds were present, the best degradation occurred with 24-51% removal of each. For these degradation reactions, 39-85% of the stoichiometric chloride expected from complete degradation of the chlorinated ethenes was detected. The time course of PCE/TCE/1,1-DCE degradation was also measured for a mixture of 8, 17, and 6 microM, respectively; initial degradation rates were 0.015, 0.023. and 0.029 nmol/min x mg protein, respectively. This indicates that for the first time an aerobic enzyme can degrade mixtures of all chlorinated ethenes, including the once--so it was believed-completely recalcitrant PCE.  相似文献   

5.
This study investigates the effect of Fenton reagent on the structure and function of a microbial consortium during the anaerobic degradation of hexachloroethane (HCA) and tetrachloroethene (PCE). Anaerobic biodegradation tests of HCA and PCE were performed in batch reactors using an anaerobic microbial consortium that had been exposed to Fenton reagent for durations of 0, 0.04, and 2 days and then allowed to recover for periods of 0, 3, and 7 days. The bacterial community structure was determined using culture-independent methods of 16S rRNA gene sequencing and automated ribosomal intergenic spacer analysis. Larger recovery periods partially restored the microbial community structure; however, the recovery periods did not restore the loss of ability to degrade HCA and PCE in cultures shocked for 0.04 days, and PCE in cultures shocked for 2 days. Overall the exposure to Fenton reagent had an impact on bacterial community structure with downstream effects on HCA and PCE degradation. This study highlights that the impacts of short- and long-term shocks on microbial community structure and function can be correlated using a combination of biodegradation tests and community structure analysis tools.  相似文献   

6.
Impaired attention is the hallmark consequence of prenatal cocaine exposure (PCE), affecting brain development, learning, memory and social adaptation starting at an early age. To date, little is known about the brain structures and neurochemical processes involved in this effect. Through focusing on the visual system and employing zebrafish as a model, we show that PCE reduces expression of dopamine receptor Drd1, with levels reduced in the optic tectum and other brain regions, but not the telencephalon. Organism‐wide, PCE results in a 1.7‐fold reduction in the expression of the dopamine transporter (dat), at baseline. Acute cocaine administration leads to a 2‐fold reduction in dat in drug‐naive larvae but not PCE fish. PCE sensitizes animals to an anxiogenic‐like behavioral effect of acute cocaine, bottom‐dwelling, while loss of DAT due to genetic knockout (DATKO) leads to bottom‐dwelling behavior at baseline. Neuronal calcium responses to visual stimuli in both PCE and DATKO fish show tolerance to acute cocaine in the principal regions of visual attention, the telencephalon and optic tectum. The zebrafish model can provide a sensitive assay by which to elucidate the molecular mechanisms and brain region‐specific consequences of PCE, and facilitate the search for effective therapeutic solutions.  相似文献   

7.
Anaerobic bacteria that dechlorinate perchloroethene.   总被引:14,自引:10,他引:4       下载免费PDF全文
In this study, we identified specific cultures of anaerobic bacteria that dechlorinate perchlorethene (PCE). The bacteria that significantly dechlorinated PCE were strain DCB-1, an obligate anaerobe previously shown to dechlorinate chlorobenzoate, and two strains of Methanosarcina. The rate of PCE dechlorination by DCB-1 compared favorably with reported rates of trichloroethene bio-oxidation by methanotrophs. Even higher PCE dechlorination rates were achieved when DCB-1 was grown in a methanogenic consortium.  相似文献   

8.
Anaerobic bacteria that dechlorinate perchloroethene   总被引:11,自引:0,他引:11  
In this study, we identified specific cultures of anaerobic bacteria that dechlorinate perchlorethene (PCE). The bacteria that significantly dechlorinated PCE were strain DCB-1, an obligate anaerobe previously shown to dechlorinate chlorobenzoate, and two strains of Methanosarcina. The rate of PCE dechlorination by DCB-1 compared favorably with reported rates of trichloroethene bio-oxidation by methanotrophs. Even higher PCE dechlorination rates were achieved when DCB-1 was grown in a methanogenic consortium.  相似文献   

9.
10.

The objectives of this study were to investigate the biodegradation of gaseous trichloroethylene (TCE) and tetrachloroethylene (PCE) in an activated carbon biofilter inoculated with phenol-oxidizing microorganisms and to study the effect of surfactant concentration below its critical micelle concentration (CMC) on the removal efficiency of TCE or PCE. For the enhanced biofiltration, a biodegradable nonionic surfactant was added to biofilters. The investigation was conducted using two specially built stainless steel biofilters, one for TCE and the other for PCE.

The removal efficiency of gaseous TCE was 100% at a residence time of 7?min and its average inlet concentration of 85?ppm. For gaseous PCE, 100% removal efficiency was obtained at residence times of 4–7?min and its average concentrations of 47–84?ppm. It was found that adsorption by GAC and absorption by influent nutrient solution were a minor or negligible mechanism for TCE and PCE removal in the activated carbon biofilters. The TCE and PCE activated carbon biofilter performances were observed to be a little enhanced but not significantly, when the surfactant was introduced at concentrations of 5–50?mg/l. Surfactant concentrations of 5–15?mg/l were found to be an optimal dosage in the biofilter operation for avoiding significant residual in the effluent from biofilters.

  相似文献   

11.
A biological process for remediation of groundwater contaminated with tetrachloroethylene (PCE) and trichloroethylene (TCE) can only be applied if the transformation products are environmentally acceptable. Studies with enrichment cultures of PCE- and TCE-degrading microorganisms provide evidence that, under methanogenic conditions, mixed cultures are able to completely dechlorinate PCE and TCE to ethylene, a product which is environmentally acceptable. Radiotracer studies with [14C]PCE indicated that [14C]ethylene was the terminal product; significant conversion to 14CO2 or 14CH4 was not observed. The rate-limiting step in the pathway appeared to be conversion of vinyl chloride to ethylene. To sustain reductive dechlorination of PCE and TCE, it was necessary to supply an electron donor; methanol was the most effective, although hydrogen, formate, acetate, and glucose also served. Studies with the inhibitor 2-bromoethanesulfonate suggested that methanogens played a key role in the observed biotransformations of PCE and TCE.  相似文献   

12.
A biological process for remediation of groundwater contaminated with tetrachloroethylene (PCE) and trichloroethylene (TCE) can only be applied if the transformation products are environmentally acceptable. Studies with enrichment cultures of PCE- and TCE-degrading microorganisms provide evidence that, under methanogenic conditions, mixed cultures are able to completely dechlorinate PCE and TCE to ethylene, a product which is environmentally acceptable. Radiotracer studies with [14C]PCE indicated that [14C]ethylene was the terminal product; significant conversion to 14CO2 or 14CH4 was not observed. The rate-limiting step in the pathway appeared to be conversion of vinyl chloride to ethylene. To sustain reductive dechlorination of PCE and TCE, it was necessary to supply an electron donor; methanol was the most effective, although hydrogen, formate, acetate, and glucose also served. Studies with the inhibitor 2-bromoethanesulfonate suggested that methanogens played a key role in the observed biotransformations of PCE and TCE.  相似文献   

13.
The extent of tetrachloroethene (PCE) dechlorination in two chemostats was evaluated as a function of hydraulic retention time (HRT). The inoculum of these chemostats was from an upflow anaerobic sludge blanket (UASB) reactor that rapidly converts PCE to vinyl chloride (VC) and ethene. When the HRT was 2.9 days, PCE was converted only to cis-dichloroethene (cDCE). When the HRT was 11 days, the end products were VC and ethene. Further studies showed that the dechlorinating microbial community in the UASB reactor contained two distinct populations, one of which converted PCE to cDCE and the other cDCE to VC and ethene. Methanogenic activity was very low in these cultures. The cDCE dechlorinating culture apparently has a lower growth rate than the PCE dechlorinating culture, and as a result, at a shorter HRT, the cDCE dechlorinating culture was washed out from the system leading to incomplete dechlorination of PCE. Both enrichment cultures used pyruvate or hydrogen as electron donors for dechlorination. Acetate was the carbon source (but not energy source) when hydrogen was used. Both cultures had undefined nutrient requirements and needed supplements of cell extract obtained from the mixed culture in the UASB reactor. However, the two cultures were different in their response to the addition of an inhibitor of methanogenesis (2-bromoethanesulfonate [BES]). BES inhibited the dechlorinating activity of the enriched cDCE dechlorinating culture, but had no influence on the PCE dechlorinating culture. Preliminary studies on BES inhibition are presented.  相似文献   

14.
Mixed groundwater contaminations by chlorinated volatile organic compounds (VOC) cause environmental hazards if contaminated groundwater discharges into surface waters and river floodplains. Constructed wetlands (CW) or engineered natural wetlands provide a promising technology for the protection of sensitive water bodies. We adapted a constructed wetland able to treat monochlorobenzene (MCB) contaminated groundwater to a mixture of MCB and tetrachloroethene (PCE), representing low and high chlorinated model VOC. Simultaneous treatment of both compounds was efficient after an adaptation time of 2 1/2 years. Removal of MCB was temporarily impaired by PCE addition, but after adaptation a MCB concentration decrease of up to 64% (55.3 micromol L(-1)) was observed. Oxygen availability in the rhizosphere was relatively low, leading to sub-optimal MCB elimination but providing also appropriate conditions for PCE dechlorination. PCE and metabolites concentration patterns indicated a very slow system adaptation. However, under steady state conditions complete removal of PCE inflow concentrations of 10-15 micromol L(-1) was achieved with negligible concentrations of chlorinated metabolites in the outflow. Recovery of total dechlorination metabolite loads corresponding to 100%, and ethene loads corresponding to 30% of the PCE inflow load provided evidence for complete reductive dechlorination, corroborated by the detection of Dehalococcoides sp.  相似文献   

15.
Hwu CS  Lu CJ 《Biotechnology letters》2008,30(9):1589-1593
Influences of hydraulic retention time (HRT) on dechlorination of tetrachloroethene (PCE) were investigated in an upflow anaerobic sludge blanket (UASB) reactor inoculated with anaerobic granular sludge non-pre-exposed to chlorinated compounds. PCE was introduced into the reactor at a loading rate of 3 mg/l d. PCE removal increased from 51 +/- 5% to 87 +/- 3% when HRT increased from 1 to 4 d, corresponding to an increase in the PCE biotransformation rate from 10.5 +/- 2.3 to 21.3 +/- 3.7 mumol/d. A higher ethene production rate, 0.9 +/- 0.2 mumol/d, was attained without accumulation of dichloroethenes at the HRT of 4 d. Dehalococcoides-like species were detected in sludge granules by fluorescence in situ hybridization, with signal strength in proportion to the extent of PCE dechlorination.  相似文献   

16.
Tetrachloroethylene (PCE) is a toxic compound essentially used as a degreasing and dry-cleaning solvent. A methanogenic and sulfate-reducing consortium that dechlorinates and mineralizes high concentrations of PCE was derived from anaerobically digested sludge obtained from a waste water treatment plant (Bourg-en-Bresse, France). A methanogenic bacterium, strain FR, was isolated from this acclimated consortium. On the basis of morphological and physiological characteristics, strain FR was classified in the genus of Methanosarcina. Phylogeny analysis with the 16S rRNA gene sequence revealed that strain FR is highly related to Methanosarcina mazei and Methanosarcina frisia (99.6 and 99.5% identity, respectively). High concentrations (50-87 microM) of PCE were completely dechlorinated by strain FR cultures at the rate of 76 nM-mg protein(-1).day(-1). PCE dechlorination produced a nonidentified compound. The tracer experiments with [13C]PCE revealed that the product was nonchlorinated. Dechlorination of PCE to trichloroethylene was still active in the presence of boiled cell extract of the strain FR. However, no further dechlorination was observed. This result suggests that a cofactor rather than an enzymatic system is responsible for the first dechlorination of PCE. Dechlorination-active fractions purified from cell extracts on a XAD-4 column revealed the presence of F(420), F(430), and cobamides cofactors. This is the first report of the isolation of a methanogenic bacterium with the ability to dechlorinate high concentrations of PCE to a nonchlorinated product.  相似文献   

17.
Abstract Eight homoacetogenic strains of the genera Acetobacterium, Clostridium and Sporomusa were tested for their ability to dechlorinate tetrachloroethylene (perchloroethene, PCE). Of the organisms tested only Sporomusa ovata was able to reductively dechlorinate PCE with methanol as an electron donor. Resting cells of S. ovata reductively dechlorinated PCE at a rate of 9.8 nmol h−1 (mg protein)−1 to trichloroethylene (TCE) as the sole product. The dechlorination activity depended on concomitant acetogenesis from methanol and CO2. Cell-free extracts of S. ovata, Clostridium formicoaceticum, Acetobacterium woodii , and the methanogenic bacterium Methanolobus tindarius transformed PCE to TCE with Ti(III) or carbon monoxide as electron donors. Corrinoids were shown in S. ovata to be involved in the dechlorination reaction of PCE to TCE as evident from the reversible inhibition with propyl iodide. Rates of dechlorination followed a pseudo-first-order kinetic.  相似文献   

18.
Tetrachloroethylene (perchloroethylene, PCE) is a suspected carcinogen and a common groundwater contaminant. Although PCE is highly resistant to aerobic biodegradation, it is subject to reductive dechlorination reactions in a variety of anaerobic habitats. The data presented here clearly establish that axenic cultures of Methanosarcina sp. strain DCM dechlorinate PCE to trichloroethylene and that this is a biological reaction. Growth on methanol, acetate, methylamine, and trimethylamine resulted in PCE dechlorination. The reductive dechlorination of PCE occurred only during methanogenesis, and no dechlorination was noted when CH4 production ceased. There was a clear dependence of the extent of PCE dechlorination on the amount of methanogenic substrate (methanol) consumed. The amount of trichloroethylene formed per millimole of CH4 formed remained essentially constant for a 20-fold range of methanol concentrations and for growth on acetate, methylamine, and trimethylamine. These results suggest that the reducing equivalents for PCE dechlorination are derived from CH4 biosynthesis and that the extent of chloroethylene dechlorination can be enhanced by stimulating methanogenesis. It is proposed that electrons transferred during methanogenesis are diverted to PCE by a reduced electron carrier involved in methane formation.  相似文献   

19.
Gaseous trichloroethylene (TCE) and tetrachloroethylene (PCE) are emitted in the treatment of contaminated groundwaters with air stripping and/or the remediation of contaminated soils using vapor extraction techniques. This study investigated the application of biofiltration using cometabolic process to remediate gaseous TCE and PCE that are highly recalcitrant to biodegradation. The investigation was conducted using two specially built stainless steel columns, one for TCE and the other for PCE, packed with granular activated carbon (GAC) coated with phenol-oxidizing microorganisms at residence times of 1.5–7 min. Two activated carbon biofilters were fed with phenol at a specific concentration along with a nutrient solution to optimize the various catalyzed biochemical reactions. The removal efficiency of gaseous TCE was 100% at a residence time of 7 min and average inlet concentration of 85 ppm. For gaseous PCE, 100% removal efficiency was obtained at residence times of 4–7 min and average concentrations of 47–84 ppm. It was found that phenol fed to the biofilters was completely utilized by the phenol-oxidizing microorganisms, as an indirect indicator of the microorganisms growth in the biofilters, throughout the period of the biofilter operation. Transformation yields of gaseous TCE and PCE were about 8–48 g of TCE/g of phenol and 6–25 g of PCE/g of phenol, depending on different residence times. It was found that adsorption by GAC and absorption by the influent nutrient solution were a minor negligible mechanism for TCE and PCE removal in the activated carbon biofilters.  相似文献   

20.
Spectral and temporal features of human infant crying may detect neurobehavioral effects of prenatal cocaine exposure (PCE). Finding comparable measures of rodent ultrasonic vocalizations (USVs) would promote translational analyses by controlling the effects of correlated variables that confound human studies. To this end, two studies examined the sensitivity of similar acoustic structures in human infant and rat pup vocalizations to effects of PCE. In Study 1, cry sounds of 107 one month-old infants were spectrum analyzed to create a novel set of measures and to detect the presence of hyperphonation - a qualitative shift to an atypically high fundamental frequency (basic pitch) associated with neurobehavioral insult. Infants with PCE were compared to infants with prenatal polydrug-exposure (PPE) without cocaine and with infants in a standard comparison (SC) group with no prenatal drug exposure. In Study 2, USVs of 118 five day-old rat pups with either PCE, prenatal saline exposure or no prenatal exposures were spectrum analyzed to detect the presence of frequency shifts – acoustic features that have a frequency waveform similar to that of hyperphonation. Results of study 1 showed PCE had two sets of sex-dependent effects on human infants: PCE males had higher pitched cries with more dysphonation (turbulence); PCE females had longer pauses between fewer cry sounds that were of lower amplitude than comparison groups. PCE and PPE infants had more cries with hyperphonation than SC infants. In study 2, PCE pups had a greater percentage of USVs with shift in the acoustic structure than pups in the two control groups. As such, the novel measures of human infant crying and rat pup USVs were sensitive to effects of PCE. These studies provide the first known translational analysis of similar acoustic structures of vocalizations in two species to detect adverse effects of prenatal drug exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号