首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structures of RsrI DNA methyltransferase (M.RsrI) bound to the substrate S-adenosyl-l-methionine (AdoMet), the product S-adenosyl-l-homocysteine (AdoHcy), the inhibitor sinefungin, as well as a mutant apo-enzyme have been determined by x-ray crystallography. Two distinct binding configurations were observed for the three ligands. The substrate AdoMet adopts a bent shape that directs the activated methyl group toward the active site near the catalytic DPPY motif. The product AdoHcy and the competitive inhibitor sinefungin bind with a straight conformation in which the amino acid moiety occupies a position near the activated methyl group in the AdoMet complex. Analysis of ligand binding in comparison with other DNA methyltransferases reveals a small, common subset of available conformations for the ligand. The structures of M.RsrI with the non-substrate ligands contained a bound chloride ion in the AdoMet carboxylate-binding pocket, explaining its inhibition by chloride salts. The L72P mutant of M.RsrI is the first DNA methyltransferase structure without bound ligand. With respect to the wild-type protein, it had a larger ligand-binding pocket and displayed movement of a loop (223-227) that is responsible for binding the ligand, which may account for the weaker affinity of the L72P mutant for AdoMet. These studies show the subtle changes in the tight specific interactions of substrate, product, and an inhibitor with M.RsrI and help explain how each displays its unique effect on the activity of the enzyme.  相似文献   

2.
1. Cytoplasmic acetoacetyl-CoA thiolase was highly purified in good yield from rat liver extracts. 2. Mg(2+) inhibits the rate of acetoacetyl-CoA thiolysis but not the rate of synthesis of acetoacetyl-CoA. Measurement of the velocity of thiolysis at varying Mg(2+) but fixed acetoacetyl-CoA concentrations gave evidence that the keto form of acetoacetyl-CoA is the true substrate. 3. Linear reciprocal plots of velocity of acetoacetyl-CoA synthesis against acetyl-CoA concentration in the presence or absence of desulpho-CoA (a competitive inhibitor) indicate that the kinetic mechanism is of the Ping Pong (Cleland, 1963) type involving an acetyl-enzyme covalent intermediate. In the presence of CoA the reciprocal plots are non-linear, becoming second order in acetyl-CoA (the Hill plot shows a slope of 1.7), but here this does not imply co-operative phenomena. 4. In the direction of acetoacetyl-CoA thiolysis CoA is a substrate inhibitor, competing with acetoacetyl-CoA, with a K(i) of 67mum. Linear reciprocal plots of initial velocity against concentration of mixtures of acetoacetyl-CoA plus CoA confirmed the Ping Pong mechanism for acetoacetyl-CoA thiolysis. This method of investigation also enabled the determination of all the kinetic constants without complication by substrate inhibition. When saturated with substrate the rate of acetoacetyl-CoA synthesis is 0.055 times the rate of acetoacetyl-CoA thiolysis. 5. Acetoacetyl-CoA thiolase was extremely susceptible to inhibition by an excess of iodoacetamide, but this inhibition was completely abolished after preincubation of the enzyme with a molar excess of acetoacetyl-CoA. This result was in keeping with the existence of an acetyl-enzyme. Acetyl-CoA, in whose presence the overall reaction could proceed, gave poor protection, presumably because of the continuous turnover of acetyl-enzyme in this case. 6. The kinetic mechanism of cytoplasmic thiolase is discussed in terms of its proposed role in steroid biosynthesis.  相似文献   

3.
Human purine nucleoside phosphorylase (PNP) is a homotrimer, containing three nonconserved tryptophan residues at positions 16, 94, and 178, all remote from the catalytic site. The Trp residues were replaced with Tyr to produce Trp-free PNP (Leuko-PNP). Leuko-PNP showed near-normal kinetic properties. It was used (1) to determine the tautomeric form of guanine that produces strong fluorescence when bound to PNP, (2) for thermodynamic binding analysis of binary and ternary complexes with substrates, (3) in temperature-jump perturbation of complexes for evidence of multiple conformational complexes, and (4) to establish the ionization state of a catalytic site tyrosine involved in phosphate nucleophile activation. The (13)C NMR spectrum of guanine bound to Leuko-PNP, its fluorescent properties, and molecular orbital electronic transition analysis establish that its fluorescence originates from the lowest singlet excited state of the N1H, 6-keto, N7H guanine tautomer. Binding of guanine and phosphate to PNP and Leuko-PNP are random, with decreased affinity for formation of ternary complexes. Pre-steady-state kinetics and temperature-jump studies indicate that the ternary complex (enzyme-substrate-phosphate) forms in single binding steps without kinetically significant protein conformational changes as monitored by guanine fluorescence. Spectral changes of Leuko-PNP upon phosphate binding establish that the hydroxyl of Tyr88 is not ionized to the phenolate anion when phosphate is bound. A loop region (residues 243-266) near the purine base becomes highly ordered upon substrate/inhibitor binding. A single Trp residue was introduced into the catalytic loop of Leuko-PNP (Y249W-Leuko-PNP) to determine effects on catalysis and to introduce a fluorescence catalytic site probe. Although Y249W-Leuko-PNP is highly fluorescent and catalytically active, substrate binding did not perturb the fluorescence. Thermodynamic boxes, constructed to characterize the binding of phosphate, guanine, and hypoxanthine to native, Leuko-, and Y249W-Leuko-PNPs, establish that Leuko-PNP provides a versatile protein scaffold for introduction of specific Trp catalytic site probes.  相似文献   

4.
1. Two mitochondrial forms of acetoacetyl-CoA thiolases designated as enzyme A and enzyme B were crystallized from ox liver. They could be shown to be homogenous by polyacrylamide gel electrophoresis. 2. In direction of acetoacetyl-CoA cleavage enzyme A shows a double competitive substrate inhibition when acetoacetyl-CoA is varied at different fixed CoA concentrations. With enzyme B a parallel kinetic pattern is obtained when acetoacetyl-CoA is varied at different fixed CoA concentrations. In direction of acetoacetyl-CoA synthesis both enzymes show linear reciprocal plots of initial velocities against acetyl-CoA concentrations in absence of CoA. These initial velocity kinetics in the forward and in the reverse direction are in accordance with a ping-pong mechanism of reaction for both enzymes involving an acetyl-S-enzyme as intermediate. 3. Under saturating concentrations of substrate, the ratios of acetoacetyl-CoA synthesis/aceto-acetyl-CoA cleavage is 0.31 for enzyme A and 0.08 for enzyme B. The maximum velocity in direction of acetoacetyl-CoA synthesis of enzymes A and B are 0.43 mumol X min-1 X unit thiolase-1 and 0.10 mumol X min-1 X unit thiolase-1, respectively. 4. Both enzymes show nearly the same affinity for acetyl-CoA. The Km values are 91 muM (enzyme A) and 80 muM (enzyme B). 5. Coenzyme A and acetoacetyl-CoA both act as inhibitors in direction of acetoacetyl-CoA synthesis: coenzyme A is a nonlinear competitive inhibitor of both enzymes. Acetoacetyl-CoA exerts a negative cooperativity on enzyme A (nH = 0.63) and is a competitive inhibitor for enzyme B (Ki = 1.6 muM). 6. The catalytic and regulatory properties of the acetoacetyl-CoA thiolases A and B are discussed in terms of their proposed role in regulating ketogenesis. Intracellular fluctuations of acetoacetyl-CoA/3-hydroxybutyryl-CoA ratios, resulting in a suspension of inhibition of both enzymes at high NADH/NAD ratios, are postulated as a control mechanism of ketogenesis in addition to mechanisms already known.  相似文献   

5.
The crystal structure of the family GH-51 alpha- l-arabinofuranosidase from Thermobacillus xylanilyticus has been solved as a seleno-methionyl derivative. In addition, the structure of an inactive mutant Glu176Gln is presented in complex with a branched pentasaccharide, a fragment of its natural substrate xylan. The overall structure shows the two characteristic GH-51 domains: a catalytic domain that is folded into a (beta/alpha) 8-barrel and a C-terminal domain that displays jelly roll architecture. The pentasaccharide is bound in a groove on the surface of the enzyme, with the mono arabinosyl branch entering a tight pocket harboring the catalytic dyad. Detailed analyses of both structures and comparisons with the two previously determined structures from Geobacillus stearothermophilus and Clostridium thermocellum reveal important details unique to the Thermobacillus xylanilyticus enzyme. In the absence of substrate, the enzyme adopts an open conformation. In the substrate-bound form, the long loop connecting beta-strand 2 to alpha-helix 2 closes the active site and interacts with the substrate through residues His98 and Trp99. The results of kinetic and fluorescence titration studies using mutants underline the importance of this loop, and support the notion of an interaction between Trp99 and the bound substrate. We suggest that the changes in loop conformation are an integral part of the T. xylanilyticus alpha- l-arabinofuranosidase reaction mechanism, and ensure efficient binding and release of substrate.  相似文献   

6.
Lee M  Maher MJ  Christopherson RI  Guss JM 《Biochemistry》2007,46(37):10538-10550
Dihydroorotase (DHOase) catalyzes the reversible cyclization of N-carbamyl-l-aspartate (CA-asp) to l-dihydroorotate (DHO) in the de novo biosynthesis of pyrimidine nucleotides. Two different conformations of the surface loop (residues 105-115) were found in the dimeric Escherichia coli DHOase crystallized in the presence of DHO (PDB code 1XGE). The loop asymmetry reflected that of the active site contents of the two subunits: the product, DHO, was bound in the active site of one subunit and the substrate, CA-asp, in the active site of the other. In the substrate- (CA-asp-) bound subunit, the surface loop reaches in toward the active site and makes hydrogen bonds with the bound CA-asp via two threonine residues (Thr109 and Thr110), whereas the loop forms part of the surface of the protein in the product- (DHO-) bound subunit. To investigate the relationship between the structural states of this loop and the catalytic mechanism of the enzyme, a series of mutant DHOases including deletion of the flexible loop were generated and characterized kinetically and structurally. Disruption of the hydrogen bonds between the surface loop and the substrate results in significant loss of catalytic activity. Furthermore, structures of these mutants with low catalytic activity have no interpretable electron density for parts of the flexible loop. The structure of the mutant (Delta107-116), in which the flexible loop is deleted, shows only small differences in positions of other substrate binding residues and in the binuclear zinc center compared with the native structure, yet the enzyme has negligible activity. The kinetic and structural analyses suggest that Thr109 and Thr110 in the flexible loop provide productive binding of substrate and stabilize the transition-state intermediate, thereby increasing catalytic activity.  相似文献   

7.
Inosine triphosphatase (ITPA) is a ubiquitous key regulator of cellular non-canonical nucleotide levels. It breaks down inosine and xanthine nucleotides generated by deamination of purine bases. Its enzymatic action prevents accumulation of ITP and reduces the risk of incorporation of potentially mutagenic inosine nucleotides into nucleic acids. Here we describe the crystal structure of human ITPA in complex with its prime substrate ITP, as well as the apoenzyme at 2.8 and 1.1A, respectively. These structures show for the first time the site of substrate and Mg2+ coordination as well as the conformational changes accompanying substrate binding in this class of enzymes. Enzyme substrate interactions induce an extensive closure of the nucleotide binding grove, resulting in tight interactions with the base that explain the high substrate specificity of ITPA for inosine and xanthine over the canonical nucleotides. One of the dimer contact sites is made up by a loop that is involved in coordinating the metal ion in the active site. We predict that the ITPA deficiency mutation P32T leads to a shift of this loop that results in a disturbed affinity for nucleotides and/or a reduced catalytic activity in both monomers of the physiological dimer.  相似文献   

8.
The active sites of caspases are composed of four mobile loops. A loop (L2) from one half of the dimer interacts with a loop (L2′) from the other half of the dimer to bind substrate. In an inactive form, the two L2′ loops form a cross‐dimer hydrogen‐bond network over the dimer interface. Although the L2′ loop has been implicated as playing a central role in the formation of the active‐site loop bundle, its precise role in catalysis has not been shown. A detailed understanding of the active and inactive conformations is essential to control the caspase function. We have interrogated the contributions of the residues in the L2′ loop to catalytic function and enzyme stability. In wild‐type and all mutants, active‐site binding results in substantial stabilization of the complex. One mutation, P214A, is significantly destabilized in the ligand‐free conformation, but is as stable as wild type when bound to substrate, indicating that caspase‐7 rests in different conformations in the absence and presence of substrate. Residues K212 and I213 in the L2′ loop are shown to be essential for substrate‐binding and thus proper catalytic function of the caspase. In the crystal structure of I213A, the void created by side‐chain deletion is compensated for by rearrangement of tyrosine 211 to fill the void, suggesting that the requirements of substrate‐binding are sufficiently strong to induce the active conformation. Thus, although the L2′ loop makes no direct contacts with substrate, it is essential for buttressing the substrate‐binding groove and is central to native catalytic efficiency.  相似文献   

9.
UDP-glucose is an R-state inhibitor of glycogen phosphorylase b, competitive with the substrate, glucose 1-phosphate and noncompetitive with the allosteric activator, AMP. Diffusion of 100 mM UDP-glucose into crystals of phosphorylase b resulted in a difference Fourier synthesis at 0.3-nm resolution that showed two peaks: (a) binding at the allosteric site and (b) binding at the catalytic site. At the allosteric site the whole of the UDP-glucose molecule can be located. It is in a well defined folded conformation with its uracil portion in a similar position to that observed for the adenine of AMP. The uracil and the glucose moieties stack against the aromatic side chains of Tyr-75 and Phe-196, respectively. The phosphates of the pyrophosphate component interact with Arg-242, Arg-309 and Arg-310. At the catalytic site, the glucose-1-P component of UDP-glucose is firmly bound in a position similar to that observed for glucose 1-phosphate. The pyrophosphate is also well located with the glucose phosphate interacting with the main-chain NH groups at the start of the glycine-loop alpha helix and the uridine phosphate interacting through a water molecule with the 5'-phosphate of the cofactor pyridoxal phosphate and with the side chains of residues Tyr-573, Lys-574 and probably Arg-569. However the position of the uridine cannot be located although analysis by thin-layer chromatography showed that no degradation had taken place. Binding of UDP-glucose to the catalytic site promotes extensive conformational changes. The loop 279-288 which links the catalytic site to the nucleoside inhibitor site is displaced and becomes mobile. Concomitant movements of residues His-571, Arg-569, and the loop 378-383, together with the major loop displacement, result in an open channel to the catalytic site. Comparison with other structural results shows that these changes form an essential feature of the T to R transition. They allow formation of the phosphate recognition site at the catalytic site and destroy the nucleoside inhibitor site. Kinetic experiments demonstrate that UDP-glucose activates the enzyme in the presence of high concentrations of the weak activator IMP, because of its ability to decrease the affinity of IMP for the inhibitor site.  相似文献   

10.
Giardia lamblia, the protozoan parasite responsible for giardiasis, requires purine salvage from its host for RNA and DNA synthesis. G. lamblia expresses an unusual purine phosphoribosyltransferase with a high specificity for guanine (GPRTase). The enzyme's sequence significantly diverges from those of related enzymes in other organisms. The transition state analogue immucillinGP is a powerful inhibitor of HGXPRTase from malaria [Li, C. M., et al. (1999) Nat. Struct. Biol. 6, 582-587] and is also a 10 nM inhibitor of G. lamblia GPRTase. Cocrystallization of GPRTase with immucillinGP led unexpectedly to a GPRTase.immucillinG binary complex with an open catalytic site loop. Diffusion of ligands into preformed crystals gave a GPRTase.immucillinGP.Mg(2+).pyrophosphate complex in which the open loop is stabilized by crystal contacts. G. lamblia GPRTase exhibits substantial structural differences from known purine phosphoribosyltransferases at positions remote from the catalytic site, but conserves most contacts to the bound inhibitor. The filled catalytic site with an open catalytic loop provides insight into ligand binding. One active site Mg(2+) ion is chelated to pyrophosphate, but the other is chelated to two conserved catalytic site carboxylates, suggesting a role for these amino acids. This arrangement of Mg(2+) and pyrophosphate has not been reported in purine phosphoribosyltransferases. ImmucillinG in the binary complex is anchored by its 9-deazaguanine group, and the iminoribitol is disordered. No Mg(2+) or pyrophosphate is detected; thus, the 5'-phosphoryl group is needed to immobilize the iminoribitol prior to magnesium pyrophosphate binding. Filling the catalytic site involves (1) binding the purine ring, (2) anchoring the 5'-phosphate to fix the ribosyl group, (3) binding the first Mg(2+) to Asp125 and Glu126 carboxyl groups and binding Mg(2+).pyrophosphate, and (4) closing the catalytic site loop and formation of bound (Mg(2+))(2). pyrophosphate prior to catalysis. Guanine specificity is provided by two peptide carbonyl oxygens hydrogen-bonded to the exocyclic amino group and a weak interaction to O6. Transition state formation involves N7 protonation by Asp129 acting as the general acid.  相似文献   

11.
Biosynthetic thiolases catalyze the biological Claisen condensation of two acetyl-CoA molecules to form acetoacetyl-CoA. This is one of the fundamental categories of carbon skeletal assembly patterns in biological systems and is the first step in many biosynthetic pathways including those which generate cholesterol, steroid hormones and ketone body energy storage molecules. High resolution crystal structures of the tetrameric biosynthetic thiolase from Zoogloea ramigera were determined (i) in the absence of active site ligands, (ii) in the presence of CoA, and (iii) from protein crystals which were flash frozen after a short soak with acetyl-CoA, the enzyme's substrate in the biosynthetic reaction. In the latter structure, a reaction intermediate was trapped: the enzyme was found to be acetylated at Cys89 and a molecule of acetyl-CoA was bound in the active site pocket. A comparison of the three new structures and the two previously published thiolase structures reveals that small adjustments in the conformation of the acetylated Cys89 side-chain allow CoA and acetyl-CoA to adopt identical modes of binding. The proximity of the acetyl moiety of acetyl-CoA to the sulfur atom of Cys378 supports the hypothesis that Cys378 is important for proton exchange in both steps of the reaction. The thioester oxygen atom of the acetylated enzyme points into an oxyanion hole formed by the nitrogen atoms of Cys89 and Gly380, thus facilitating the condensation reaction. The interaction between the thioester oxygen atom of acetyl-CoA and His348 assists the condensation step of catalysis by stabilizing a negative charge on the thioester oxygen atom. Our structure of acetyl-CoA bound to thiolase also highlights the importance in catalysis of a hydrogen bonding network between Cys89 and Cys378, which includes the thioester oxygen atom of acetyl-CoA, and extends from the catalytic site through the enzyme to the opposite molecular surface. This hydrogen bonding network is different in yeast degradative thiolase, indicating that the catalytic properties of each enzyme may be modulated by differences in their hydrogen bonding networks.  相似文献   

12.
PhaA from Ralstonia eutropha (RePhaA) is the first enzyme in the polyhydroxyalbutyrate (PHB) biosynthetic pathway and catalyzes the condensation of two molecules of acetyl-CoA to acetoacetyl-CoA. To investigate the molecular mechanism underlying PHB biosynthesis, we determined the crystal structures of the RePhaA protein in apo- and CoA-bound forms. The RePhaA structure adopts the type II biosynthetic thiolase fold forming a tetramer by means of dimerization of two dimers. The crystal structure of RePhaA in complex with CoA revealed that the enzyme contained a unique Phe219 residue, resulting that the ADP moiety binds in somewhat different position compared with that bound in other thiolase enzymes. Our study provides structural insight into the substrate specificity of RePhaA. Results indicate the presence of a small pocket near the Cys88 covalent catalytic residue leading to the possibility of the enzyme to accommodate acetyl-CoA as a sole substrate instead of larger acyl-CoA molecules such as propionyl-CoA. Furthermore, the roles of key residues involved in substrate binding and enzyme catalysis were confirmed by site-directed mutagenesis.  相似文献   

13.
Group II introns are catalytic RNA molecules that require divalent metal ions for folding, substrate binding, and chemical catalysis. Metal ion binding sites in the group II core have now been elucidated by monitoring the site-specific RNA hydrolysis patterns of bound ions such as Tb(3+) and Mg(2+). Major sites are localized near active site elements such as domain 5 and its surrounding tertiary interaction partners. Numerous sites are also observed at intron substructures that are involved in binding and potentially activating the splice sites. These results highlight the locations of specific metal ions that are likely to play a role in ribozyme catalysis.  相似文献   

14.
Tammam SD  Rochet JC  Fraser ME 《Biochemistry》2007,46(38):10852-10863
Succinyl-CoA:3-ketoacid CoA transferase (SCOT) transfers CoA from succinyl-CoA to acetoacetate via a thioester intermediate with its active site glutamate residue, Glu 305. When CoA is linked to the enzyme, a cysteine residue can now be rapidly modified by 5,5'-dithiobis(2-nitrobenzoic acid), reflecting a conformational change of SCOT upon formation of the thioester. Since either Cys 28 or Cys 196 could be the target, each was mutated to Ser to distinguish between them. Like wild-type SCOT, the C196S mutant protein was modified rapidly in the presence of acyl-CoA substrates. In contrast, the C28S mutant protein was modified much more slowly under identical conditions, indicating that Cys 28 is the residue exposed on binding CoA. The specific activity of the C28S mutant protein was unexpectedly lower than that of wild-type SCOT. X-ray crystallography revealed that Ser adopts a different conformation than the native Cys. A chloride ion is bound to one of four active sites in the crystal structure of the C28S mutant protein, mimicking substrate, interacting with Lys 329, Asn 51, and Asn 52. On the basis of these results and the studies of the structurally similar CoA transferase from Escherichia coli, YdiF, bound to CoA, the conformational change in SCOT was deduced to be a domain rotation of 17 degrees coupled with movement of two loops: residues 321-329 that bury Cys 28 and interact with succinate or acetoacetate and residues 374-386 that interact with CoA. Modeling this conformational change has led to the proposal of a new mechanism for catalysis by SCOT.  相似文献   

15.
The N-methylacridinium cation is bound to hydrophobic sites of horse liver alcohol dehydrogenase and human serum albumin with an observed stoichiometry of one molecule N-methyl-acridinium chloride per subunit of alcohol dehydrogenase and 2.5 molecules of the dye per molecule human serum albumin; the dissociation constants are 3.6 X 10(-5) M and 1.7 X 10(-5) M, respectively. In light, the proteins catalyze the dismutation of N-methylacridinium chloride to N-methylacridone and N-methyl-9,10-dihydroacridine. The presence or absence of oxygen has no effect upon the observed reaction rate. If horse liver alcohol dehydrogenase is used as catalyst, the reaction is inhibited by adenosine diphosphoribose and by 1,1'-dimethyl-4,4'-bipyridylium dichloride. It is concluded that the N-methylacridinium cation is bound within the catalytic site of the enzyme interacting with the binding sites of the nicotinium ring and/or the binding site of the lipophilic part of the substrate. The anaerobic photodismutation of N-methylacridinium chloride to N-methyl-9,10-dihydroacridine and N-methylacridone can be explained by several alternative patways (see Appendix by S. Hünig), the overall reaction being 2[N-Methylacridinium]+ + H2Ohw leads to N-Methyl-9,10-dihydroacridine + N-methylacridone + 2H+. The prerequisite, a high rate of proton transfer from the reaction site, seems to be common property of the hydrophobic binding regions for the N-methylacridinium cation in both horse liver alcohol dehydrogenase and human serum albumin.  相似文献   

16.
Cytosolic D-ribulose-5-phosphate 3-epimerase from rice was crystallized after EDTA treatment and structurally elucidated by X-ray diffraction to 1.9A resolution. A prominent Zn(2+) site at the active center was established in a soaking experiment. The structure was compared with that of the EDTA-treated crystalline enzyme from the chloroplasts of potato plant leaves showing some structural differences, in particular the "closed" state of a strongly conserved mobile loop covering the substrate at its putative binding site. The previous proposal for the active center was confirmed and the most likely substrate binding position and conformation was derived from the locations of the bound zinc and sulfate ions and of three water molecules. Assuming that the bound zinc ion is an integral part of the enzyme, a reaction mechanism involving a well-stabilized cis-enediolate intermediate is suggested.  相似文献   

17.
Phosphotransacetylase (EC 2.3.1.8) catalyzes reversible transfer of the acetyl group from acetyl phosphate to coenzyme A (CoA), forming acetyl-CoA and inorganic phosphate. Two crystal structures of phosphotransacetylase from the methanogenic archaeon Methanosarcina thermophila in complex with the substrate CoA revealed one CoA (CoA1) bound in the proposed active site cleft and an additional CoA (CoA2) bound at the periphery of the cleft. The results of isothermal titration calorimetry experiments are described, and they support the hypothesis that there are distinct high-affinity (equilibrium dissociation constant [KD], 20 microM) and low-affinity (KD, 2 mM) CoA binding sites. The crystal structures indicated that binding of CoA1 is mediated by a series of hydrogen bonds and extensive van der Waals interactions with the enzyme and that there are fewer of these interactions between CoA2 and the enzyme. Different conformations of the protein observed in the crystal structures suggest that domain movements which alter the geometry of the active site cleft may contribute to catalysis. Kinetic and calorimetric analyses of site-specific replacement variants indicated that there are catalytic roles for Ser309 and Arg310, which are proximal to the reactive sulfhydryl of CoA1. The reaction is hypothesized to proceed through base-catalyzed abstraction of the thiol proton of CoA by the adjacent and invariant residue Asp316, followed by nucleophilic attack of the thiolate anion of CoA on the carbonyl carbon of acetyl phosphate. We propose that Arg310 binds acetyl phosphate and orients it for optimal nucleophilic attack. The hypothesized mechanism proceeds through a negatively charged transition state stabilized by hydrogen bond donation from Ser309.  相似文献   

18.
Khajehpour M  Wu L  Liu S  Zhadin N  Zhang ZY  Callender R 《Biochemistry》2007,46(14):4370-4378
The Yersinia protein tyrosine phosphatase (YopH) contains a loop of ten amino acids (the WPD loop) that covers the entrance of the active site of the enzyme during substrate binding. In this work the substrate mimicking competitive inhibitor p-nitrocatechol sulfate (PNC) is used as a probe of the active site. The dynamics of the WPD loop was determined by subjecting an equilibrated system containing YopH, PNC, and YopH bound to PNC to a laser induced temperature jump, and subsequently following the change in equilibrium due to the perturbation. Using this methodology the dynamics associated with substrate binding in YopH have been determined. These results indicate that substrate binding is coupled to the WPD loop motion, and WPD loop dynamics occur in the sub-millisecond time scale. The significance of these dynamic results is interpreted in terms of the catalytic cycle of the enzyme.  相似文献   

19.
1. beta-Ketothiolase was purified 49-fold from fructose-grown cells of Hydrogenomonas eutropha H16 with a yield of 27%; the purification procedure involved precipitation by cetyltrimethylammonium bromide, DEAE-cellulose chromatography and exclusion chromatography on Sephadex G-200; the freeze-dried enzyme is stable. The molecular weight determined by sucrose-gradient centrifugation (8.2S) and by gel filtration is 147000-150000. The optimum pH for the cleavage reaction is 8.1, that for the condensation reaction 7.8, both measured in Tris-HCl buffer. 2. The kinetics of the cleavage reaction are described. Substrate-saturation curves were measured with both acetoacetyl-CoA and CoA as the variable substrates. The concentration of the second substrate was kept constant and was varied during successive experiments. The cleavage reaction is characterized by substrate inhibition by acetoacetyl-CoA, which is partially relieved by free CoA. Hill plots indicate two acetoacetyl-CoA-binding sites. 3. The substrate(acetyl-CoA)-saturation curve for the condensation reaction is hyperbolic. The K(m) was 3.9x10(-4)m-acetyl-CoA. In the presence of CoA sigmoidal curves were obtained, with an increasing sigmoidicity from 0.03 to 0.30mm-CoA. The inhibitory action of CoA on the beta-ketothiolase condensation reaction and its possible involvement in the regulation of poly-beta-hydroxybutyrate synthesis and degradation are discussed.  相似文献   

20.
Sun Y  Song H  Li J  Jiang M  Li Y  Zhou J  Guo Z 《Biochemistry》2012,51(22):4580-4589
1,4-Dihydroxy-2-naphthoyl coenzyme A (DHNA-CoA) synthase, or MenB, catalyzes a carbon-carbon bond formation reaction in the biosynthesis of both vitamin K1 and K2. Bicarbonate is crucial to the activity of a large subset of its orthologues but lacks a clearly defined structural and mechanistic role. Here we determine the crystal structure of the holoenzymes from Escherichia coli at 2.30 ? and Synechocystis sp. PCC6803 at 2.04 ?, in which the bicarbonate cofactor is bound to the enzyme active site at a position equivalent to that of the side chain carboxylate of an aspartate residue conserved among bicarbonate-insensitive DHNA-CoA synthases. Binding of the planar anion involves both nonspecific electrostatic attraction and specific hydrogen bonding and hydrophobic interactions. In the absence of bicarbonate, the anion binding site is occupied by a chloride ion or nitrate, an inhibitor directly competing with bicarbonate. These results provide a solid structural basis for the bicarbonate dependence of the enzymatic activity of type I DHNA-CoA synthases. The unique location of the bicarbonate ion in relation to the expected position of the substrate α-proton in the enzyme's active site suggests a critical catalytic role for the anionic cofactor as a catalytic base in enolate formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号